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Abstract

The term leukopoiesis describes processes leading to the production and regulation of white blood cells. It is based on stem cells

differentiation and may exhibit abnormalities resulting in severe diseases, such as cyclical neutropenia and leukemias. We consider a

nonlinear system of two equations, describing the evolution of a stem cell population and the resulting white blood cell population. Two

delays appear in this model to describe the cell cycle duration of the stem cell population and the time required to produce white blood

cells. We establish sufficient conditions for the asymptotic stability of the unique nontrivial positive steady state of the model by

analysing roots of a second degree exponential polynomial characteristic equation with delay-dependent coefficients. We also prove the

existence of a Hopf bifurcation which leads to periodic solutions. Numerical simulations of the model with parameter values reported in

the literature demonstrate that periodic oscillations (with short and long periods) agree with observations of cyclical neutropenia in

patients.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The process that leads to the production and regulation
of blood cells is called hematopoiesis. It consists of
mechanisms triggering differentiation and maturation of
hematopoietic stem cells. Located in the bone marrow,
hematopoietic stem cells are undifferentiated cells, unob-
servable directly (even though they can be tracked by
markers), with unique capacities of differentiation (the
ability to produce cells committed to one of blood cell
types) and self-renewal (the ability to produce an identical
cell with the same properties). Under the action of growth
factors (molecules acting like hormones playing an
activator/inhibitor role), hematopoietic stem cells produce
e front matter r 2006 Elsevier Ltd. All rights reserved.
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differentiated cells throughout cell divisions until blood
cells (white cells, red blood cells, and platelets) are formed
and ready to enter the bloodstream.
We are interested here in leukopoiesis (see Fig. 1), the

process by which white blood cells (also known as
leukocytes) are produced, which is a sub-process of
hematopoiesis. Like other blood cells, white cells are
originated from a pool of hematopoietic stem cells. Under
the action of mainly G-CSF (granulocyte colony stimulat-
ing factor), a growth factor only acting on the leukocyte
line, hematopoietic stem cells differentiate in progenitors
(the so-called CFU, colony forming units), which in turn
will produce precursor cells after a consequent number of
divisions. After a few divisions later, leukocytes are formed
and leave the bone marrow to enter the bloodstream.
Due to the number of divisions and the quantity of cells

involved in leukopoiesis (or in hematopoiesis in general),
issues may arise at different cellular levels and sometimes
result in diseases affecting white cells. Among a wide
variety of diseases affecting leukocytes, cyclical neutrope-
nia is of great interest. It is characterized by a periodic
decrease in the circulating neutrophil (white cells) numbers,
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Fig. 1. Model of leukopoiesis. The variable Q represents the quiescent cell

population in the resting phase. These cells can be introduced in the

proliferating phase with a rate bðQÞ or differentiate in blood cells. In

the proliferating phase, cells can die by apoptosis with a rate g1, and the

proliferating phase duration is t1. After division of proliferating cells, the

two daughter cells immediately enter the resting phase. Resting cells

differentiate either in white blood cells (leukocytes) with a rate kðW Þ,

depending on the number of white cells W, or in red blood cells and

platelets with a rate K (that also takes into account natural mortality).

Cells in the differentiation pathway are amplified by successive divisions

with a factor A (note that cell loss during the differentiation process are

included in A). After a time t2, differentiating cells become mature white

cells. These latter are assumed to disappear with a rate g2.
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from normal to low values, sometimes barely detectable
(Haurie et al., 1998). Usually periods observed vary
between 19 and 21 days, but longer periods up to 46 days
have been reported in some patients (Haurie et al., 1999).
Oscillations of all leukocyte types (other than neutrophils)
have been observed in patients with cyclical neutropenia,
usually with the same periods. The understanding of
cyclical neutropenia has been greatly aided by the
discovery that a canine race, the grey collie, gets this
congenital disease (with rather shorter periods, in the order
of 11–16 days).

Another severe disease of the white cells is chronic
myelogenous leukemia (Fortin and Mackey, 1999), a
cancer of leukocytes. In some cases, chronic myelogenous
leukemia also exhibits periodic oscillations in all blood cell
counts, with periods falling in the range of 30–110 days,
but usually about 70–80 days.

These two blood cell diseases are known as periodic
hematological diseases. They both originate from the
hematopoietic stem cell compartment: a mutation in one
hematopoietic stem cell is carried on through successive cell
divisions and the disease appears in the bloodstream.
Mathematical modeling of hematopoietic stem cells
dynamics has been extensively studied in the past 30 years,
with attempts to determine causes leading to a number of
periodic hematological diseases. In 1978, Mackey (1978)
proposed a mathematical model of hematopoietic stem
cells dynamics inspired by the works of Lajtha (1959) and
Burns and Tannock (1970). Formed by a system of two
nonlinear delay differential equations, where the delay
describes the average cell cycle duration, this model
stressed the influence of some factors (such as the apoptotic
rate, the introduction rate, the cell cycle duration) playing
an important role in the appearance of periodic solutions.
Many authors studied properties of the model introduced
by Mackey (1978) and other models related to this one, in
order to understand the role played by hematopoietic stem
cells in the stability of hematopoiesis. We refer to Mackey
and Rey (1993, 1995a,b), Mackey and Rudnicki (1994,
1999), Dyson et al. (1996, 1998, 2000a,b), Pujo-Menjouet
and Rudnicki (2000), Adimy and Pujo-Menjouet (2003),
Adimy and Crauste (2003, 2005) and Adimy et al. (2005a)
for studies of structured models of hematopoiesis, the
structure being either age, maturity or age–maturity. We
want to point out that we do not consider any structure in
the model analysed in this paper, but these references could
be used to improve the present work.
The model of Mackey (1978) has been recently analysed

by Pujo-Menjouet and Mackey (2004) and Pujo-Menjouet
et al. (2005) in order to prove the existence of long period
oscillations, characterizing situations observed in patients
with chronic myelogenous leukemia. Taking into account
that all stem cells do not require the same time in cell cycle
to divide, Adimy et al. (2005b,c, 2006) studied models
similar to the one proposed by Mackey (1978) but with a
time delay distributed according to a density with compact
support and highlighted the role of a destabilization of the
cell cycle duration in the appearance of oscillating solutions
with long periods.
In 1998, Hearn et al. (1998) and Haurie et al. (1998,

1999) published works about cyclical neutropenia, pointing
out the main problems and questions arising in its study.
They also gave a complete description of the disease.
Bernard et al. (2003) proposed the first model of leukopoi-
esis, based on a description of mechanisms involved in
cyclical neutropenia. See also Bernard et al. (2004). Their
model consists of a system of two nonlinear differential
equations with two time delays, that describe the cell cycle
duration and the time required by a hematopoietic stem
cell to produce white blood cells by differentiation. Bernard
et al. (2003) simplified their model by using a quasi steady-
state assumption (so the differentiation rate k in system (2)
is assumed to be constant in their model), resulting in a new
uncoupled system, whose resolution is equivalent to the
one of the model proposed by Mackey (1978). See also
MacDonald (1978) for modeling cyclical neutropenia by a
system with two delays.
We also mention the recent work of Colijn and Mackey

(2005a,b) which deals with a complete model of hematopoiesis,
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taking into account the dynamics of the hematopoietic stem
cell compartment as well as each of the three blood cell type
(red blood cells, white cells and platelets) compartments. The
resulting mathematical model is a system of four nonlinear
differential equations with six time delays. The authors focused
on determining critical model parameters to simulate chronic
myelogenous leukemia (Colijn and Mackey, 2005a) and
cyclical neutropenia (Colijn and Mackey, 2005b).

In this paper, we analyse the leukopoiesis model with
two delays proposed by Bernard et al. (2003) without the
simplifying assumption. We want to point out that
studying the case with both delays is biologically significant
since it makes a clear link between the number of
circulating leukocytes and the differentiation of hemato-
poietic stem cells. Mathematically, the difficulty resides in
the presence of two independent delays and the fact that
some coefficients in the model equations depend upon these
delays. Consequently, the characteristic equation of the
linearized system has delay-dependent coefficients. As
mentioned by Beretta and Kuang (2002), models with
delay-dependent coefficients often exhibit very rich dy-
namics as compared to models with constant coefficients.

When analysing the stability and bifurcation of planar
systems with two delays, we need to study the second
degree transcendental polynomials with two delays. The
problem of determining the distribution of roots to such
polynomials is very complex and there are very few studies
on this topic (Boese, 1995; Ruan and Wei, 1999, 2003). In
this paper, we use an analytical approach proposed by Wei
and Ruan (1999) and Ruan and Wei (2003).

Our work is organized as follows. In the next section, we
present the model of leukopoiesis dynamics, a system of
two nonlinear delay differential equations with two delays,
and investigate the existence of a nontrivial positive steady
state. In Section 3, we analyse the asymptotic stability of
this steady state. We first linearize the model about the
steady state and obtain a second degree exponential
polynomial characteristic equation. We determine, succes-
sively, conditions for the stability when both time delays
are equal to zero, only one delay is equal to zero, and,
eventually, when both delays are nonzero. We also
establish the existence of a Hopf bifurcation, which
destabilizes the entire system and leads to the existence of
periodic solutions. In Section 4, we numerically illustrate
our results and obtain very rich dynamics of our model
that we relate to observations of cyclical neutropenia in
patients. We conclude with a discussion.

2. The model

Hematopoietic stem cells are separated in two distinct
compartments: proliferating and nonproliferating cells (see
Fig. 1). Proliferating cells are actually in the cell cycle
where they particularly perform a growth phase and a
phase of DNA synthesis that lead to the cell division, at the
end of the phase. After division, the two newborn daughter
cells enter immediately a resting phase, also known as G0
phase, where they can stay their entire life. This phase is a
quiescent stage in the cell cycle with respect to growth and
maturation.
During the proliferating phase, hematopoietic stem cells

can be eliminated by apoptosis, a specific process aimed to
kill deficient cells (a programmed cell death). We denote by
g1 the rate of apoptosis of hematopoietic stem cells. We
assume that the proliferating phase duration is the same for
all hematopoietic stem cells and denote it by t1.
There is a feedback loop between the resting phase and

the proliferating phase, which regulates the rate of
reentrance in the proliferative compartment from the G0

stage. We denote this rate by b. It is supposed to depend on
the quiescent stem cell population QðtÞ (see Mackey, 1978;
Pujo-Menjouet and Mackey, 2004). More precisely, b is a
positive monotone decreasing function of Q, such that

lim
Q!1

bðQÞ ¼ 0.

Typically, b is a Hill function given by

bðQÞ ¼
b0y

n

yn
þQn . (1)

The parameter b0 represents the maximal rate of introduc-
tion in the proliferating phase, y is the value for which b
attains half of its maximum value, and n is the sensitivity of
the rate of reintroduction. The coefficient n describes the
reaction of b due to external stimuli, the action of a growth
factor for example (some growth factors are known to
trigger the introduction of quiescent cells in the proliferat-
ing phase).
The differentiation of hematopoietic stem cells takes

place in the G0 phase. Following divisions, stem cells
become committed stem cells, which are programmed to
produce one of the three blood cell types. We denote by k

the rate of differentiation of hematopoietic stem cells in
leukocytes and by K the rate of differentiation in other
blood cells (red blood cells and platelets). The latter rate is
assumed to be constant, since we do not consider here
other populations than hematopoietic stem cells and
leukocytes. Note that the rate K may also take some
natural mortality into account. According to Bernard et al.
(2003), the rate k describes a negative feedback, similar to
the introduction rate b, and depends on the population of
white blood cells W ðtÞ: Hence, we assume that k is a
positive monotone decreasing function of W, which tends
to zero as W tends to infinity (see for example (17)).
When a hematopoietic stem cell differentiates in a

committed stem cell, a certain number of generations, say
i, is necessary to produce a leukocyte. We do not take into
account the exact number of generations involved in this
process, but only (see Bernard et al., 2003) the time needed
to perform these i generations, that we denote by t2,
coupled to an amplification parameter, denoted by A. In
fact, A � a2i, where a 2 ð0; 1Þ is a survival rate.
The effective number of divisions i has been estimated to

fall in the range of 15–17 (Mackey, 2001; Novak and
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Nec̆as, 1994), giving an amplification parameter A about
3213� 104, without taking cell death into account.
However, in Bernard et al. (2003), A ranges from 0 to
106, corresponding to a generation number i varying
between 0 and 20. Moreover, it is noticeable that data
vary dramatically between cell types and that some diseases
affect the number of divisions (Michor et al., 2005).

We want to point out that t2, the time required to
perform the necessary divisions to obtain a white blood
cell, should be distributed according to a gamma distribu-
tion (Bernard et al., 2003). Yet, to be able to perform an
advanced analysis of our model, we do not make this
assumption in this paper.

Denoting by g2 the natural mortality rate of white blood
cells, our model, proposed by Bernard et al. (2003, 2004), is
then the following:

dQ

dt
¼ �½K þ kðW ðtÞÞ þ bðQðtÞÞ�QðtÞ

þ2e�g1t1bðQðt� t1ÞÞQðt� t1Þ;
dW

dt
¼ �g2W ðtÞ þ AkðW ðt� t2ÞÞQðt� t2Þ:

8>>>><
>>>>:

(2)

One can note that the second term in the right hand side of
the Q equation in (2) accounts for cells produced by
division at the end of the proliferating phase. These cells
are in fact quiescent cells introduced one generation earlier
in the proliferating phase. The factor 2 describes the
division of each cell into two daughter cells (see Mackey,
1978).

The functions b and k are bounded. Assuming that they
are locally Lipschitz continuous (which is always the case
for smooth functions, say continuously differentiable; in
particular, for b and k given by (17) in Section 4), one can
easily check, from Hale and Verduyn Lunel (1993), that
system (2) has a unique continuous solution ðQðtÞ;W ðtÞÞ,
which is well-defined for all tX0 and for a continuous
initial condition. Moreover, we easily see that, for
nonnegative initial conditions, the solutions of (2) remain
nonnegative for tX0. Indeed, let T40 be such that QðtÞ40
for toT with QðTÞ ¼ 0. Then, from (2), we have

dQ

dt
ðTÞ ¼ 2e�g1t1bðQðT � t1ÞÞQðT � t1Þ40,

and the result follows. The same reasoning holds for W ðtÞ.
Now, let us turn our considerations on the existence of

steady states for system (2). Steady states of (2) are
stationary solutions ðQ�;W �Þ of (2), that is,

½K þ kðW �Þ þ bðQ�Þ�Q� ¼ 2e�g1t1bðQ�ÞQ�;

g2W
� ¼ AkðW �ÞQ�:

(

Firstly, notice that ð0; 0Þ is always a steady state of (2). It
describes the extinction of the cell populations.

Searching for nonzero steady states of (2), that is
ðQ�;W �Það0; 0Þ, we must solve

K þ kðW �Þ ¼ ð2e�g1t1 � 1ÞbðQ�Þ, (3)
g2W
� ¼ AkðW �ÞQ�. (4)

We have the following result, whose proof is detailed in
Appendix A.

Proposition 1. Assume that

ð2e�g1t1 � 1Þbð0Þ4kð0Þ þ K (5)

and that the function Q 7!QbðQÞ is decreasing on the interval

ðQ0;Q1Þ, where

Q0 ¼ b�1
kð0Þ þ K

2e�g1t1 � 1

� �
and

Q1 ¼ b�1
K

2e�g1t1 � 1

� �
. (6)

Then system (2) has a unique nontrivial positive steady state

ðQ�;W �Þ, a solution of system (3)–(4).

Remark 2. (i) One can note that, with b given by (1),
the function Q 7!QbðQÞ is decreasing on the interval
½y=ðn� 1Þ1=n;þ1Þ provided that n41, and ðQ0;Q1Þ �

½y=ðn� 1Þ1=n;þ1Þ if and only if

n4
ð2e�g1t1 � 1Þb0

ð2e�g1t1 � 1Þb0 � kð0Þ � K
.

(ii) Recall that ð0; 0Þ is always a steady state of (2).
(iii) When condition (5) no longer holds, we cannot

conclude the uniqueness—or even the existence—of a
nontrivial steady state of (2). If KXð2e�g1t1 � 1Þbð0Þ, then
there is no other steady state than ð0; 0Þ. Yet, if
kð0Þ þ KXð2e�g1t1 � 1Þbð0Þ4K , system (2) may exhibit
several steady states, depending on the values of the first
derivatives of b and k.

In the next section, we focus on the asymptotic stability
of the unique nontrivial steady state of system (2), namely
ðQ�;W �Þ, defined in Proposition 1. To that aim, we
linearize (2) about ðQ�;W �Þ and determine the associated
characteristic equation.

3. Asymptotic stability

Throughout this section, we assume that condition (5)
holds and that the mapping Q 7!QbðQÞ is decreasing on
ðQ0;Q1Þ, with Q0 and Q1 defined in (6). Thus, the unique
nontrivial steady state ðQ�;W �Þ, with Q�;W �40, of (2) is
well defined from Proposition 1 by (3)–(4). Moreover, we
assume that b and k are C1 functions.
We first linearize system (2) around ðQ�;W �Þ and deduce

the characteristic equation.

3.1. Linearization and characteristic equation

In the following, we will use the notations

k�:¼kðW �Þ; k�:¼Q�k0ðW �Þ,

b�:¼bðQ�Þ þQ�b0ðQ�Þ.
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Setting qðtÞ ¼ QðtÞ �Q� and wðtÞ ¼W ðtÞ �W �, the linear-
ized system of (2) about ðQ�;W �Þ is then given by

dq

dt
¼ �½K þ k� þ b��qðtÞ � k�wðtÞ þ 2e�g1t1b�qðt� t1Þ;

dw

dt
¼ �g2wðtÞ þ A½k�qðt� t2Þ þ k�wðt� t2Þ�:

8>><
>>:

(7)

Define

A0:¼
�ðK þ k� þ b�Þ �k�

0 �g2

 !
,

A1:¼
2e�g1t1b� 0

0 0

� �
,

and

A2:¼A
0 0

k� k�

� �
.

The characteristic equation associated with (7) is given by

detðlI �A0 � e�lt1A1 � e�lt2A2Þ ¼ 0.

After simplifications, this equation becomes

l2 þ ðK þ k� þ b� þ g2Þlþ ðK þ k� þ b�Þg2

� 2e�g1t1b�ðlþ g2Þ e
�lt1 � Ak�ðlþ b� þ KÞ e�lt2

þ 2Ae�g1t1b�k�e�lðt1þt2Þ ¼ 0. ð8Þ

This is a second degree exponential polynomial in l. The local
asymptotic stability analysis of the steady state ðQ�;W �Þ is
performed through the study of the sign of the real parts of
roots of (8). We recall that ðQ�;W �Þ is locally asymptotically
stable if and only if all roots of (8) have negative real parts,
and its stability can only be lost if roots cross the vertical axis,
that is if purely imaginary roots appear.

Because of the presence of two different delays, t1 and t2,
in Eq. (8), the analysis of the sign of the real parts of
eigenvalues is very complicated, and a direct approach cannot
be considered. We will use a method consisting of determin-
ing the stability of the steady state when one delay is equal to
zero, and, using similar analytic arguments as in Ruan and
Wei (2003), we will deduce conditions for the stability of the
steady state when both time delays are nonzero.

Note also that the steady state ðQ�;W �Þ implicitly
depends on the time delay t1, through (3)–(4). Therefore,
coefficients of the characteristic Eq. (8) depend, explicitly
(the term with e�g1t1 ) or implicitly, upon the delay t1. This
particularity adds a complexity to the resolution of (8).

3.2. The case t1 ¼ t2 ¼ 0.

Assume that t1 ¼ t2 ¼ 0. Then, the characteristic Eq. (8)
is written as a second degree polynomial equation

l2 þ ðK þ k� þ g2 � b� � Ak�Þlþ ðK þ k� � b�Þg2

� Ak�ðK � b�Þ ¼ 0. ð9Þ
From the Routh–Hurwith criterion, all eigenvalues of (9)
have negative real parts if and only if

K þ k� þ g24b� þ Ak� (10)

and

ðK þ k� � b�Þg24Ak�ðK � b�Þ.

From (3), the steady state ðQ�;W �Þ of (2) satisfies,

K þ kðW �Þ ¼ bðQ�Þ.

Since b� ¼ bðQ�Þ þQ�b0ðQ�Þ, condition (10) is then
equivalent to

g24Q�b0ðQ�Þ þ Ak�. (11)

The functions b and k are decreasing, so b0ðQ�Þp0 and
k�p0. Consequently, (11) holds true, and (10) is satisfied.
We can then conclude to the asymptotic stability of
ðQ�;W �Þ when t1 ¼ t2 ¼ 0 in the next proposition.

Proposition 3. Assume that

ðH1Þ ðK þ k� � b�Þg24Ak�ðK � b�Þ.

Then all eigenvalues of (9) have negative real parts, and the

steady state ðQ�;W �Þ of system (2) is locally asymptotically

stable.

One can notice that, for example, when b� is negative,
assumption (H1) holds true, since k�40 and k�p0. For
values of the parameters taken from the literature (see
Section 4), one can see that condition (H1) is fulfilled.

3.3. The case t1 ¼ 0 and t240

We now consider the case t1 ¼ 0 and t240. Our choice
is motivated by the following biological reasons: the time
delay t1 represents the average cell cycle duration of
hematopoietic stem cells whereas t2 represents the time
needed by hematopoietic cells to differentiate in white
blood cells. This latter is longer than t1 (about 1 week,
when the cell cycle duration usually falls in the range of 1–4
days). Since the final result we will obtain gives the stability
of ðQ�;W �Þ for values of t1 less than the ones of t2, we
prefer to choose t1 ¼ 0 in this section. Also, since we want
to estimate the critical delay values, then, with t1 ¼ 0,
instead of using the results of Beretta and Kuang (2002),
we analyse the characteristic equation directly.
Setting t1 ¼ 0 in (8), the characteristic equation becomes

l2 þ b1lþ b2 þ ½b3lþ b4� e
�lt2 ¼ 0, (12)

where

b1 ¼ K þ k� þ g2 � b�; b3 ¼ �Ak�,

b2 ¼ ðK þ k� � b�Þg2; b4 ¼ �Ak�ðK � b�Þ.

We mention that, from (3)–(4), the steady state ðQ�;W �Þ is
then defined by

bðQ�Þ ¼ K þ kðW �Þ,
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g2W
� ¼ AkðW �ÞQ�. (13)

One can notice that, using (13), we obtain

b1 ¼ g2 �Q�b0ðQ�Þ40,

b2 ¼ �g2Q�b0ðQ�Þ40; b340.

Moreover, from the reasoning in the previous section,
b2 þ b440.

Since (12) reduces to (9) when t2 ¼ 0, under assumption
(H1) the steady state ðQ�;W �Þ is locally asymptotically
stable when t2 ¼ 0 (see Proposition 3). Consequently, with
assumption (H1), when t2 increases, the stability of the
steady state can only be lost if pure imaginary roots
appear. Hence we look for purely imaginary roots
l ¼ �io, o 2 R, of (12).

If io is a purely imaginary root of (12), then separating
real and imaginary parts, o satisfies

cosðot2Þ ¼
ðb4 � b1b3Þo2 � b2b4

b2
3o2 þ b2

4

, (14)

sinðot2Þ ¼
b3o3 þ ðb1b4 � b2b3Þo

b2
3o2 þ b2

4

. (15)

Note that o ¼ 0 is not a solution of (14)–(15) since
b2 þ b440.

One can notice that if o is a solution of (14)–(15), then so
is �o. Hence, in the following, we only look for positive
solutions o of (14)–(15).

Adding the squares of both hand sides of Eqs. (14) and
(15), it follows that o must be a root of the following
equation:

o4 þ ðb2
1 � 2b2 � b2

3Þo
2 þ b2

2 � b2
4 ¼ 0. (16)

Set

F ðX Þ ¼ X 2 þ ðb2
1 � 2b2 � b2

3ÞX þ b2
2 � b2

4

and consider the assumption

ðH2Þ b2
2 � b2

4o0 or

ðb2
1 � 2b2 � b2

3Þ
2
X4ðb2

2 � b2
4ÞX04b2

1 � 2b2 � b2
3.

The function F has positive roots if and only if (H2) holds.
Denote (without loss of generality) by X l , l ¼ 1; 2, the
positive roots of F, and set

ol ¼
ffiffiffiffiffiffi
X l

p
.

Notice that the unique solution y 2 ½0; 2p� of

cosðyÞ ¼
ðb4 � b1b3Þo2

l � b2b4

b2
3o

2
l þ b2

4

,

sinðyÞ ¼
b3o3

l þ ðb1b4 � b2b3Þol

b2
3o

2
l þ b2

4

,

is y ¼ arccosððb4 � b1b3Þo2
l � b2b4=b2

3o
2
l þ b2

4Þ if sinðyÞ40,
that is if b3o2

l þ b1b4 � b2b340, and y ¼ 2p� arccosððb4 �

b1b3Þo2
l � b2b4=b2

3o
2
l þ b2

4Þ if b3o2
l þ b1b4 � b2b3p0.
We define two sequences ft1; j
2;l g and ft

2; j
2;l g, for l ¼ 1; 2 and

j 2 N, by

t1;j2;l ¼
1

ol

arccos
ðb4 � b1b3Þo2

l � b2b4

b2
3o

2
l þ b2

4

 !
þ 2jp

" #

and

t2;j2;l ¼
1

ol

2p� arccos
ðb4 � b1b3Þo2

l � b2b4

b2
3o

2
l þ b2

4

 !
þ 2jp

" #
.

The proof of the following lemma can be found in
Appendix B.

Lemma 4. Let t�2;l denote an element of either the sequence

ft1; j
2;l g or ft2; j

2;l g, associated with ol (that is t�2;l ¼ t1; j
2;l or

t�2;l ¼ t2; j
2;l ). For t2 ¼ t�2;l , the characteristic Eq. (12) has a

pair of simple conjugate pure imaginary roots �iol ,
satisfying

sign
dReðlÞ
dt2

����
t¼t�

2;l

( )
¼ signfF 0ðo2

l Þg.

Based on the above analysis, we conclude, in the next
theorem, the stability of the steady state ðQ�;W �Þ of (2)
when t1 ¼ 0.

Theorem 5. Assume that (H1) and (H2) hold true. Let

t�2 ¼ ti0;j0
2;l0
:¼ min

l¼1;2;j2N
ft1; j

2;l ; t
2; j
2;l g.

Then the steady state ðQ�;W �Þ of (2) is locally asymptoti-

cally stable when t2ot�2 and a Hopf bifurcation occurs at

ðQ�;W �Þ when t2 ¼ t�2 if and only if F 0ðo2
l0
Þ40.

One can check, in Section 4, that for values of the
parameters taken from the literature condition (H2) is
easily fulfilled.

3.4. The case t1; t240

We now return to the study of Eq. (8) with t1; t240. In
order to study the local stability of the positive steady state
ðQ�;W �Þ of (2), we first prove a result regarding the sign of
the real parts of characteristic roots of (8) in the next
lemma.

Lemma 6. If all roots of Eq. (12) have negative real parts for

t240, then there exists a t�1ðt2Þ40 such that all roots of Eq.
(8) have negative real parts when t1ot�1ðt2Þ.

Proof. Assume that Eq. (12) has no root with nonnegative
real part for t240. Thus, Eq. (8) with t1 ¼ 0 and t240 has
no root with nonnegative real part.
Regard t1 as a parameter. Clearly, the left hand side of

Eq. (8) is analytic in l and t1. Following Theorem 2.1 of
Ruan and Wei (2003), as t1 varies, the sum of the
multiplicity of zeros of the left hand side of Eq. (8) in the
open right half-plane can only change if a zero appears on
or crosses the imaginary axis.
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Since Eq. (8) with t1 ¼ 0 has no root with nonnegative
real part, there exists a t�1ðt2Þ40 such that all roots of
Eq. (8) with t1ot�1ðt2Þ have negative real parts. &

Using Theorem 5, we have the following theorem about
the asymptotic stability of the positive steady state of (2).

Theorem 7. Assume that (H1) and (H2) hold true. Let t�2 be

defined as in Theorem 5. Then for any t2 2 ½0; t�2Þ, there

exists a t�1ðt2Þ40 such that the positive steady state ðQ�;W �Þ

of system (2) is locally asymptotically stable when

t1 2 ½0; t�1ðt2ÞÞ.

Proof. From Theorem 5, it follows that all roots of
Eq. (12) have negative real parts when t2 2 ½0; t�2Þ. We
conclude with Lemma 6. &

Remark 8. An overview of the behavior of the steady state
ðQ�;W �Þ (stable or unstable), which is more complete than
the result given by Theorem 7, is shown on Fig. 2. It should
be helpful in understanding the effect of the two delays on
the stability of the steady state.

In the next section we numerically illustrate the stability
result obtained in Theorem 7, as well as the existence of
periodic solutions through the Hopf bifurcation.
0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

τ2

τ 1

Unstability Region 

Stability Region 

Stability
Region 

Stability
Region 

τ1(τ2) *

τ2*

Fig. 2. Stability diagram. Stability of the steady state ðQ�;W �Þ of system

(2) is displayed as a function of t1 and t2: The full lines are the boundaries
between stable and unstable regions. This diagram was obtained using the

values mentioned in Section 4, in (18) and (19), with A ¼ 20. In this case,

the steady state ðQ�;W�Þ of system (2) no longer exists when t1X7 days,

and the critical value t�2 obtained in Theorem 5 equals 2.5 days and is

indicated on the figure. The more biologically relevant area for t1 and t2
corresponds to small values of the two parameters, close to one day. It is a

stable region given by Theorem 7 (bounded by the vertical dotted line

t2 ¼ t�2 and the curve t1 ¼ t�1ðt2Þ). However, one can note very rich

dynamics of the steady state. As t1 (respectively, t2) increases, a finite

number of stability switches may occur.
4. Periodic oscillations: numerical illustrations

In this section, we illustrate the different stability results
obtained in the previous section, mainly in Theorem 7. We
also focus on periodic solutions appearing through a Hopf
bifurcation, and we relate oscillating solutions to behaviors
observed with cyclical neutropenia (Bernard et al., 2003).
First, let us choose the negative feedback functions b and

k as proposed by Bernard et al. (2003), that is, monotone
decreasing positive functions defined by

bðQÞ ¼
b0

1þQ n and kðW Þ ¼
k0

1þW m . (17)

Most values of the different parameters involved in system
(2) can be found in the literature. The values of the above
parameters b0, k0, n and m are given by Mackey (1978),
Pujo-Menjouet and Mackey (2004) and Bernard et al.
(2003, 2004) as follows:

b0 ¼ 1:77 days�1,

k0 ¼ 0:1 days�1; n ¼ 3; m ¼ 2. (18)

Using Bernard et al. (2003) and Mackey (1978, 2001), the
mortality rates g1 and g2, and the differentiation rate K, are
set to

g1 ¼ 0:1 days�1,

g2 ¼ 2:4 days�1; K ¼ 0:02 days�1. (19)

Note that, with values in (18) and (19), (5) holds true if
t1p6:27 days and the function Q 7!QbðQÞ is decreasing on
ðQ0;Q1Þ (see (6)) if t1p5:96 days (cf. Remark 2 (i)). Hence,
the steady state ðQ�;W �Þ of (2) exists and is unique for
t1p5:96 days. Finally, as described in Bernard et al.
(2003), we choose A ¼ 20. With this value, damped
oscillations can be observed in (2).
We mention that all numerical simulations presented in

this section have been done with dde23 (Shampine and
Thompson, 2001).
For values of t2 less than the critical value for which a

Hopf bifurcation occurs (namely, t�2, as stated in Theorem
5), then ðQ�;W �) must be asymptotically stable for small
values of t1 (see Theorem 7). This is represented in Fig. 3.
We observe damped oscillations about the steady state,
although it is asymptotically stable.
Simple computations indicate that the Hopf bifurcation

occurs at ðQ�;W �Þ when t1 ¼ 0 for t2 about 2.5 days. For
values of t2 greater than the critical value, we observe
oscillating solutions, with periods falling in the range of
10–15 days (see Fig. 4). One can note that the white blood
cell population W ðtÞ oscillates with larger amplitudes than
the hematopoietic stem cell population (this difference
seems to be due to the amplification of the leukocyte
population, induced in the model by the coefficient A). The
steady state ðQ�;W �Þ of (2) is then unstable.
Even though the periods of the oscillations in Fig. 4 are

quite short, they can be related to the ones often observed
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Fig. 3. Asymptotic stability. The steady state ðQ�;W �Þ of (2) is locally

asymptotically stable, even though damped oscillations can be observed.

In figure (a), the solid line is for the hematopoietic stem cell population

QðtÞ and the dashed one is for the white blood cell population W ðtÞ. In

figure (b), the solutions are drawn in the ðQ;W Þ-plane. Parameters are

given by (18) and (19), with A ¼ 20. The time delays are t1 ¼ 0:05 and

t2 ¼ 2 days.
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in periodic hematological diseases. For example, in cyclical
neutropenia, the number of white blood cells usually
decreases every 3 weeks in human and 2 weeks in dogs.

When t2 keeps on increasing far from the critical value,
we obtain oscillations with longer periods (see Fig. 4(b)),
about 15 days. These oscillations describe situations
encountered with periodic hematological diseases, such as
cyclical neutropenia. We can notice, for example, that the
number of white blood cell decreases to very low values
every 15 days. This characterizes cyclical neutropenia
(Haurie et al., 1998).

Longer periods can be observed, about 20–25 days for
both populations, when t1, the cell cycle duration, is
destabilized and increases. In Fig. 5(a) are drawn solutions
of system (2) when t1 ¼ 3 days and t2 ¼ 7 days, which
seem to be reasonable estimations of these durations. One
can observe oscillations similar to the ones obtained in
Bernard et al. (2003), while describing cyclical neutropenia,
with longer periods. This behavior remains the same when
t1 increases (see Fig. 5(b) and 5(c)), up to 5 days, describing
a destabilization of the cell cycle duration that is suspected
to produce cyclical neutropenia (Bernard et al., 2003).
Oscillating solutions are observed, with longer periods (up
to 50 days), and ripples can be observed in Fig. 5(c). This
phenomenon has already been noticed by Pujo-Menjouet
and Mackey (2004). It seems that a strong perturbation of
the cell cycle duration results in a destabilization of the
entire process of blood production (in our case, of white
blood cell production), with strange observable behaviors
of the populations. One can note, for example, the shape of
the attractors in the ðQ;W Þ-planes in Fig. 5.
5. Discussion

In order to understand the population dynamics of the
white blood cells in cyclical neutropenia, Bernard et al.
(2003) proposed a leukopoiesis model with two delays. The
characteristic equation of the linearized system around the
positive equilibrium is a second degree exponential poly-
nomial with delay-dependent coefficients. The authors
mentioned in Bernard et al. (2003) that ‘‘it is not possible
to study the roots of this equation by means of analytical
tools alone’’. However, in this paper, we carried out a
rigorous analysis of the stability of the model proposed by
Bernard et al. (2003), which improves the analysis
presented in Bernard et al. (2003).
To analyse the characteristic equation with two delays,

we first focused on the case when one of the delay, t1;
equals zero and obtained a critical value for the delay t2 :
when t2ot�2 all roots of the characteristic equation have
negative parts and when t2 ¼ t�2 purely imaginary roots
appear. Then we assumed that t2ot�2 and considered the
delay t1:We showed that there is a t�1ðt2Þ such that all roots
of the characteristic equation have negative real parts when
t1 2 ½0; t�1ðt2Þ�. Consequently, we obtained stability results
for the leukopoiesis model with two independent delays
and proved the existence of a Hopf bifurcation that leads
to the appearance of periodic solutions.
Oscillating solutions, in the frame of blood cell produc-

tion models, have often been related to the so-called
periodic hematological diseases (Haurie et al., 1998;
Mackey, 1978) since a variety of diseases affect blood cells
and are characterized by oscillations of these cells.
Numerical simulations of our model demonstrated periodic
solutions which fit well with oscillations usually observed in
cyclical neutropenia (Bernard et al., 2003; Haurie et al.,
1998). We obtained oscillations with quite long periods (in
the order of 25–50 days) for reasonable parameters, in
keeping with parameters found in the literature.
The numerical results in Fig. 5 also indicate that our

model may have rich dynamics, with very long oscillations
and period doubling oscillating solutions, or ripples, as
noticed for a simpler model by Pujo-Menjouet and Mackey
(2004). A further analysis could help in understanding the
complicated dynamics of the blood cell production system
and we leave it to future consideration.
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Fig. 4. Oscillating solutions with t1 close to zero. Parameters are given by (18) and (19), with A ¼ 20. The time delays are t1 ¼ 0:05 and (a) t2 ¼ 5 days

and (b) t2 ¼ 7 days. Oscillating solutions appear with periods about (a) 10 days for the white blood cell population (the dashed line) as well as for the

hematopoietic stem cell population (solid line), and (b) 15 days for the two cell populations, with very low values attained by the white blood cell count, as

observed in cyclical neutropenia. The steady state ðQ�;W �Þ of (2) is unstable in both cases. Note that the time scales are different from one picture to an

other.
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Appendix A. Existence of a unique positive equilibrium:

proof of Proposition 1

We assume that condition (5) holds true and that the
function Q 7!QbðQÞ is decreasing on the interval ðQ0;Q1Þ,
where Q0 and Q1 are defined in (6).

In the following, for the sake of simplicity, we set

x ¼ 2e�g1t1 � 1.

From (6), Q040 is the unique solution of

xbðQ0Þ ¼ kð0Þ þ K (A.1)

and Q14Q0 is the unique solution of

xbðQ1Þ ¼ K . (A.2)

The existence and uniqueness of Q0 and Q1 follow from the
fact that b is decreasing, tends to zero at infinity and
satisfies (5).

Since k is a positive decreasing function, we define
k�1 : ð0; kð0Þ� ! ½0;þ1Þ as its inverse function. Then
system (3)–(4) is equivalent to

W � ¼ k�1ðxbðQ�Þ � KÞ

and

xAQ�bðQ�Þ � g2k
�1
ðxbðQ�Þ � KÞ ¼ AKQ�

with Q� 2 ðQ0;Q1Þ.
For Q 2 ½Q0;Q1Þ, set

wðQÞ ¼ xAQbðQÞ � g2k�1ðxbðQÞ � KÞ.

Note that for Q 2 ½Q0;Q1Þ, we have xbðQÞ � K 2 ð0; kð0Þ�,
so w is well-defined.
We first check that, from (A.1),

wðQ0Þ ¼ Aðkð0Þ þ KÞQ0 � g2k�1ðkð0ÞÞ

¼ Aðkð0Þ þ KÞQ04AKQ0.

Moreover, from (A.2),

lim
Q!Q1

k�1 xbðQÞ � Kð Þ ¼ þ1.
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Fig. 5. Long period oscillations. The solid line represents the hematopoietic stem cells population and the dashed line the white blood cell population.

Parameters are given by (18) and (19), with A ¼ 20. The time delays are (a) t1 ¼ 3 days, (b) t1 ¼ 4 days, (c) t1 ¼ 5 days, with t2 ¼ 7 days in the three cases.

Oscillating solutions with periods in the range of (a) 20–25 days, (b) 30 days and (c) 50 days, for the two cell populations, are observed, that can be related

to oscillations observed in cyclical neutropenia (see Bernard et al., 2003). Ripples can be observed in the two populations in figure (c).
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Thus,

lim
Q!Q1

wðQÞ ¼ �1.

Therefore, since the mapping Q 7!AKQ is increasing on
½Q0;Q1Þ, wðQ0Þ4AKQ0 and limQ!Q1

wðQÞ ¼ �1, there
exists at least one Q�40 such that

wðQ�Þ ¼ AKQ� with Q� 2 ðQ0;Q1Þ.

Furthermore, on the interval ½Q0;Q1Þ, the function
Q7!xbðQÞ � K is decreasing. Since k�1 is decreasing, the
mapping Q7!k�1ðxbðQÞ � KÞ is increasing on ½Q0;Q1Þ, and
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Q 7! � g2k�1ðxbðQÞ � KÞ is decreasing. Since we assume
that Q 7!QbðQÞ is decreasing on the interval ðQ0;Q1Þ, it
follows that w is decreasing. Consequently Q� is unique.

Appendix B. Properties of purely imaginary roots: proof of

Lemma 4

From the arguments in Section 3, before Lemma 4,
when t2 ¼ t�2;l , then �iol is a pair of pure imaginary roots
of (12).

Consider the branch of characteristic roots lðt2Þ ¼
nðt2Þ þ ioðt2Þ of (12), with

nðt�2;lÞ ¼ 0 and oðt�2;lÞ ¼ ol .

By differentiating (12) with respect to t2, we obtain

½2lþ b1 þ ðb3 � t2ðb3lþ b4ÞÞ e
�lt2 �

dl
dt2

¼ lðb3lþ b4Þ e
�lt2 . ðB:1Þ

If we suppose, by contradiction, that lðt�2;lÞ is not a simple
root of (12), then we obtain

iolðib3ol þ b4Þ e
�iolt�2;l ¼ 0.

Separating real and imaginary parts in the above equality,
we deduce

�b3o2
l cosðolt�2;lÞ þ b4ol sinðolt�2;lÞ ¼ 0,

b4ol cosðolt�2;lÞ þ b3o2
l sinðolt�2;lÞ ¼ 0. (B.2)

Since iol is a root of (12) when t2 ¼ t�2;l , we deduce by
separating real and imaginary parts in (12) that

�b3ol cosðolt�2;lÞ þ b4 sinðolt�2;lÞ ¼ b1ol ,

b4 cosðolt�2;lÞ þ b3ol sinðolt�2;lÞ ¼ o2
l � b2. (B.3)

Consequently, using (B.3) in (B.2) and the fact that ol40,
we deduce that

b1 ¼ 0 and o2
l ¼ b2.

Since b140, we obtain a contradiction. We conclude that
�iol are simple roots of (12).

Now, using (B.1) we deduce that

dl
dt2

� ��1
¼

2lþ b1 þ ½b3 � t2ðb3lþ b4Þ� e
�lt2

lðb3lþ b4Þ e�lt2
,

¼
ð2lþ b1Þ e

lt2 þ b3

lðb3lþ b4Þ
�

t2
l
.

From (12),

elt2 ¼ �
b3lþ b4

l2 þ b1lþ b2

,

so we obtain

dl
dt2

� ��1
¼ �

ð2lþ b1Þ

lðl2 þ b1lþ b2Þ
þ

b3

lðb3lþ b4Þ
�

t2
l
.

Then,

dl
dt2

� ��1
t2¼t�2;l

¼
�2iol � b1

iolð�o2
l þ b2 þ ib1olÞ

þ
b3

iolðib3ol þ b4Þ
�

t�2;l
iol

,

¼
�2iol � b1

iðb2 � o2
l Þol � b1o2

l

þ
b3

�b3o2
l þ ib4ol

�
t�2;l
iol

.

Consequently,

Re
dl
dt2

� ��1
t2¼t�2;l

¼
b2
1o

2
l � 2o2

l ðb2 � o2
l Þ

ðb2 � o2
l Þ

2o2
l þ b2

1o
4
l

�
b2
3o

2
l

b2
3o

4
l þ b2

4o
2
l

,

¼
b2
1 � 2b2 þ 2o2

l

ðb2 � o2
l Þ

2
þ b2

1o
2
l

�
b2
3

b2
3o

2
l þ b2

4

.

Since o2
l is a root of F, it follows from (16) that

b2
3o

2
l þ b2

4 ¼ o4
l þ ðb

2
1 � 2b2Þo2

l þ b2
2

¼ ðb2 � o2
l Þ

2
þ b2

1o
2
l .

This yields

Re
dl
dt2

� ��1
t2¼t�2;l

¼
b2
1 � 2b2 � b2

3 þ 2o2
l

ðb2 � o2
l Þ

2
þ b2

1o
2
l

,

¼
F 0ðo2

l Þ

ðb2 � o2
l Þ

2
þ b2

1o
2
l

.

Since

sign Re
dl
dt2

� ��1
t2¼t�2;l

( )
¼ sign

dReðlÞ
dt2

����
t¼t�

2;l

( )
,

we obtain

sign
dReðlÞ
dt2

����
t¼t�

2;l

( )
¼ signfF 0ðo2

l Þg.
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