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Abstract

In this paper we study an epidemic model with nonmonotonic incidence rate, which describes the
psychological effect of certain serious diseases on the community when the number of infectives is getting
larger. By carrying out a global analysis of the model and studying the stability of the disease-free
equilibrium and the endemic equilibrium, we show that either the number of infective individuals tends
to zero as time evolves or the disease persists.
� 2007 Published by Elsevier Inc.
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1. Introduction

Let S(t) be the number of susceptible individuals, I(t) be the number of infective individuals,
and R(t) be the number of removed individuals at time t, respectively. After studying the cholera
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epidemic spread in Bari in 1973, Capasso and Serio [2] introduced a saturated incidence rate g(I)S
into epidemic models, where g(I) tends to a saturation level when I gets large, i.e.,

gðIÞ ¼ kI
1þ aI

; ð1:1Þ

where kI measures the infection force of the disease and 1/(1 + aI) measures the inhibition effect
from the behavioral change of the susceptible individuals when their number increases or from the
crowding effect of the infective individuals. This incidence rate seems more reasonable than the
bilinear incidence rate

gðIÞS ¼ kIS; ð1:2Þ
because it includes the behavioral change and crowding effect of the infective individuals and pre-
vents the unboundedness of the contact rate by choosing suitable parameters. Ruan and Wang
[12] studied an epidemic model with a specific nonlinear incident rate

gðIÞS ¼ kI2S

1þ aI2
ð1:3Þ

and presented a detailed qualitative and bifurcation analysis of the model. They derived sufficient
conditions to ensure that the system has none, one, or two limit cycles and showed that the system
undergoes a Bogdanov–Takens bifurcation at the degenerate equilibrium which includes a saddle-
node bifurcation, a Hopf bifurcation, and a homoclinic bifurcation. The general incidence rate

gðIÞS ¼ kIpS
1þ aIq ð1:4Þ

was proposed by Liu et al. [10] and used by a number of authors, see, for example, Derrick and van
den Driessche [3], Hethcote [5], Hethcote and Levin [6] and van den Driessche [7], Alexander and
Moghadas [1], etc. Nonlinear incidence rates of the form kIpSq were investigated by Liu et al. [9,10].

If the function g(I) is nonmonotone, that is, g(I) is increasing when I is small and decreasing
when I is large (see Fig. 1), it can be used to interpret the ‘‘psychological’’ effect: for a very large
number of infective individuals the infection force may decrease as the number of infective indi-
viduals increases, because in the presence of large number of infectives the population may tend to
reduce the number of contacts per unit time. The recent epidemic outbreak of severe acute respi-
ratory syndrome (SARS) had such psychological effects on the general public (see [8]), aggressive
measures and policies, such as border screening, mask wearing, quarantine, isolation, etc. have

I0

g(I)

Fig. 1. Nonmonotone incidence function g(I).
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been proved to be very effective ([4,13]) in reducing the infective rate at the late stage of the SARS
outbreak, even when the number of infective individuals were getting relatively larger. To model
this phenomenon, we propose a incidence rate

gðIÞS ¼ kIS

1þ aI2
; ð1:5Þ

where kI measures the infection force of the disease and 1/(1 + aI2) describes the psychological or
inhibitory effect from the behavioral change of the susceptible individuals when the number of infec-
tive individuals is very large. This is important because the number of effective contacts between
infective individuals and susceptible individuals decreases at high infective levels due to the quaran-
tine of infective individuals or due to the protection measures by the susceptible individuals. Notice
that when a = 0, the nonmonotone incidence rate (1.5) becomes the bilinear incidence rate (1.2).

The organization of this paper is as follows. In the next section, we present the model and de-
rive the disease-free equilibrium and the endemic equilibrium. In Section 3 we carry out a qual-
itative analysis of the model. Stability conditions for the disease-free equilibrium and the
endemic equilibrium are derived, respectively. A brief discussion and some numerical simulations
are given in Section 4.

2. The model

The model to be studied takes the following form

dS
dt
¼ b� dS� kSI

1þ aI2
þ cR;

dI
dt
¼ kSI

1þ aI2
� ðdþ lÞI ;

dR
dt
¼ lI� ðdþ cÞR;

ð2:1Þ

where S(t), I(t) and R(t) denote the numbers of susceptible, infective, and recovered individuals at
time t, respectively. b is the recruitment rate of the population, d is the natural death rate of the
population, k is the proportionality constant, l is the natural recovery rate of the infective indi-
viduals, c is the rate at which recovered individuals lose immunity and return to the susceptible
class, a is the parameter measures the psychological or inhibitory effect.

Because of the biological meaning of the components (S(t), I(t),R(t)), we focus on the model in
the first octant of R3. We first consider the existence of equilibria of system (2.1). For any values of
parameters, model (2.1) always has a disease-free equilibrium E0 = (b/d, 0,0). To find the positive
equilibria, set

b� dS� kIS

1þ aI2
þ cR ¼ 0;

kS

1þ aI2
� ðdþ lÞ ¼ 0;

lI� ðdþ cÞR ¼ 0:
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This yields

adðdþ lÞI2 þ k dþ l� cl
dþ c

� �
Iþ dðdþ lÞ � kb ¼ 0: ð2:2Þ

Define the basic reproduction number as follows

R0 ¼
kb

dðdþ lÞ : ð2:3Þ

From Eq. (2.2) we can see that

(i) if R0 6 1, then there is no positive equilibrium;
(ii) if R0 > 1, then there is a unique positive equilibrium E* = (S*, I*,R*), called the endemic

equilibrium and given by

S� ¼ 1

d
b� ðdþ l� cl

dþ c
ÞI�

� �
; ð2:4Þ

I� ¼
�kðdþ l� cl

dþcÞ þ
ffiffiffiffi
D
p

2adðdþ lÞ ; ð2:5Þ

R� ¼ l
dþ c

I�; ð2:6Þ

where

D ¼ k2 dþ l� cl
dþ c

� �2

� 4ad2ðdþ lÞ2½1� R0�:

In the next section, we shall study the property of these equilibria and perform a global qualitative
analysis of model (2.1).

3. Mathematical analysis

To study the dynamics of model (2.1), we first present a lemma.

Lemma 3.1. The plane S + I + R = b/d is an invariant manifold of system (2.1), which is attracting in
the first octant.

Proof. Summing up the three equations in (2.1) and denoting N(t) = S(t) + I(t) + R(t), we
have

dN
dt
¼ b� dN : ð3:1Þ

It is clear that N(t) = b/d is a solution of Eq. (3.1) and for any N(t0) P 0, the general solution of
Eq. (3.1) is

NðtÞ ¼ 1

d
½b� ðb� dNðt0ÞÞe�dðt�t0Þ�:
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Thus,

lim
t!1

NðtÞ ¼ b
d
;

which implies the conclusion. h

It is clear that the limit set of system (2.1) is on the plane S + I + R = b/d. Thus, we focus on
the reduced system

dI
dt
¼ kI

1þ aI2

b
d
� I� R

� �
� ðdþ lÞ,PðI;RÞ;

dR
dt
¼ lI� ðdþ cÞ,QðI;RÞ: ð3:2Þ

We have the following result regarding the nonexistence of periodic orbits in system (3.2), which
implies the nonexistence of periodic orbits of system (2.1) by Lemma 3.1

Theorem 3.2. System (3.2) does not have nontrivial periodic orbits.

Proof. Consider system (3.2) for I > 0 and R > 0. Take a Dulac function

DðI;RÞ ¼ 1þ aI2

kI
:

We have

oðDPÞ
oI
þ oðDQÞ

oR
¼ �1� 2aðdþ lÞ

k
I� 1þ aI2

kI
ðdþ cÞR < 0:

The conclusion follows. h

In order to study the properties of the disease-free equilibrium E0 and the endemic equilibrium
E*, we rescale (3.2) by

x ¼ k
dþ c

I ; y ¼ k
dþ c

R; s ¼ ðdþ cÞt:

Then we obtain

dx
ds
¼ x

1þ px2
ðA� x� yÞ � mx;

dy
ds
¼ qx� y;

ð3:3Þ

where

p ¼ aðdþ cÞ2

k2
; A ¼ bk

dðdþ cÞ ; m ¼ dþ l
dþ c

; q ¼ l
dþ c

:

Note that the trivial equilibrium (0,0) of system (3.3) is the disease-free equilibrium E0 of model
(2.1) and the unique positive equilibrium (x*,y*) of system (3.3) is the endemic equilibrium E* of
model (2.1) if and only if m � A < 0, where
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x� ¼
�ð1þ qÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ qÞ2 � 4mpðm� AÞ

q
2mp

; y� ¼ qx�:

We first determine the stability and topological type of (0,0). The Jacobian matrix of system (3.3)
at (0,0) is

M0 ¼
A� m 0

q �1

� �
:

If A � m = 0, then there exists a small neighborhood N0 of (0,0) such that the dynamics of system
(3.3) are equivalent to that of

dx
ds
¼ �x2 � 2xyþOððx; yÞ3Þ;

dy
ds
¼ qx� y:

ð3:4Þ

By Theorem 7.1 of Zhang et al. [14] (pp. 114) or Theorem 2.11.1 of Perko [11] (pp. 150), we know
that (0,0) is a saddle-node. Hence, we obtain the following result.

Theorem 3.3. The disease-free equilibrium (0,0) of system (3.3) is

(i) a stable hyperbolic node if m � A > 0;
(ii) a saddle-node if m � A = 0;

(iii) a hyperbolic saddle if m � A < 0.

When m � A < 0, we discuss the stability and topological type of the endemic equilibrium (x*,y*).
The Jacobian matrix of (3.3) at (x*,y*) is

M1 ¼
x�ðpx�2 þ 2pqx�2 � 2Apx� � 1Þ

ð1þ px�2Þ2
�x�

1þ px�2

q �1

2
64

3
75:

We have that

detðM1Þ ¼ �
x�ðpx�2 þ 2pqx�2 � 2Apx� � 1Þ

ð1þ px�2Þ2
þ qx�

1þ px�2

¼ x�ð1þ qþ 2Apx� � ð1þ qÞpx�2Þ
ð1þ px�2Þ2

:

The sign of det(M1) is determined by

S1,1þ qþ 2Apx� � ð1þ qÞpx�2:
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Note that mpx*2 + (1 + q)x* + m � A = 0. We have

mS1 ¼ð2Ampþ ð1þ qÞ2Þx� þ ð1þ qÞð2m� AÞ

¼ð2Ampþ ð1þ qÞ2Þ x� þ ð1þ qÞð2m� AÞ
2Ampþ ð1þ qÞ2

" #
:

Substituting

x� ¼ �ð1þ qÞ þ D1

2mp
; where D1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ qÞ2 � 4mpðm� AÞ

q
;

into S1 and using a straightforward calculation, we have

S1 ¼�
D1

m
½ð1þ qÞD1 � ð2Ampþ ð1þ qÞ2Þ�

¼ ð1þ qÞD1

m
1þ qþ 2mpA

1þ q

� �
� D1

� �
:

Since

1þ qþ 2mpA
1þ q

� �2

� D2
1 ¼

4m2p2A2

ð1þ qÞ2
þ 4m2p > 0;

it follows that S1 > 0. Hence, det(M1) > 0 and (x*,y*) is a node or a focus or a center. Further-
more, we have the following result on the stability of (x*,y*).

Theorem 3.4. Suppose m � A < 0, then there is a unique endemic equilibrium (x*, y*) of model (3.3),
which is a stable node.

Proof. We know that the stability of (x*,y*) is determined by tr(M1). We have

trðM1Þ ¼
�p2x�4 þ ð1þ 2qÞpx�3 � 2ð1þ AÞpx�2 � x� � 1

ð1þ px�2Þ2
:

The sign of tr(M1) is determined by

S2 ¼ �p2x�4 þ ð1þ 2qÞpx�3 � 2ð1þ AÞpx�2 � x� � 1:

We claim that S2 5 0. To see this, note that mpx*2 + (1 + q)x* + m � A = 0. Then we have

m3pS2 ¼ ðB1Aþ B2Þx� þ ðB3Aþ B4Þ;
where

B1 ¼ mpð2þ 3mþ 2qþ 4mqÞ;
B2 ¼ ð1þ qÞ½ð1þ qÞ2 þ mð1þ qÞð1þ 2qÞ � 2m3p�;
B3 ¼ �ð1þ qÞ2 � mð1þ qÞð1þ 2qÞ þ 2m3p;

B4 ¼ m½ð1þ qÞ2 þ mð1þ qÞð1þ 2qÞ � pð1þ 2mÞA2�:

When m � A < 0, we can see that B1A + B2 > 0.

D. Xiao, S. Ruan / Mathematical Biosciences 208 (2007) 419–429 425



Author's personal copy

Let n = mpx*2 + (1 + q)x* + m � A. Similarly, we have

ðB1Aþ B2Þ2n ¼ m3pPS2 þ S3;

where P is a polynomial of x* and

S3 ¼ m3pð1þ A2pþ 2qþ q2Þ½ðAþ 2Am� 2m2Þ2pþ ð1þ A� mþ qÞð1þ mþ qþ 2mqÞ�:
Assume that S2 = 0. Since n = 0, it follows that S3 = 0. However, when m � A < 0, we have
S3 > 0. Therefore, S2 5 0 for any positive value of the parameters p, q and A, that is, tr(M1) 5 0.
Thus, m � A < 0 implies that (x*,y*) does not change stability. Take m = 1, A = 2, p = 1, q = 1.
Then x� ¼ �1þ

ffiffiffi
2
p

, y� ¼ �1þ
ffiffiffi
2
p

, tr(M1) = �1.64645 < 0. By the continuity of tr(M1) on the
parameters, we know that tr(M1) < 0 for m � A < 0. This completes the proof. h

Summarizing Theorems 3.2–3.4, we have the following results on the dynamics of the original
model (2.1).

Theorem 3.5. Let R0 be defined by (2.3).

(i) If R0 < 1, then model (2.1) has a unique disease-free equilibrium E0 = (b/d,0,0), which is a glob-
al attractor in the first octant.

(ii) If R0 = 1, then model (2.1) has a unique disease-free equilibrium E0 = (b/d,0,0), which attracts
all orbits in the interior of the first octant.

(iii) If R0 > 1, then model (2.1) has two equilibria, a disease-free equilibrium E0 = (b/d,0,0) and an
endemic equilibrium E* = (S*, I*,R*). The endemic equilibrium E* is a global attractor in the
interior of the first octant.

4. Discussions

Several nonlinear incidence rates have been proposed by researchers, see, for example, Capasso
and Serio [2], Liu et al. [10], Derrick and van den Driessche [3], Hethcote and van den Driessche
[7], etc. Complex dynamics have been observed in epidemiological models with nonlinear inci-
dence rate, such as the existence of multiple equilibria and limit cycles, various types of bifurca-
tions including Hopf, saddle-node, homoclinic and Bagdanov–Takens bifurcations, etc., see Ruan
and Wang [12] and references cited therein.

In this paper we proposed a nonmonotone and nonlinear incidence rate of the form kIS/
(1 + aI2), which is increasing when I is small and decreasing when I is large. It can be used to inter-
pret the ‘‘psychological’’ effect: the number of effective contacts between infective individuals and
susceptible individuals decreases at high infective levels due to the quarantine of infective individ-
uals or the protection measures by the susceptible individuals. The recent epidemic outbreak of
severe acute respiratory syndrome (SARS) had such psychological effects on the general public
(see Leung et al. [8], Gumel et al. [4] and Wang and Ruan [13]).

We have carried out a global qualitative analysis of an SIR model with this nonmonotone and
nonlinear incidence rate and studied the existence and stability of the disease-free and endemic
equilibria. Interestingly, this model does not exhibit complicated dynamics as other epidemic
models with other types of incidence rates reported in Liu et al. [10], Derrick and van den Dries-
sche [3], Hethcote and Levin [6], Hethcote and van den Driessche [7], Ruan and Wang [12], etc. In
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terms of the basic reproduction number R0 = kb/(d(d + l)), our main results indicate that when
R0 < 1, the disease-free equilibrium is globally attractive (see Fig. 2). When R0 > 1, the endemic
equilibrium exists and is globally stable (see Fig. 3). Biologically, these indicate that when the pro-
portionality (infection) constant (k) and/or the recruitment rate (b) is sufficiently large and remov-
al rate (death rate (d) plus recovery rate (l)) is sufficiently small such that R0 > 1, then the disease
persists. On the other hand, if the proportionality (infection) constant (k) and/or the recruitment
rate (b) is small enough and removal rate (death rate (d) plus recovery rate (l)) is large enough
such that R0 < 1, then the disease dies out. The aggressive control measures and policies, such
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Fig. 2. When b = 1.0, d = 0.2, k = 0.2, a = 4.0, c = 0.3, l = 0.15, R0 = 6/7 < 1, S(t) approaches to its steady state value
while I(t) and R(t) approach zero as time goes to infinity, the disease dies out.
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Fig. 3. When b = 1.0, d = 0.2, k = 0.2, a = 4.0, c = 0.3, l = 0.15, R0 = 20/7 > 1, all three components, S(t), I(t) and
R(t), approach to their steady state values as time goes to infinity, the disease becomes endemic.

D. Xiao, S. Ruan / Mathematical Biosciences 208 (2007) 419–429 427



Author's personal copy

as border screening, mask wearing, quarantine, isolation, etc., helped in reducing the infection
rate and increasing the removal rate and in the eventual eradication of SARS (Gumel et al. [4]
and Wang and Ruan [13]).

Recall that the parameter a describes the psychological effect of the general public toward the
infectives. Though the basic reproduction number R0 does not depend on a explicitly, numerical
simulations indicate that when the disease is endemic, the steady state value I* of the infectives
decreases as a increases (see Fig. 4). From the steady state expression (2.5) we can see that I*

approaches zero as a tends to infinity.
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