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4 Linear Perspective

4.1 The Cartesian Coordinate System in Two Dimensions

We now begin our exploration of the space we live in – three-dimensional space. Let’s recall from high
school algebra the Cartesian or Rectangular Coordinate System, which was the discovery of the colorful
French philosopher and mathematician René Descartes, who actually made his rather successful living
as a soldier1.

Descartes’s great (and in hindsight, simple) discovery is that we can specify any point P in the plane by
an ordered pair, (x, y), of numbers, which we call the coordinates of the point P . This simple observation
was completely revolutionary as it brought algebra into geometry creating was has come to be known as
analytic geometry. Here’s a picture:
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The xy-plane extends to infinity both verti-
cally and horizontally. An important thing to
notice is that the x-axis is perpendicular to
the y-axis; together they split the plane into
four quadrants (numbered counterclockwise
starting with Quadrant I at the upper-right).

Suppose now that there is a blue rectangle in quadrant I with sides parallel to the x- and y-axes. If its
opposite corners given by (2, 2) and (5, 7), what would be the coordinates of the other two corners? With
a little thought, it should be clear that the lower right corner of the blue rectangle should have the same
y-value as (2, 2) because they have the same height; while at the same time it should have the same
x-value as (5, 7) because they have the same “horizontal” distance from the vertical y-axis. Hence the
lower right corner has coordinates (5, 2). In the same manner, we can see that the upper left corner of
the blue rectangle should have coordinates (2, 7).

1If interested, you can read about his life in E.T. Bell’s book, Men of Mathematics, and see how often and close Descartes
came to not offering the world his fantastic discoveries; i.e., how close we all came to not having to study any of this stuff!
Then again, we’d never have heard of his famous saying: “Cogito ergo sum” (I think, therefore I am), which really wouldn’t be
a huge loss since it’s totally untrue.
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4.2 The Cartesian Coordinate System in Three Dimensions

Instead of dwelling in the two-dimensional space of the xy-plane (as is done in high school), we now
move into the third dimension. To do this we introduce the z-axis, which must be perpendicular2 to both
the x and y-axes. The way to do this is to imagine the z-axis as going straight in and out of the page
at the origin, (0, 0), the point of intersection of the x- and y-axes. Let’s look again at the xy-plane, but
imagine the (negative part of the) z-axis pointing out at us. We draw a thick black square to help us
visualize the next step.

x

y

P (x, y)

(0, 0)

“xy-plane”

The xy-plane extends to infinity both verti-
cally and horizontally. The thick black square
is drawn to help you visualize our next bold
move.

In order for us to draw this, we need to use a little imagination and rotate the xy-plane so that the positive
x-axis points out to us. Having done so, the z-axis is now a horizontal line running from left to right3.
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“xy-plane”

P (x, y, 0)

Our next bold move consists of rotating the
xy-plane so that the (positive) x-axis points
out of the page. Obviously, it’s not possible to
actually draw this in air, so we draw at an an-
gle to suggest this. The thick black square is
similarly drawn to suggest that it too is stick-
ing out of the page. See how the z-axis is
now horizontal coming out perpendicularly
from xy-plane? Note also that our previous
point (x, y) is now (x, y, 0), this is because
points in 3-dimensional space need three co-
ordinates (x, y, z) and any point on the xy-
plane has z = 0.

2Actually, the correct word is orthogonal.
3Usually, like in calculus, the z-axis is vertical, but we do it this way, because it gives us a more convenient set-up for

perspective. But it makes no real difference how we orient the xyz-coordinate system.
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By introducing the z-axis, we actually create two additional coordinate planes giving us a total of three:
our familiar xy-plane, which is now in a new position coming out of the page; a new yz-plane; and a new
xz-plane. Let’s see the position of these coordinate planes by drawing them. First, the yz-plane.
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z

“xy-plane” “yz-plane”

Here we introduce the yz-plane represented
by a square. See how it sits flat on the
page?

Finally, we introduce the xz-plane, which is horizontal and sticks out of the page.
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Here we introduce the xz-plane represented
by a square that sits horizontally and sticks
out of the page.

In the above “3-D” diagram, it should be easy to see how we represent three-dimensional space on paper.
However, we will not usually use this diagram as it has too much information on it and gets in the way.
What you need to do is try to keep it in your mind so that you can refer to it when necessary.
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4.3 Plotting in Three-dimensional Space

4.3.1 Rectangles in Three-dimensional Space

Suppose now that there is a red carpet floating 4 feet off the ground (that means 4 units above the xz-
plane) with opposite corners given by (2, 4, 3) and (5, 4, 8). Assuming that the sides of the rectangle are
parallel to the coordinate planes4, let’s try to draw this magic carpet in our xyz-coordinate system. First
thing we need to do is plot the two points. For example, to find the position of (5, 4, 8), we first to go
5 units in the x-direction (remember that the x-direction is at an angle!); then from there go 8 units in
the z-direction5, this gets us to (5, 0, 8). And then from this point6, we go up (in the y-direction) 4 units.
Similarly with (2, 4, 3).
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“xy-plane”

(2, 4, 3)

8

5
4

(5, 4, 8)

(5, 0, 8)

5

Here we are with a near “bare-bones” con-
struct (two of the fancy coordinate-plane
squares have been removed). The magic red
carpet is hovering 4 feet off the ground. Can
you figure out the coordinates of the missing
corners?

4.3.2 Boxes in Three-dimensional Space

Now the problem is to figure out the coordinates of a box in space. This is actually quite useful since we
live in a boxy world–most buildings are box-shaped, and most people are happy living in them too! To
simplify the problem, we consider only boxes whose sides (faces) are parallel to the coordinate planes,
which makes it easier to figure out the coordinates of all the corners once we are given the coordinates
of two opposite corners.

Example. Given a box with sides parallel to the coordinate planes and opposite corners (2, 4, 3) and
(5, 6, 8). Find the coordinates of the missing corners. What are the dimensions of the box?

4This is a very important assumption; without it the problem would not be tractable.
5Careful that you don’t just think that this is just straight down from z = 8.
6Again, be careful that you don’t just go across from y = 4.
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The thing to realize is that a box is made up of
rectangles! And that all the corners are on any
two opposite rectangles. Let’s consider the bot-
tom and the top of the box. As y measures the
height, the four bottom corners must have the
same y, because they are all the same height off
the ground, i.e., y must be 4. Similarly, the four top
corners must have y = 6. Now, think of front and
back. The four front corners must have the same
x-value, because x measures the distance “out” of
the page. Similarly, the back four corners. Now,
think of “left” and “right” sides. The right four cor-
ners must have the same z-value, because z mea-
sures the distance right and left. Similarly, the left
four corners. In this way, you can find the missing
coordinates of the corners.
To find the dimensions of the box, find the differ-
ence in each corresponding coordinate of any pair
of opposite corners.

4.4 The Point of the Window Taping Activity

Using our three-dimensional coordinate system as a model for the reality we experience, we can now
make the connection with our Window Taping Activity. As you recall, in this activity, there was an “art
director” whose job was to direct the “artists” to tape on a window lines that they saw on the other side of
the window, in the “real world.” Now, the position on the window directly in front of the director’s eye was
the origin of the “xy-plane” of the window. The z-axis was the line from the director’s eye through this
origin point and into the real world on the other side of the window. Here’s the picture:

x

y

zB

“window” P (x, y, z)

P ′(x′, y′, z′)

In the window taping activity, the “art director”
(here pictured with mohawk) stood a fixed
distance from the window; the point directly
in front of her eye was the origin of the win-
dow (xy-plane). Suppose the director wants
to direct an “artist” to tape a point P (x, y, z)
at the top of a column that she sees. Then
she needs to direct her “artist” to a point
P ′(x′, y′, z′) on the window.
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So the big question is: Given any point P (x, y, z) in the real world what are the coordinates of its projec-
tion P ′(x′, y′, z′) on the window? It should be easy to realize that z′ of P ′ must be 0, because all points
on the window are on the xy-plane, which has z = 0, thus z′ = 0. In the next section, we will derive
formulas for x′ and y′; it turns out that we’ve seen the calculation before when we were studying similar
triangles in our section on geometry.

4.5 The Perspective Theorem

Let’s take the side view of the viewer at a d from the viewing plane (xy-plane). Since we are looking
directly from the side, we do not see the x-axis because it is sticking straight out at us. For this reason,
we only have the y- and z-axes.

B d

y

y

edge of viewing plane

z

P (x, y, z)

P ′

y′

z

Here we have our nested similar
triangles! Recall that similar tri-
angles have equal ratios of their
corresponding sides. Thus, we
have:

y′

y
=

d

z + d

and so,

y′ =
d · y
z + d

Similarly, by taking the top view, we get nested similar triangles that give us the formula for x′:

x′ =
d · x
z + d

The most amazing thing is that these super simple formulas give us in a nutshell all there is to translating
points in the real world to points on the viewing plane! As you’ll see in the homework, the problem is
getting (or making up) the coordinates of points in the real world. Even something as simple as a house
can be quite confusing initially, but with time and practice (and research about sizes of things in the real
world, e.g., how tall was a Tyrannosaurus Rex?), you can create an image on the xy-plane like the ones
they made for Jurassic Park.

Of course that’s just the tip of the iceberg, because not only is everything in the world in motion, but
so is the viewer and his or her viewing plane! This means the equations we have for x′ and y′ have a
bunch of continuously changing variables and our simple problem becomes very complex very fast! If
you’re interested in exploring these things, consider taking multidimensional calculus and linear algebra
for starters.
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4.6 Lines in the “Real World” and Their Images on the Viewing Plane

Suppose again that a viewer is standing at a distance d from a window and looking out onto the “real
world”; and that the point on the window directly in front of her dominant eye is the origin (0, 0, 0). Let’s
consider a line that is perpendicular (orthogonal) to the window or viewing plane (i.e., the xy-plane). Say
it intersects the viewing plane at (a, b, 0), then all other points of the line are given by (a, b, z). According
to the perspective theorem, the image of any point of the line (a, b, z) onto the window is (x′, y′, 0) where
x′ = da

z+d
and y′ = db

z+d
.

As lines are infinite, let’s see what happens when we follow this perpendicular line (a, b, z) as z goes to
infinity. Since x′ = d·a

z+d
and y′ = d·b

z+d
, as z gets larger and larger, both x′ and y′ get smaller and smaller,

which means that (x′, y′) → (0, 0) as z → ∞. In other words, the perpendicular line (a, b, z) has
image on the window (x′, y′, 0) that has a vanishing point at the origin (0, 0, 0). This is the mathematical
explanation of the existence of the vanishing point (0, 0, 0) for a line that is perpendicular (orthogonal) to
the viewing plane.

4.6.1 Vanishing Points

Let’s now consider this idea of the vanishing point of a line. The first and most important thing to note
is that the vanishing point is a point on the xy-plane, i.e., a point on the window. In fact, most lines in
space7 have a vanishing point (on the viewing plane). Let’s see why this is true.

Imagine you’re looking through a drinking straw at a line in the real world, say a line made by a railway
track (not necessarily perpendicular to your viewing plane). You follow the line of track with your straw
until the moment it disappears; the exact point where this happens is the vanishing point of that line. The
reason this happens is that your line of sight given by the direction of your straw becomes parallel to the
line in the real world.

B

y

edge of viewing plane

line of railway track
line visible

line still visible

line vanishes!

parallel
vanishing point

“following the track”

As the viewer follows the line of track with his
(imaginary) straw, his lines of sight shown by
the dashes shift until suddenly the line dis-
appears. The point on the viewing plane at
which this happens is called the vanishing
point of the line of track. In this side view, we
actually get the y′-coordinate of the vanish-
ing point. The x′-coordinate is gotten in the
same way using the top view.

7We’ll soon qualify this by saying any line in space not parallel to the viewing plane has a vanishing point.
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4.6.2 The Vanishing Point Theorem

Remark. It is important to note that a single line in the real world has a vanishing point. This is contrary
to common knowledge, which presumes that the vanishing point is the intersection of two or more lines.8

However, if we have two or more lines that are parallel in the real world, we can see from our picture that
they will share the same vanishing point.

There are lines in the real world that do not have vanishing points. We know this from our window taping
activity – they are lines that are parallel to the viewing plane. Let’s see why this is true.

We say that a line is parallel to a plane if it never intersects that plane. If a line is parallel to the viewing
plane (xy-plane) it must have a fixed z-value. But if z is fixed, then it never recedes off to infinity and so
the line cannot have a vanishing point. In our window taping activity these were the vertical lines from
the sides of columns or horizontal lines on the ground or ceiling.

We summarize our discussion with the following theorem.

The Vanishing Point Theorem.
If two or more lines in the real world are parallel to each other, but not parallel to the viewing plane (xy-
plane), then they have the same vanishing point (on the viewing plane). The images of these lines on the
viewing plane will not be parallel but intersect at the vanishing point.

4.6.3 One-point Perspective

fig.1 Piazza San Marco.

If a line in the real world is perpendicular (orthogo-
nal) to our viewing plane, then not only does it have
a vanishing point, but its vanishing point will be di-
rectly in front of the viewer’s eye. If it happens that all
the lines are perpendicular to the viewing plane (and
hence parallel to each other), then we say the view or
picture is in true one-point perspective as there would
only be one vanishing point.

In fact, this happens to be a very popular perspective
for photographers and painters especially of those of
the more classical variety. Check out this very repre-
sentative work of the Venetian painter Canaletto, 1697
- 1768.

8The reason for this erroneous impression is that the vanishing point is on the viewing plane (for artists, the picture plane)
and is more often than not the intersection point of many lines on that plane.
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4.7 The Viewing Distance Formula
(for one-point perspective)

4.7.1 The Viewing Position

When a picture or painting is in one-point perspective, then there is a simple way to find the correct
viewing position. In other words, we can figure out from the picture where the artist (think: “art director”
from the window taping project) was standing when they made the picture. As you may have realized, the
image you made during our window taping activity was in one-point perspective. And I showed you that
parallel lines not parallel to the window (viewing plane) shared a point of intersection that we now know to
be their common vanishing point. Furthermore, this vanishing point happened to be directly in front of the
art director’s eye9. The reason for this is that those parallel lines were orthogonal (perpendicular) to the
window. You might ask: “But why is it that a line orthogonal to the viewing plane should have vanishing
point in front of the viewer’s eye?” And the answer is that such a line is parallel to the viewer’s line of
sight when they’re looking straight out and this line of sight has vanishing point (0, 0). Consequently,
as parallel lines share a common vanishing point, any line orthogonal to the viewing plane must have
vanishing point (0, 0).

Therefore, for a picture in one-point perspective, position yourself (i.e., your dominant eye) directly in
front of the vanishing point. Now the question is: At what viewing distance should you be at?

4.7.2 The Viewing Distance Formula

Getting the correct viewing distance is bit trickier than the viewing position. Here’s the way to think of
the problem: after doing the window taping, you love the work so much that you decide leave the tape
on and take the window home. At home you paint the window all different colors making sure to keep
all those taped lines. Then you decide to exhibit the window/painting in a local gallery. Once installed in
the gallery, viewers will have nothing to match the lines up with, so they will have no idea where to stand
except a couple of them might know to position themselves in front of the vanishing point.

Now remember how during the window taping activity there was a fixed distance that the viewer had to
stand from the window? That’s what needs to be figured out from the clues in the window/painting in the
art gallery.

Let’s do this by working backwards. Suppose there is an object (in this case a box) in the real world and
we are looking at it so that it’s in one-point perspective; this means all its edges are either parallel to our
viewing plane or orthogonal to it. If the edges that are orthogonal to the viewing plane were extended,
then their image on the viewing plane would be lines that intersect at the vanishing point (0, 0). The right
side of the following diagram show how this is happening on the viewing plane.

9Don’t make the mistake of thinking that all vanishing points are in front of the viewer’s eye! Only the vanishing point of
lines orthogonal to the viewing plane is in front of the viewer’s eye.
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Top View.

viewing plane

A

D

E

a

dV.P. of diagonal

V.P. before eye

On the Viewing Plane!

a

V.P. of diagonal

V.P. in front of eye

The key is to take a look at the top view of the situation. Here the rectangle is the top of the box and it
has length D and width A. The right side of the rectangle corresponds to the top right edge of the box.
If we extend this edge, we get a line that is parallel to our line of sight that goes straight out and through
(0, 0).

Now suppose we construct the line (in solid red) that goes from the lower right corner of the rectangle
to the upper left. (We can obviously do this because any two points define a line!) If we extend this, we
get a line in the real world; since this line isn’t parallel to the viewing plane, it must have (by our previous
discussion) a vanishing point on the viewing plane. This vanishing point is the point given by our line of
sight (in dashed red) that is parallel to the red diagonal line.

Notice how our two lines of sight (dashed red and dashed black) define a triangle with one corner at the
eye of the viewer and the other two corners at the two vanishing points. This triangle is similar to the top
right triangle of the rectangle cut by the red diagonal. If we let the distance between the two vanishing
points be a and d be our viewing distance10, then we have the following relationship

d

a
=

D

A

Solving for d, we get our Viewing Distance Formula:

d =
a ·D

A
.

But how do gallery/museum goers use this formula when they see a one-point perspective picture (like
your window/painting)? Basically, as they’ll be looking at an image on the viewing plane, they’ll have to
find some sort of clue (like the top of a box) that will give them a second vanishing point and using that
they can find a, which (as it usually happens) is equal to d because the top of the box is a square (so,
D = A, and hence D

A
= 1). As we’ll see in class, artists usually leave such clues to help the viewer

along!

10Recall that the distance between the eye and the vanishing point in front of the eye (0, 0) is our viewing distance, d.
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