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Abstract. We introduce the notion of algebraic volume density property for affine
algebraic manifolds and prove some important basic facts about it, in particular that
it implies the volume density property. The main results of the paper are producing
two big classes of examples of Stein manifolds with volume density property. One
class consists of certain affine modifications of Cn equipped with a canonical volume
form, the other is the class of all Linear Algebraic Groups equipped with the left
invariant volume form.

1. Introduction

In this paper we study a less developed part of the Andersén-Lempert theory ([1],
[3], [8], [22], [20], [21],[7]) namely the case of volume preserving maps. Recall that An-
dersén-Lempert theory describes complex manifolds such that among other things the
local phase flows on their holomorphically convex compact subsets can be approximated
by global holomorphic automorphisms which leads to construction of holomorphic au-
tomorphisms with prescribed local properties. Needless to say that this implies some
remarkable consequences for such manifolds (e.g., see [22], [23], [12]). It turns out
that a complex manifold has such approximations if it possesses the following density
property introduced by Varolin.

1.1. Definition. A complex manifold X has the density property if in the compact-
open topology the Lie algebra Liehol(X) generated by completely integrable holomor-
phic vector fields on X is dense in the Lie algebra VFhol(X) of all holomorphic vector
fields on X. An affine algebraic manifold X has the algebraic density property if the
Lie algebra Liealg(X) generated by completely integrable algebraic vector fields on it
coincides with the Lie algebra VFalg(X) of all algebraic vector fields on it (clearly, the
algebraic density property implies the density property).

The algebraic density property was established for a wide variety of affine algebraic
manifolds, including all connected linear algebraic groups except for C+ and complex
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tori by the authors [12]. Furthermore, in the coming paper of Donzelli, Dvorsky
and the first author [6] it will be extended to connected homogeneous spaces of form
G/R, where R is a reductive subgroup of a linear algebraic group G, with exception of
C+ and complex tori.

However Andersén, Lempert, Forstneric, Rosay and Varolin considered
also another property which has similar consequences for automorphisms preserving a
volume form.

1.2. Definition. Let a complex manifold X be equipped with a holomorphic volume
form ω (i.e. ω is a nowhere vanishing section of the canonical bundle). We say that X
has the volume density property with respect to ω if in the compact-open topology the
Lie algebra Lieω

hol generated by completely integrable holomorphic vector fields ν such
that Lν(ω) = 0 (where Lν is the Lie derivative), is dense in the Lie algebra VFω

hol(X)
of all holomorphic vector fields that annihilate ω (note that condition Lν(ω) = 0 is
equivalent to the fact that ν is of zero ω-divergence).

Compared with the density property, the class of complex manifolds with established
volume density property has been quite narrow. It was essentially described by the
original result of Andersén and Lempert [1], [3] who proved it for Euclidean spaces
plus a few other examples found by Varolin [22]. In particular he proved that SL2(C)
has volume density property with respect to the Haar form but he was unable to decide
whether the following hypersurface given by a similar equation like SL2(C)

Σ3 = {(a, b, c, d) ∈ C4 : a2c− bd = 1}
had volume density property or not ([24] section 7).

In order to deal with this lack of examples we introduce like in the previous pattern
the following.

1.3. Definition. If X is affine algebraic we say that X has the algebraic volume density
property with respect to an algebraic volume form ω if the Lie algebra Lieω

alg generated
by completely integrable algebraic vector fields ν such that Lν(ω) = 0, coincides with
the Lie algebra VFω

alg(X) of all algebraic vector fields that annihilate ω.

It is much more difficult to establish the algebraic volume density property than
the algebraic density property. This is caused, perhaps, by the following difference
which does not allow to apply the most effective criterion for the algebraic density
property (see [13]): VFω

alg(X) is not a module over the ring C[X] of regular functions
on X while VFalg(X) is. Furthermore, some features that are straightforward for the
algebraic density property are not at all clear in the volume-preserving case. For
instance, it is not quite obvious that the algebraic volume density property implies the
volume density property and that the product of two manifolds with algebraic volume
density property has again the algebraic volume density property. We shall show in
this paper the validity of these two facts among other results that enable us to enlarge
the class of examples of Stein manifolds with the volume density property substantially.
In particular we establish the following.
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Theorem 1. Let X ′ be a hypersurface in Cn+2
u,v,x̄ given by an equation of form P (u, v, x̄) =

uv − p(x̄) = 0 where p is a polynomial on Cn
x̄ with a smooth reduced zero fiber C such

that in the case of n ≥ 2 the reduced cohomology Ĥn−2(C,C) = 0 (for n = 1 no addi-
tional assumption is required). Let Ω be the standard volume form on Cn+2 and ω′ be
a volume form on X ′ such that ω′ ∧ dP = Ω|X′. Then X ′ has the algebraic ω′-volume
density property.

This gives, of course, an affirmative answer to Varolin’s question mentioned before.
The next theorem is our main result.

Theorem 2. Let G be a linear algebraic group. Then G has the algebraic volume
density property with respect to the left (or right) invariant volume form.

Let us describe briefly the content of the paper and the main steps in the proof of
these facts.

In Section 2 we remind some standard facts about divergence.
In Section 3 we deal with Theorem 1 in a slightly more general situation. Namely

we consider a hypersurface X ′ in X × C2
u,v given by an equation P := uv − p(x) = 0

where X is a smooth affine algebraic variety and p(x) is a regular function on X. We
suppose that X is equipped with a volume form ω and establish the existence of a
volume form ω′ on X ′ such that Ω|X′ = dP ∧ω′ where Ω = du∧dv∧ω. Then we prove
(Proposition 3.3) that X ′ has the ω′-volume algebraic density property provided two
technical conditions (A1) and (A2) hold.

Condition (A2) is easily verifiable for X ′ and condition (A1) is equivalent to the
following (Lemma 3.5): the space of algebraic vector fields on X with ω-divergence
zero, that are tangent to the zero fiber C of p, is generated by vector fields of form
ν1(fp)ν2 − ν2(fp)ν1 where ν1 and ν2 are commuting completely integrable algebraic
vector fields of ω-divergence zero on X and f is a regular function on X.

Then we notice the duality between the spaces of zero ω-divergence vector fields on
X and closed (n− 1)-forms on X which is achieved via the inner product that assigns
to each vector field ν the (n − 1)-form ιν(ω) (Lemma 3.6). This duality allows to
reformulate condition (A1) as the following:

(i) the space of algebraic (n − 2)-forms on X is generated by the forms of type
ιν1ιν2(ω) where ν1 and ν2 are as before; and

(ii) the outer differentiation sends the space of (n− 2)-forms on X that vanish on C
to the set of (n− 1)-form whose restriction to C yield the zero (n− 1)-form on C.

In the case of X isomorphic to a Euclidean space (i) holds automatically with ν1 and
ν2 running over the set of partial derivatives.

If the reduced cohomology Ĥn−2(C,C) = 0 and also Hn(X,C) = 0 the validity of (ii)
is a consequence of the Grothendieck theorem (see Proposition 3.9) that states that the
complex cohomology can be computed via the De Rham complex of algebraic forms
on a smooth affine algebraic variety which concludes the proof of Theorem 1.

We end Section 3 with an important corollary of Theorem 1 which will be used in the
proof of Theorem 2 : the groups SL2(C) (already proved by Varolin as mentioned
above) and PSL2(C) have the algebraic volume density property with respect to the
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invariant volume (Propositions 3.11 and 3.12). The proof is based on the fact that
SL2(C) is isomorphic to the hypersurface in C4

u,v,x1,x2
given by uv − x1x2 − 1 = 0.

Section 4 contains two general facts about the algebraic volume density property
with short but non-trivial proofs. The first of them (Proposition 4.1) says that the
algebraic volume density property implies the volume density property (in the holo-
morphic sense). It is also based on the Grothendieck theorem mentioned before. The
second one (Proposition 4.3) states that the product X×Y of two affine algebraic man-
ifolds X and Y with the algebraic volume density property (with respect to volumes
ωX and ωY ) has also the algebraic volume density property (with respect to ωX ×ωY ).
As a consequence of this result we establish the algebraic volume density property for
all tori which was also established earlier by Varolin [22] (recall that the density
property is not established for higher dimensional tori yet and the algebraic density
property does not hold for these objects [2]).

We start Section 5 with discussion of a phenomenon which makes the proof of Propo-
sition 4.3 about the algebraic volume density of X×Y non-trivial and prevents us from
spreading it directly to locally trivial fibrations. More precisely, consider the subspace
FY of C[Y ] generated by the images Im δ with δ running over Lieω

alg(Y ). In general
FY 6= C[Y ] and the absence of equality here is the source of difficulties. Nevertheless
one can follow the pattern of the proof of Proposition 4.3 in the case of fibrations when
the span of FY and constants yields C[Y ]. This is so-called property (C) for Y which
turns out to be true for SL2 and PSL2. We introduce also the notion of a volume fibra-
tion p : W → X which a generalization of the product situation and has nicely related
volume forms of the fiber of p, the base X, and the total space W . The main result
in Section 5 is Theorem 4 saying that the total space of a volume fibration satisfying
some additional assumptions (such as the algebraic density property and property (C)
for the fiber and the algebraic volume density property for the base) has the algebraic
volume density property as well.

Section 6 contains basic knowledge about invariant volume forms on linear algebraic
groups. Of further importance will be Corollary 6.8 about the Mostow decomposition
of a linear algebraic group as the product of Levi reductive subgroup and its unipotent
radical. We end it with an important example of a volume fibration that (as we shall
see later) satisfies the assumption of Theorem 4 - the quotient map of a reductive group
by its Levi semi-simple subgroup (see Lemma 6.11).

Section 7 prepares the proof of Theorem 2 in the case of a semi-simple group. The
central notion discussed in that section is a p-compatible vector field σ′ ∈ Lieω

alg(W ) for
a locally trivial fibration p : W → X. Its most important property is that Span Ker σ′ ·
Ker δ′ coincides with the algebra C[W ] of regular functions for any δ′ ∈ VFω

alg(W )
tangent to the fibers of p. It is established that for any at least three-dimensional
semi-simple group G and its SL2- or PSL2-subgroup S corresponding to a root of
the Dynkin diagram the fibration q : G → G/S admits a sufficiently large family q-
compatible vector fields. The existence of such a family (in combination with the fact
that SL2 and PSL2 have the algebraic volume density property and property (C)) leads
to the claim that q satisfies all assumptions of Theorem 4 but the algebraic volume
density for the base. This enables us to use properties of such fibrations established
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earlier in Proposition 5.16 (but not Theorem 4 since it is unknown whether G/S has
the algebraic volume density property).

Section 8 contains the proof of Theorem 2. The general case follows easily from
a semi-simple one (via Lemma 6.11, Theorem 4, and Corollary 6.8). The idea of
the proof in the latter case is the following. We consider SL2- or PSL2-subgroups
S0, . . . , Sm corresponding to the simple roots of a Dynkin diagram of a semi-simple
group G and fibrations pi : G → G/Si with i = 0, . . . , m. Using results of Section
7 we establish that there is a sufficiently big collection Θ of completely integrable
fields θ of zero divergence that are of pi-compatible for every i. Furthermore up to an
element of Lieω

alg(G) every algebraic vector field of zero divergence can be presented
as a finite sum

∑
hiθi where θi ∈ Θ and hi ∈ C[G]. Then we consider a standard

averaging operator avj on C[G] that assigns to each h ∈ C[G] a regular function
avj(h) invariant with respect to the natural Sj-action on G and establish the following
relation:

∑
hiθi ∈ Lieω

alg(G) if and only if
∑

avj(hi)θi ∈ Lieω
alg(G). We show also that

a consequent application of operators av0, . . . , avm leads to a function invariant with
respect to each Sj, j = 0, . . . ,m. Since the only functions invariant under the natural
actions of all such subgroups are constants we see that

∑
hiθi ∈ Lieω

alg(G) because∑
ciθi ∈ Lieω

alg(G) for constant coefficients ci which concludes the proof of Theorem 2.
The appendix contains definition of strictly semi-compatible fields and refinements

of two Lemmas about it from our previous work [12].
Acknowledgments. We would like to thank D. Akhiezer and A. Dvorsky for

helpful consultations. Also we thank the referee for his constructive criticism which
lead to an improvement of the presentation.

2. Preliminaries

Recall that a holomorphic vector field ν ∈ VFhol(Cn) is completely (or globally)
integrable if for any initial value z ∈ Cn there is a global holomorphic solution of the
ordinary differential equation

(1) γ̇(t) = ν(γ(t)), γ(0) = z.

In this case the phase flow (i.e. the map C × Cn → Cn given by (t, z) 7→ γz(t)) is
a holomorphic action of the additive group C+ on Cn, where index z in γz denotes
the dependence on the initial value. It is worth mentioning that this action is not
necessarily algebraic in the case of an algebraic vector field ν ∈ VFalg(Cn).

A holomorphic (resp. algebraic) volume form on a complex (resp. affine algebraic)
manifold X of dimension n is a nowhere vanishing holomorphic (resp. algebraic) n-
form. Let us discuss some simple properties of the divergence divω(ν) of a vector field
ν on X with respect to this volume form ω. The divergence is defined by the equation

(2) divω(ν)ω = Lν(ω)

where Lν is the Lie derivative. Here is another useful formula

(3) divω(fν) = f divω(ν) + ν(f)
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for any holomorphic function f on X. Furthermore, for any vector fields ν1, ν2 on X
we have the following relation between divergence and Lie bracket

(4) divω([ν1, ν2]) = Lν1(divω(ν2))− Lν2(divω(ν1)).

In particular, when divω(ν1) = 0 we have

(5) divω([ν1, ν2]) = Lν1(divω(ν2)).

2.1. Lemma. Let Y be a Stein complex manifold with a volume form Ω on it, and X be
a submanifold of Y which is a strict complete intersection (that is, the defining ideal of
X is generated by holomorphic functions P1, . . . , Pk on Y , where k is the codimension
of X in Y ). Suppose that ν is a vector field on X and µ is its extension to Y such that
µ(Pi) = 0 for every i = 1, . . . , k. Then

(i) there exists a volume form ω on X such that Ω|X = dP1 ∧ . . . ∧ dPk ∧ ω; and
(ii) divω(ν) = divΩ(µ)|X .

Proof. Let x1, . . . , xn be a local holomorphic coordinate system in a neighborhood of a
point in X. Then P1, . . . , Pk, x1, . . . , xn is a local holomorphic coordinate system in a
neighborhood of this point in Y . Hence in that neighborhood Ω = hdP1 ∧ . . . ∧ dPk ∧
dx1 ∧ . . . ∧ dxn where h is a holomorphic function. Set ω = h|Xdx1 ∧ . . . ∧ dxn. This
is the desired volume form in (i).

Recall that Lν = d ◦ ıν + ıν ◦ d where ıν is the inner product with respect to ν ([15],
Chapter 1, Proposition 3.10). Since µ(Pi) = 0 we have Lµ(dPi) = 0. Hence by formula
(2) we have divΩ(µ)Ω|X =

LµΩ|X = Lµ(dP1∧ . . .∧dPk∧ω)|X = dP1∧ . . .∧dPk|X∧Lνω+Lµ(dP1∧ . . .∧dPk)|X∧ω

= divω(ν)(dP1 ∧ . . . ∧ dPk)|X ∧ ω = divω(ν)Ω|X
which is (ii).

¤

2.2. Remark.
(1) Lemma 2.1 remains valid in the algebraic category
(2) Furthermore, it enables us to compute the divergence of a vector field on X via

the divergence of a vector field extension on an ambient space. It is worth mentioning
that there is another simple way to compute divergence on X which leads to the same
formulas in Lemma 2.5 below. Namely, X that we are going to consider will be an affine
modification σ : X → Z of another affine algebraic manifold Z with a volume form
ω0 (for definitions of affine and pseudo-affine modifications see [14] ). In particular,
for some divisors D ⊂ Z and E ⊂ X the restriction of σ produces an isomorphism
X \E → Z \D. One can suppose that D coincides with the zero locus of a regular (or
holomorphic) function α on Z. In the situation, we are going to study, the function
α̃ = α ◦ σ has simple zeros on E. Consider the form σ∗ω0 on X. It may vanish on
E only. Dividing this form by some power α̃k we get a volume form on X. In order
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to compute divergence of a vector field on X it suffices to find this divergence on the
Zariski open subset X \E ' Y \D, i.e. we need to compute the divergence of a vector
field ν on Y \ D with respect to a volume form βω0 where β = α−k. The following
formula relates it with the divergence with respect to ω0:

(6) divβω0(ν) = divω0(ν) + Lν(β)/β.

In the cases, we need to consider, β will be often in the kernel of ν, i.e. divβω0(ν) =
divω0(ν) in these cases.

The condition in Lemma 2.1 that an algebraic field ν on X has an extension µ on Y
with µ(Pi) = 0 is also very mild. We consider it in the case of hypersurfaces only.

2.3. Lemma. Let X be a smooth hypersurface in a complex Stein (resp. affine alge-
braic) manifold Y given by zero of a reduced holomorphic (resp. algebraic) function
P on Y . Then every holomorphic (resp. algebraic) vector field ν on X has a similar
extension µ to Y such that µ(P ) = 0.

Proof. Consider, for instance the algebraic case, i.e. P belongs to the ring C[Y ] of
regular functions on Y . Since µ must be tangent to X we see that µ(P ) vanishes on
X, i.e. µ(P ) = PQ where Q ∈ C[Y ]. Any other algebraic extension of ν is of form
τ = µ− Pθ where θ ∈ VFalg(Y ). Thus if θ(P ) = Q then we are done.

In order to show that such θ can be found consider the set M = {θ(P )|θ ∈ VFalg(Y )}.
One can see that M is an ideal of C[Y ]. Therefore, it generates a coherent sheaf F
over Y . The restriction Q|Y \X is a section of F|Y \X because Q = µ(P )/P . Since X is
smooth for every point x ∈ X there are a Zariski open neighborhood U in Y and an
algebraic vector field ∂ such that ∂(P ) does not vanish on U . Hence Q|U is a section
of F|U . Since F is coherent this implies that Q is a global section of F and, therefore,
Q ∈ M which is the desired conclusion. ¤
2.4. Terminology and Notation. In the rest of this section X is a closed affine
algebraic submanifold of Cn, ω is an algebraic volume form on X, p is a regular function
on X such that the divisor p∗(0) is smooth reduced, X ′ is the hypersurface in Y =
C2

u,v×X given by the equation P := uv−p = 0.1 Note that X ′ is smooth and, therefore,
Lemma 2.3 is applicable. We shall often use the fact that every regular function f on
X ′ can be presented uniquely as the restriction of a regular function on Y of the form

(7) f =
m∑

i=1

(aiu
i + biv

i) + a0

where ai = π∗(a0
i ), bi = π∗(b0

i ) are lift-ups of regular functions a0
i , b

0
i on X via the

natural projection π : Y → X (as we mentioned by abusing terminology we shall say
that ai and bi themselves are regular functions on X).

1By abusing notation we treat p in this formula as a function on Y , and, if necessary, we treat it
as a function on X ′. Furthermore, by abusing notation, for any regular function on X we denote its
lift-up to Y or X ′ by the same symbol.
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Let Ω = du∧ dv ∧ω, i.e. it is a volume form on Y . By Lemma 2.1 there is a volume
form ω′ on X ′ such that Ω|X′ = dP ∧ω′. Furthermore, for any vector field µ such that
µ(P ) = 0 and ν ′ = µ|X′ we have divω′(ν

′) = divΩ(µ)|X . Note also that any vector field
ν on X generates a vector field κ on Y that annihilates u and v. We shall always denote
κ|X′ by ν̃. It is useful to note for further computations that uiπ∗(divω(ν)) = divΩ(uiκ)
for every i ≥ 0. Note also that every algebraic vector field λ on X ′ can be written
uniquely in the form

(8) λ = µ̃0 +
m∑

i=1

(uiµ̃1
i + viµ̃2

i ) + f0∂/∂u + g0∂/∂v

where µ0, µ
j
i are algebraic vector fields on X, and f0, g0 are regular functions on X ′.

For any algebraic manifold Z with a volume form ω we denote by Liealg(Z) (resp.
Lieω

alg(Z)) the Lie algebra generated by algebraic completely integrable vector fields on
Z (resp. that annihilates ω) and by VFalg(Z) we denote the Lie algebra of all algebraic
vector fields on Z. We have a linear map

P̃r : VFalg(X
′) → VFalg(X)

defined by P̃r(λ) = µ0 where λ and µ0 are from formula (8). As it was mentioned in
[13] the following facts are straightforward calculations that follow easily from Lemma
2.1.

2.5. Lemma. Let ν1, ν2 be vector fields on X, and f be a regular function on X. For
i ≥ 0 consider the algebraic vector fields

ν ′1 = ui+1ν̃1 + uiν1(p)∂/∂v, ν ′2 = vi+1ν̃2 + viν2(p)∂/∂u

and µf = f(u∂/∂u− v∂/∂v) on Y . Then
(i) ν ′i and µf are tangent to X ′ (actually they are tangent to fibers of P = uv−p(x)),

i.e., they can be viewed as vector fields on X ′;
(ii) µf is always completely integrable on X ′, and ν ′i is completely integrable on X ′

if νi is completely integrable on X;
(iii) divω′(µf ) = 0, divω′(ν

′
1) = ui+1 divω(ν1), divω′(ν

′
2) = vi+1 divω(ν2), and

divω′([µf , ν
′
1]) = (i + 1)ui+1f divω(ν1), divω′([ν

′
2, µf ]) = (i + 1)vi+1f divω(ν2);

(iv) we have the following Lie brackets

[µf , ν
′
1] = (i + 1)ui+1fν̃1 + α1∂/∂u + β1∂/∂v,

[ν ′2, µf ] = (i + 1)vi+1fν̃2 + α2∂/∂u + β2∂/∂v,

where αi and βi are some regular functions on X ′;
(v) more precisely, if i = 0 in formulas for ν ′1 and ν ′2 then

[µf , ν
′
1] = fuν̃1 − u2ν1(f)∂/∂u + ν1(fp)∂/∂v,

[ν ′2, µf ] = fvν̃2 − v2ν2(f)∂/∂v + ν2(fp)∂/∂u;

and
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(9) P̃r([[µf , ν
′
1], ν

′
2]) = ν1(fp)ν2 − ν2(fp)ν1 + fp[ν1, ν2].

3. The proof of Theorem 1.

3.1. Additional Notation. For every affine algebraic manifold Z let C[Z] be the
algebra of its regular functions, IVFalg(Z) be the set of completely integrable algebraic
vector fields on Z. If there is a volume form ω on Z then we denote by DivZ :
VFalg(Z) → C[Z] the map that assigns to each vector field its divergence with respect
to ω, and set IVFω

alg(Z) = Ker DivZ ∩ IVFalg(Z), VFω
alg(Z) = Ker DivZ ∩VFalg(Z).

For a closed submanifold C of Z denote by VFω
alg(Z, C) the Lie algebra of algebraic

vector fields of divergence zero on Z that are tangent to C. Formula (7) yields a
monomorphism of vector spaces ι : C[X ′] ↪→ C[Y ] and the natural embedding X ↪→
X × (0, 0) ⊂ Y generates a projection Pr : C[Y ] → C[X]. Note that Pr(ι(f)) = a0 in
the notation of formula (7).

3.2. Lemma. Let λ be a vector field on X ′ ⊂ X ×C2
u,v given by formula ( 8). Suppose

that ω0 is a volume form on X and a volume form ω on X ′ coincides with the pull-back
of the volume form ω1 := (ω0 ∧ du)/u on Z := X × C∗u under the natural projection
(i.e. ω constructed as in Remark 2.2). Then Pr(divω(λ)) = divω0(µ0). In particular,
if divω λ = 0 then divω0(µ0) = 0.

Proof. The natural projection σ : X ′ → Z is an affine modification whose restriction
over X × C∗u is an isomorphism. Hence λ is the pull-back of the following vector field

κ = µ̃0 +
m∑

i=1

ui(µ̃1
i + µ̃2

i /p
i) + f0∂/∂u

on Z. Thus it suffices to show that divω0(µ0) = T0(divω1(κ)) where T0 : C(X)[u, u−1] →
C(X) assigns to each Laurent polynomial in u its constant term. By (6) divω1(κ) =
divω0∧du(κ)− κ(u)/u = divω0∧du(κ)− f0/u. Hence

T0(divω1(κ)) = divω0(µ0) + T0(∂f0/∂u)− T0(f0/u).

The desired conclusion follows now from the obvious fact that T0(∂f0/∂u) = T0(f0/u).
¤

3.3. Proposition. Let C be the smooth zero locus of p in X. Suppose also that the
following conditions hold:

(A1) the linear space VFω
alg(X, C) is generated by vector fields that are of the form

P̃r([[µf , ν
′
1], ν

′
2]) where µf and ν ′i are as in formula ( 9) from Lemma 2.5 with νi ∈

IVFω
alg(X);

(A2) VFalg(X) is generated by IVFω
alg(X) as a module over C[X].

Then Lieω
alg(X

′) coincides with VFω
alg(X

′), i.e., X ′ has the algebraic volume density
property.
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Proof. Let λ, f0, and g0 be as in formula (8) and Λ = ι(λ) be the extension of λ to Y
also given by formula (8). By formula (7) f0 and g0 can be written uniquely in the
form

f0 =
m∑

i=1

(aiu
i + biv

i) + a0 and g0 =
m∑

i=1

(âiu
i + b̂iv

i) + â0

where ai, âi, bi, b̂i ∈ C[X].
Since Λ is a vector field tangent to X ′ = P−1(0) we have Λ(P )|X′ = 0. Thus

0 = Pr(ι(Λ(P )|X′)) = p(a1 + b̂1) − µ0(p) (recall that P = uv − p(x)). Hence µ0(p)
vanishes on C, i.e. by Lemma 3.2 µ0 ∈ VFω

alg(X, C). Let µf , ν
′
i ∈ IVFω

alg(X
′) be as in

Lemma 2.5. Condition (A1) implies that adding elements of the form [[µf , ν
′
1], ν

′
2] to λ

we can suppose that µ0 = 0. Using condition (A2) and Lemma 2.5 (iv) we can make
µj

i = 0 by adding fields of the form [µf , ν
′
i] with νi ∈ IVFω

alg(X). Note that this addition
leaves not only µ0 equal to 0 but also divω′(λ) equal to 0, since divω′([µf , ν

′
i]) = 0 as

soon as divω(νi) = 0. Hence λ = f∂/∂u + g∂/∂v and Λ(P )|X′ = fv + gu = 0.
Using formula (7) one can see that f must be divisible by u, and g by v. That

is, there exists a regular function h on X ′ for which f = uh and g = −vh. Hence
λ = h(u∂/∂u− v∂/∂v). Note that Λ(P ) = 0 now. Thus by Lemma 2.1

0 = divω′(λ) = divΩ(Λ)|X′ = (u
∂h

∂u
− v

∂h

∂v
)|X′ .

Taking h as in formula (7) we see that h is independent of u and v. Thus λ is integrable
and of zero divergence by Lemma 2.5 (ii)-(iii).

¤

3.4. Remark. The proof of Theorem 1 in the case of n = 1 (that is, when X ′ is a
Danielevski surface) is complete. Indeed, we have X = Cz. Any divergence-free vector
field on Cz is of form c∂/∂z where c ∈ C. Thus if it vanishes on C it is identically zero,
i.e. µ0 from the above proof is zero which implies Condition (A1). Condition (A2) is
also straightforward. Hence from now on we assume n = dim X ≥ 2.

Taking vector fields ν1 and ν2 from IVFω
alg(X) in formula (9) with [ν1, ν2] = 0 we

have the following.

3.5. Lemma. Condition (A1) in Proposition 3.3 holds if VFω
alg(X,C) is generated as

a linear space by vector fields of the form ν1(fp)ν2 − ν2(fp)ν1 where the vector fields
ν1, ν2 ∈ IVFω

alg(X) commute.

It is more convenient for us to reformulate this new condition in terms of differential
forms for which we need some extra facts. Let ιν be the inner product with a vector
field ν on X. Recall the following relations between the outer differentiation d, the Lie
derivative Lν and ιν

(10) Lν = d ◦ ιν + ιν ◦ d and [Lν1 , ιν2 ] = ι[ν1,ν2].

Then by formula (2) we have

divω(ν)ω = d ◦ ιν(ω) + ιν ◦ d(ω) = d(ιν(ω)).
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Thus we have the first statement of the following.

3.6. Lemma.
(1) A vector field ν is of zero divergence if and only if the form ιν(ω) is closed.
(2) Furthermore, for a zero divergence field ν and every regular function f on X we

have d(ιfν(ω)) = ν(f)ω.
(3) Let ν1, ν2 ∈ IVFω

alg(X) commute and κ = ν1(fp)ν2 − ν2(fp)ν1. Then d(ιν1 ◦
ιν2(fpω)) = ικ(ω) where p, f ∈ C[X].

Proof. Indeed, by (10)

d(ιfν(ω)) = Lfν(ω)− ιfν ◦ d(ω) = Lfν(ω) = divω(fν)ω = (f divω(ν) + ν(f))ω = ν(f)ω

which is (2).
Again by (10) we have

d ◦ ιν1 ◦ ιν2(fpω) = Lν1 ◦ ιν2(fpω)− ιν1 ◦ d ◦ ιν2(fpω).

Then
Lν1 ◦ ιν2(fpω) = Lν1(fp)ιν2(ω) + fpLν1 ◦ ιν2(ω)

and
Lν1 ◦ ιν2(ω) = ιν2Lν1(ω) + ι[ν1,ν2](ω) = 0

since [ν1, ν2] = 0 and Lνi
(ω) = 0. Similarly

ιν1 ◦ d ◦ ιν2(fpω) = Lν2(fp)ιν1(ω) + fpιν1 ◦Lν2(ω)− ιν1 ◦ ιν2 ◦ d(fpω)) = Lν2(fp)ιν1(ω).

Therefore,

d ◦ ιν1 ◦ ιν2(fpω) = Lν1(fp)ιν2(ω)− Lν2(fp)ιν1(ω) = ν1(fp)ιν2(ω)− ν2(fp)ιν1(ω)

which yields the desired conclusion.
¤

Suppose that Ωq(X) is the sheaf of algebraic q-forms on X, Ωq
i (X) is its subsheaf

that consists of forms that vanish on C with multiplicity at least i for i ≥ 1, and vanish
on all elements Λn−1TC ⊂ Λn−1TX for i = 0 where ΛqTX is the q-h wedge-power of
TX, i.e. the set of q-dimensional subspaces of the tangent bundle. For every sheaf F
on X denote by Γ0(X,F) the space of global sections. That is, Γ0(X, Ωn−2

1 (X)) is the
subset of Γ0(X, Ωn−2(X)), that consists of forms divisible by p, and Γ0(X, Ωn−1

0 (X)) is
the set of algebraic (n− 1)-forms on X whose restriction to the zero fiber C of p yields
a trivial form on C.

As a consequence of Lemma 3.6 we have the following fact.

3.7. Lemma. Let κf
i = νi

1(fp)νi
2 − νi

2(fp)νi
1 and let the following condition hold:

(B ) there exists a collection {νi
1, ν

i
2}m

i=1 of pairs of commuting vector fields from IVFω
alg(X)

such that the set {ινi
1
◦ινi

2
(ω)}m

i=1 generates the space of algebraic (n−2)-forms Γ0(X, Ωn−2(X))

on X as C[X]-module.
Then the image of Γ0(X, Ωn−2

1 (X)) under the outer differentiation d : Γ0(X, Ωn−2(X)) →
Γ0(X, Ωn−1(X)) is generated as a vector space by (n− 1)-forms {ικf

i
(ω)}n

i=1, f ∈ C[X].
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3.8. Application of Grothendieck’s theorem. Let Z0(X, Ωn−1
0 (X)) be the sub-

space of closed algebraic (n − 1)-forms in Γ0(X, Ωn−1
0 ). Clearly, for every algebraic

vector field ν ∈ IVFω(X) tangent to C we have ιν(ω) ∈ Z0(X, Ωn−1
0 (X)). Our aim

now is to show that under mild assumption the homomorphism

d : Γ0(X, Ωn−2
1 (X)) → Z0(X, Ωn−1

0 (X))

is surjective and, therefore, condition (A1) from Proposition 3.3 follows from condition
(B) from Lemma 3.7. Denote by F ′

i (resp. Fi) the space of algebraic sections of Ωi
n−1−i

(resp. Ωi) over X. Note that the outer differentiation d makes

F ′(∗) := . . . → F ′
i → F ′

i+1 → . . . and F(∗) := . . . → Fi → Fi+1 → . . .

complexes, and that the surjectivity we need would follow from Hn−1(F ′(∗)) = 0.

3.9. Proposition. Let Hn−1(X,C) = 0 and let the homomorphism Hn−2(X,C) →
Hn−2(C,C) generated by the natural embedding C ↪→ X be surjective. Then Hn−1(F ′(∗))
= 0.

Proof. Consider the following short exact sequence of complexes 0 → F ′(∗) → F(∗) →
F ′′(∗) → 0 where F ′′

i = Fi/F ′
i in complex F ′′(∗). This implies the following long exact

sequence in cohomology

. . . → Hn−2(F(∗)) → Hn−2(F ′′(∗)) → Hn−1(F ′(∗)) → Hn−1(F(∗)) → . . . ,

i.e. we need to show (i) that the homomorphism Hn−2(F(∗)) → Hn−2(F ′′(∗)) is sur-
jective and (ii) that Hn−1(F(∗)) = 0. By the Grothendieck theorem [9] De Rham
cohomology on smooth affine algebraic varieties can be computed via the complex of
algebraic differential forms, i.e. Hn−1(F(∗)) = Hn−1(X,C) which implies (ii). Simi-
larly, Hn−2(F(∗)) = Hn−2(X,C). Note that F ′′

i = Fi/(p
n−1−iFi) for i ≤ n − 2. In

particular, modulo the space S of (the restrictions to C of) algebraic (n− 2)-form that
vanish on Λn−2TC the term F ′′

n−2 coincides with the space T of algebraic (n−2)-forms
on C (more precisely, we have the following exact sequence 0 → S → F ′′

n−2 → T → 0).
One can see that each closed τ ∈ S is of form dp∧τ0 where τ0 is a closed (n−3)-form on
C. Hence τ = d(pτ0) (where pτ0 can be viewed as an element of F ′′

n−3 = Fn−3/(p
2Fn−3))

is an exact form. Thus the (n − 2)-cohomology of complex F ′′(∗) coincides with the
(n − 2)-cohomology of the algebraic De Rham complex on C and, therefore, is equal
to Hn−2(C,C) by the Grothendieck theorem. Now homomorphism from (i) becomes
Hn−2(X,C) → Hn−2(C,C) which implies the desired conclusion.

¤
Thus we have Theorem 1 from Introduction as a consequence of Remark 3.4 and

the following more general fact (which gives, in particular, an affirmative answer to
an open question of Varolin ([24], section 7) who asked whether the hypersurface
{(a, b, c, d) ∈ C4 : a2c− bd = 1} in C4 has the volume density property).

Theorem 3. Suppose n ≥ 2 and let X be an n-dimensional smooth affine algebraic
variety with Hn−1(X,C) = 0 and a volume form ω satisfying conditions
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(B ) there exists a collection {νi
1, ν

i
2}m

i=1 of pairs of commuting vector fields from
IVFω

alg(X) such that the set {ινi
1
◦ ινi

2
(ω)}m

i=1 generates the space of algebraic (n − 2)-

forms Γ0(X, Ωn−2(X)) on X as C[X]-module;
(A2) VFalg(X) is generated by IVFω

alg(X) as a module over C[X].2

Suppose also that p is a regular function on X with a smooth reduced zero fiber C such
that the homomorphism Hn−2(X,C) → Hn−2(C,C) generated by the natural embedding
C ↪→ X is surjective. Let X ′ ⊂ X × C2

u,v be the hypersurface given by uv = p and let
ω′ be the pullback of the form ω ∧ du/u on Z = X × C∗u under the natural projection
X ′ → Z 3. Then X ′ has the algebraic ω′-density property.

3.10. Algebraic volume density for SL2(C) and PSL2(C). Since X ′ = SL2(C) is
isomorphic to the hypersurface uv = x1x2 + 1 =: p(x̄) in Y = C4

x̄,u,v = X × C2
u,v with

x̄ = (x1, x2) and X = C2
x̄, Theorem 1 implies that SL2(C) has the algebraic volume

density property with respect to the volume form ω′ on X ′ such that ω′ ∧ dP = Ω
where P = uv − p(x̄) and Ω = dx1 ∧ dx2 ∧ du ∧ dv is the standard volume form on
C4. On the other hand by Remark 2.2 (1) we can consider forms (dx1 ∧ dx2 ∧ du)/u,
(dx1∧dx2∧dv)/v, etc.. Each of these forms coincides with ω′ up to a sign because their
wedge-products with dP are ±Ω. Note that (dx1∧dx2∧du)/u is invariant with respect
to the C+-action on SL2(C) given by (x1, x2, u, v) → (x1, x2 + tx1, u, v + tu), t ∈ C+

which is generated by multiplications of a C+-subgroup of SL2(C). Thus ω′ is invariant
with respect to such multiplications. Similarly, consideration of (dx1 ∧ dx2 ∧ dv)/v
yields invariance with respect to the C+-action (x1, x2, u, v) → (x1 + tx2, x2, u + tv, v),
etc.. This implies that ω′ is invariant with respect to multiplication by any element
of SL2(C) and we proved the following result, which is originally due to Varolin ([24],
Theorem 2).

3.11. Proposition. Group SL2(C) has the algebraic volume density property with re-
spect to the invariant volume form.

Furthermore, since the vector fields ν1 = ∂/∂x1 and ν2 = ∂/∂x2 on X = C2
x̄ commute

and satisfy condition (B) of Lemma 3.7 we see that any vector field µ0 tangent to the
zero fiber C of p is of form ν1(fp)ν2 − ν2(fp)ν1 where f is a polynomial on X. This
fact will used in the next unpleasant computation which is similar to the argument in
Proposition 3.3.

3.12. Proposition. Group PSL2(C) has the algebraic volume density property with
respect to the invariant volume form.

Proof. Consider now X ′′ = X ′/Z2 ' PSL2(C) where the Z2-action on X ′ given by
(u, v, x̄) → (−u,−v,−x̄). Note that C[X ′′] can be viewed as the subring of C[X ′]
generated by monomials of even degrees. Hence completely integrable vector fields of
form

ν ′1 = ui+1∂/∂xk + ui ∂p

∂xk

∂/∂v and ν ′2 = vi+1∂/∂xj + vi ∂p

∂xj

∂/∂u

2Clearly, the standard volume form on Cn satisfies both these conditions.
3One can check that ω′ ∧ dP = ω ∧ du ∧ dv|X′ where P = uv − p.
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(resp. ν ′′1 = ui+1xj∂/∂xk + uixj
∂p

∂xk

∂/∂v and ν ′′2 = vi+1xk∂/∂xj + vixk
∂p

∂xj

∂/∂u)

on X ′ with even (resp. odd) i can viewed as fields on X ′′. The same is true for µf from
Lemma 2.5 provided f is a linear combination of monomials of even degrees. Fields
ν ′1, ν

′
2, µf are of zero divergence. If j 6= k the same holds for ν ′′1 and ν ′′2 . Any algebraic

vector field λ on X ′′ can be viewed as a vector field on X ′ and, therefore, it is given by
formula (8). Since this field on X ′ came from X ′′ each µ̃k

i (resp. µ̃0) in that formula
consists of summands of form q(x̄)∂/∂xk where polynomial uiq(x̄) (resp. viq(x̄)) is
a linear combination of monomials of odd degrees. Our plan is to simplify the form
of a vector field λ with divergence zero on X ′′ by adding elements of the Lie algebra
generated by fields like µf , ν

′
1, ν

′
2, ν

′′
1 , ν ′′2 .

Recall that µ̃0 is generated by a field µ0 on X and it was shown in the proof of
Proposition 3.3 that µ0 is tangent to C. Hence, as we mentioned before µ0 = ν1(fp)ν2−
ν2(fp)ν1. Furthermore, if λ comes from a field on X ′′ polynomial f ∈ C[x1, x2] must
contain monomials of even degrees only. Thus by virtue of Lemma 2.5 (v) adding to
λ vector fields of form [[µf , ν

′
1], ν

′
2] we can suppose that µ̃0 = 0 without changing the

divergence of λ.
Following the pattern of the proof of Proposition 3.3 let us add to λ the zero di-

vergence fields of form [µf , ν
′
l ] and [µf , ν

′′
l ]. Since we have to require that j 6= k in

the definition of ν ′′1 and ν ′′2 we cannot eliminate summands ui+1µ̃1
i+1 and vi+1µ̃2

i+1 com-
pletely. However, Lemma 2.5 (iv) shows that after such addition one can suppose that
ui+1µ̃1

i+1 vanishes for even i, and for odd i it is a linear combination of terms of form
ui+1xm

k ∂/∂xk where m is odd (and similarly for vi+1µ̃2
i+1).

Consider the semi-simple vector field ν = x1∂/∂x1 − x2∂/∂x2 on X. Then ν ′ =
ui+1ν̃ + uiν(p)∂/∂v is a completely integrable zero divergence vector field on X ′ and
for odd i it can be viewed as a field on X ′′. Set f = xm−1

1 . By Lemma 2.5 (iv)

[µf , ν
′] = (i + 1)ui+1xm−1

1 ν̃ + α∂/∂u + β∂/∂v.

Thus adding a multiple of [µf , ν
′] to λ we can replace terms ui+1xm

1 ∂/∂x1 in ui+1µ̃1
i+1

by ui+1xm−1
1 x2∂/∂x2. If m ≥ 2 the latter can be taken care of by adding fields of form

[µf , ν
′′
i ]. If m = 1 we cannot eliminate immediately terms like uix1∂/∂x1 or uix2∂/∂x2,

but adding fields of form cuiν̃ where c is a constant we can suppose that only one
of these terms is present. The same is true for similar terms with u replaced by v.
Thus adding elements from Lieω

alg(X
′′) we can reduce λ to a zero divergence field of the

following form

λ =
∑
i≥1

(ciu
ix1∂/∂x1 + div

ix2∂/∂x2) + g1∂/∂u + g2∂/∂v

where constants ci and di may be different from zero only for even indices i and by
formula (7) gk =

∑
i≥1(a

k
i (x̄)ui + bk

i (x̄)vi) + ak
0(x̄) with ak

i and bk
i being polynomials

on X. Since divergence divω λ = 0 we immediately have a1
i+1 = −ci/(i + 1) and

b2
i+1 = −di/(i + 1), i.e. these polynomials are constants.
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Consider now an automorphism of X ′′ (and, therefore, of X ′) given by (u, v, x1, x2) →
(−x1, x2,−u, v), i.e. it exchanges the role of pairs (u, v) and (x1, x2). It transforms λ
into a field ∑

i≥1

(a1
i+1x

i+1
1 ∂/∂x1 + b2

i+1x
i+1
2 ∂/∂x2) + λ0

where λ0 does not contain nonzero summands of form ax1∂/∂x1 (resp. bx2∂/∂x2) with
a (resp. b) being a regular function on X ′′ non-divisible by x2 (resp. x1). Hence adding
fields of form [[µf , ν

′
1], ν

′
2], [µf , ν

′
k], and [µf , ν

′′
k ] as before we can suppose that µ̃0 and

each µ̃1
i and µ̃2

i are equal to zero, i.e. λ = e∂/∂u + g∂/∂v. Furthermore, arguing as in
Proposition 3.3 we see λ = h(u∂/∂u− v∂/∂v) where h is a polynomial on X, i.e. λ is
completely integrable. Since by construction it is a vector field on X ′′, we have proved
that X ′′ possesses the algebraic volume density property.

¤

4. Two basic facts about the algebraic volume density property

By considering differential forms and vector fields in local coordinate systems one can
see that the map ν → ιν(ω) is bijective and, therefore, establishes a duality between
algebraic (resp. holomorphic) vector fields and the similar (n − 1)-forms on X. This
duality in combination with the Grothendieck theorem [9] enables us to prove another
important fact.

4.1. Proposition. For an affine algebraic manifold X equipped with an algebraic vol-
ume form ω the algebraic volume density property implies the volume density property
(in the holomorphic sense).

Proof. We need to show that any holomorphic vector field µ such that µ(ω) = 0 can
be approximated by an algebraic vector field ν with Lν(ω) = 0. Since the form ιµ(ω) is
closed, by the Grothendieck theorem one can find a closed algebraic (n− 1)-form τn−1

such that ιµ(ω)−τn−1 is exact, i.e. ιµ(ω)−τn−1 = d τn−2 for some holomorphic (n−2)-
form τn−2. Then we can approximate τn−2 by an algebraic (n − 2)-form τ ′n−2. Hence
the closed algebraic (n − 1)-form τn−1 + d τ ′n−2 yields an approximation of ιµ(ω). By
duality τn−1 + d τ ′n−2 is of form ιν(ω) for some algebraic vector field ν (approximating
µ) and by Lemma 3.6 (1) ν is of zero ω-divergence which is the desired conclusion.

¤

4.2. Lemma. If X has the algebraic volume density property, then there exist finitely
many algebraic vector fields σ1, . . . , σm ∈ Lieω

alg(X) that generate VFalg(X) as a C[X]-
module.

Proof. Let n = dim X. We start with the following.
Claim. The space of algebraic fields of zero divergence generates the tangent space

of X at each point.
Let x ∈ X and U be a Runge neighborhood of x such that Hn−1(U,C) = 0 (for

example take a small sublevel set of a strictly plurisubharmonic exhaustion function
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on X with minimum at x). Shrinking U we can assume that in some holomorphic
coordinate system z1, . . . , zn on U the form ω|U is the standard volume dz1 ∧ . . .∧ dzn.
Thus the holomorphic vector fields ∂/∂zi on U are of zero divergence and they span
the tangent space at x. We need to approximate them by global algebraic fields of
zero divergence on X which would yield our claim. For that let ν ∈ VFω

hol(U). The
inner product ιν(ω) =: α is by Lemma 3.6 (1) a closed (n − 1)-form on U and since
Hn−1(U,C) = 0 we can find an (n − 2)-form β on U with dβ = α. Since U is Runge

in X we can also approximate β by a global algebraic (n − 2)-form β̃ (uniformly on

compacts in U). Then the closed algebraic (n − 1)-form dβ̃ approximates α and the

unique algebraic vector field θ defined by ιθ(ω) = dβ̃ approximates ν. Since dβ̃ is
closed, the field θ is of zero divergence which concludes the proof of the Claim.

Now it follows from the Claim and the algebraic volume density property that there
are n vector fields in Lieω

alg(X) which span the tangent space at a given point x ∈ X.
By standard induction on the dimension, adding more fields to span the tangent spaces
at points where it was not spanned yet, we get the assertion of the lemma.

¤
Let us suppose that X and Y are affine algebraic manifolds equipped with volume

forms ωX and ωY respectively.

4.3. Proposition. Suppose that X (resp. Y ) has the algebraic ωX (resp. ωY ) volume
density property. Let ω = ωX × ωY . Then X × Y has the algebraic volume density
property relative to ω.

Proof. By Lemma 4.2 we can suppose that σ1, . . . , σm ∈ LieωX
alg (X) (resp. δ1, . . . , δn ∈

LieωY
alg(Y )) generate VFalg(X) as a C[X]-module (resp. VFalg(Y ) as a C[Y ]-module).
Denote by FY the vector subspace (over C) of C[Y ] generated by Im δ1, . . . , Im δn.

Then C[Y ] = FY ⊕ V where V is another subspace whose basis is v1, v2, . . .. Set
F ′

Y = C[X] ⊗ FY and V ′ = C[X] ⊗ V , i.e. the algebra of regular functions on X × Y
is A = C[X] ⊗ C[Y ] = F ′

Y ⊕ V ′. Let fi ∈ C[X] and gj ∈ C[Y ]. Note that fi is in the
kernel of all completely integrable fields used in the Lie combination for δi and thus
fiδi ∈ LieωY

alg(Y ), analogously giσi ∈ LieωX
alg (X). The fields δi and σj generate (vertical

and horizontal) vector fields on X×Y that are denoted by the same symbols. Consider

[fiδi, gjσj] = δi(figj)σj − σj(figj)δi.

By construction δi and σj commute and moreover Span fi · gi = C[X × Y ]. Hence the
coefficient before σj runs over Im δi and, therefore, for any α′1, . . . , α

′
n ∈ F ′

Y there are
β′1, . . . , β

′
m ∈ A such that the vector field

∑
j

α′jσj −
∑

i

β′iδi

belongs to Lieω
alg(X × Y ). Thus adding vector fields of this form to a given vector field

ν =
∑

j

αjσj −
∑

i

βiδi
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from VFω
alg(X × Y ) we can suppose that each αj ∈ V ′. Hence one can rewrite ν in the

following form

ν =
∑

l

∑
j

(hjl ⊗ vl)σj −
∑

i

βiδi

where each hjl ∈ C[X]. Then one has

0 = div ν =
∑

l

(
∑

j

σj(hjl))⊗ vl −
∑

i

δi(βi).

Since the first summand is in V ′ and the last is in F ′
Y we see that

∑
j σj(hjl) = 0, i.e.

each vector field
∑

j hjlσj belong to VFωX
alg (X) and by the assumption to LieωX

alg (X).
Hence it suffices to prove the following

Claim. Consider the subspace B ⊂ VFω
alg(X × Y ) that consists of vector fields of

form
ν =

∑
i

βiδi .

Then B is contained in Lieω
alg(X × Y ).

Indeed, consider a closed embedding of Y into a Euclidean space. Then it generates
filtration on C[Y ] by minimal degrees of extensions of regular functions to polynomials.
In turn this generates filtrations B =

⋃
Bi and LieωY

alg(X × Y ) =
⋃

Li. Note that each
Bi or Li is a finitely generated C[X]-module, i.e. they generate coherent sheaves on X.
Furthermore, since Y has algebraic ωY -density property we see that the quotients of Bi

and Li with respect to the maximal ideal corresponding to any point x ∈ X coincide.
Thus Bi = Li which implies the desired conclusion.

¤
Note that up to a constant factor the completely integrable vector field z∂/∂z on the

group X = C∗ is the only field of zero divergence with respect to the invariant volume
form ω = dz

z
, i.e., X has the algebraic volume density property. Hence we have the

following (see also Corollary 4.5 in [22]).

4.4. Proposition. For every n ≥ 1 the torus (C∗)n has the algebraic volume density
property with respect to the invariant form.

5. Algebraic volume density for locally trivial fibrations

5.1. Let Y be an affine algebraic manifold with a volume form ω and FY be the
subspace of C[Y ] that consists of images of vector fields from Lieω

alg(Y ), i.e. V '
C[Y ]/FY is the subspace that appeared in the proof of Proposition 4.3. If V were
trivial so would be the proof, but in the general case V 6= 0. We shall see later that
Proposition 4.3 can be extended to some locally trivial fibrations with fiber Y for which,
in particular, V is at most one-dimensional. More precisely, we shall need manifolds Y
satisfying the following property

(C) either C[Y ] = FY or C[Y ] ' FY ⊕ C
where the isomorphism is natural and the second summand denotes constant functions
on Y .
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5.2. Lemma. Let Y be the smooth hypersurface in Cn+2
u,vx̄ given by P = uv+q(x̄)−1 = 0

where q(x̄) =
∑n

i=1 x2
i (i.e. after a coordinate change uv + q(x̄) can be replaced by any

non-degenerate quadratic form). Suppose that Y is equipped with a volume ωY such
that dP ∧ ωY = Ω|Y where Ω is the standard volume form on Cn. Then

(1) Y has property (C) and
(2) Y/Z2 has property (C) where the Z2-action is given by (u, v, x̄) → (−u,−v,−x̄).

Proof. Consider the semi-simple vector field µ = u∂/∂u − v∂/∂v on Y . It generates
Z-grading of C[Y ] = ⊕i∈ZAi such that Ker µ = A0 and Im µ = ⊕i∈Z,i 6=0Ai ⊂ FY . Note
that A0 ' C[x1, . . . , xn] since uv = 1 − q(x) ∈ A0. Assume for simplicity that n ≥ 2
and replace x1 and x2 by u′ = x1 +

√−1x2 and v′ = x1 −
√−1x2 in our coordinate

system. Consider the semi-simple vector field µ′ = u′∂/∂u′ − v′∂/∂v′ whose kernel is
A′

0 = C[u, v, x3, . . . , xn]. Thus monomials containing u′ and v′ (or, equivalently, x1 or
x2 in the original coordinate system) are in Im µ′ ⊂ FY . Repeating this procedure
with other xi and xj instead of x1 and x2 we see that FY contains every nonconstant
monomial which is (1).

For (2) note that C[Y/Z2] is the subring of C[Y ] generated by monomials of even
degrees and that the semi-simple vector fields that we used preserve the standard
degree function. That is, if a monomial M1 of even degree belongs, say, to Im µ then
M1 = µ(M2) where M2 is also a monomial of even degree. This yields (2).

¤
Since SL2(C) is isomorphic to the hypersurface uv − x1x2 = 1 in C4

u,v,x1,x2
we have

the following.

5.3. Corollary. Both SL2(C) and PSL2(C) have property (C).

5.4. Remark. In fact for Y equal to SL2(C) or PSL2(C) we have C[Y ]/FY ' C. More
precisely, set F = Span {ν(f) : ν ∈ VFω

alg(Y ), f ∈ C[Y ]}. Note that vector fields of
form fν span all algebraic vector fields because of Claim in Lemma 4.2 (and Lemma 5.8
below). Therefore, (n−1)-forms ιfν(ω) generate all algebraic (n−1)-forms on Y where
n = dim Y . By Lemma 3.6 (2), d(ιfν(ω)) = ν(f)ω which implies that the image of
Ωn−1(Y ) in Ωn(Y ) under outer differentiation coincides with Fω. Since d(Ωn(Y )) = 0
we have C[Y ]/F ' Hn(Y,C) by the Grothendieck theorem. By Proposition 4.1 in [14]
for a smooth hypersurface Y ⊂ Cm+2 given by uv = p(x) we have H∗(Y ) = H∗−2(C)
where C is the zero fiber of p. Thus the universal coefficient formula implies that
dimC[Y ]/F = rank Hm−1(C,C). For SL2(C) presented as such a hypersurface we
have p(x1, x2) = x1x2 − 1, i.e. C is a hyperbola and H1(C,C) = C which yields the
desired conclusion because F = FY for manifolds with the algebraic volume density
property.

5.5. Notation. Further in this section X, Y, and W are smooth affine algebraic varieties
and p : W → X is a locally trivial fibration with fiber Y in the étale topology. We
suppose also that Y is equipped with a unique (up to a constant factor) algebraic
volume form ωY , and VFalg(W, p) (resp. VFωY

alg(W, p)) is the space of algebraic vector
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fields tangent to the fibers of p (resp. and such that the restriction to each fiber has zero
divergence relative to ωY . ) Similarly LieωY

alg(W, p) will be the Lie algebra generated by
completely integrable vector fields from VFωY

alg(W, p). We denote the subspace of C[W ]
generated by functions of form {Im ν|ν ∈ LieωY

alg(W, p)} by F (W, p).

5.6. Definition. We say that a family δ1, . . . , δn, . . . ∈ LieωY
alg(Y ) satisfies condition (D)

if
(D1) it generates LieωY

alg(Y ) as a Lie algebra and
(D2) VFalg(Y ) as a C[Y ]-module.

5.7. Remark. (i) Note that (D1) implies the sets {δi(C[Y ])} generate the vector space
FY .

(ii) For (D2) it suffices to require that the set of vector fields δ1, . . . , δn, . . . generates
the tangent space at each point of Y . This is a consequence of the next simple fact
(e.g., see Exercise 5.8 in [10]) which is essentially the Nakayama lemma.

5.8. Lemma. Let A ⊂ B be a finitely generated C[X]-module and its submodule.
Suppose that for every point x ∈ X one has A/Mx = B/Mx where Mx is the maximal
ideal in C[X] associated with x. Then A = B

5.9. Example. Let σ1, σ2, . . . (resp. δ1, δ2, . . .) be a family on X with respect to volume
ωX (resp. on Y with respect to volume ωY ) satisfying Condition (D) from 5.6. Denote
their natural lifts to X × Y by the same symbols. Consider the set S of “horizontal”
and “vertical” fields of form fσi and gδj where f (resp. g) is a lift of a function on Y
(resp. X) to X×Y . It follows from the explicit construction in the proof of Proposition
4.3 that S generates the Lie algebra Lieω

alg(X × Y ) for ω = ωX × ωY , i.e. it satisfies
condition (D1) of Definition 5.6. Remark 5.7 (2) implies that condition (D2) also holds
and, therefore, the family S satisfies Condition (D) on X × Y .

In particular, consider a torus T = (C∗)n with coordinates z1, . . . , zn. One can
see that the vector field νj = zj∂/∂zj is a family on the j-th factor with respect to
the invariant volume on C∗ such that it satisfies Condition (D). Thus fields of form
fjνj (j = 1, . . . , n) with fj being independent of zj generate a family on T with respect
to the invariant volume for Condition (D) is also valid.

5.10. Convention. Furthermore, we suppose that vector fields δ1, . . . , δn, . . . form
a family S in LieωY

alg(Y ) satisfying (D) and there are vector fields δ′1, . . . , δ
′
l, . . . ∈

VFωY
alg(W, p) such that up to nonzero constant factors the set of their restrictions to

any fiber of p contains δ1, . . . , δn, . . . under some isomorphism between this fiber and
Y . (Note that if p : W → X is a Zariski locally trivial fibration this Convention is
automatically true.)

5.11. Lemma. Suppose that p : W → X is one of the following
(i) a principal SLn-bundle;
(ii) a quotient of a semi-simple group W with respect to a subgroup Y ' PSL2 that

corresponds to a root of the Dynkin diagram for W .
Then Convention 5.10 holds.
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Proof. Recall that SLn is a special group in terminology of [19, Section 4] which means
that every principal SLn-bundle is Zariski trivial and therefore yields the validity of
Convention 5.10 and statement (i).

Though PSLn is not a special group, let us show that under the assumption of (ii) we
have a Zariski locally trivial fibration as well. Indeed, W = W ′/F ′ where F ′ is a finite
subgroup of the center of a simply connected semi-simple group W ′. The preimage Y ′

of Y in W ′ is isomorphic to SL2, i.e. Y = Y ′/F where the order of the subgroup F
of Y ′ ∩ F ′ is 2. If Y ′ is contained in an SL3-subgroup of W then the generator a of F
cannot be presented as a = bk, k ≥ 2 with b in the center of W ′. In combination with
the classification of centers of simple Lie groups [18] this fact implies that the same
remains true for every Y ′ corresponding to a node of the Dynkin diagram of W .

In the additive form F ′ ' Zd1 ⊕ . . . ⊕ Zdm where di|di+1. Then a corresponds to
an element (a1, . . . , am) such that the GCD(a1, . . . , am) = 1 because of the above
description of a. On the other hand each ai is either zero of di/2 since the order of a
is 2. Hence the greatest common divisor is 1 if only if the smallest nonzero ai = 1 and
di = 2. In this case F is a summand in F ′, i.e. F ′ = F ⊕ Γ. Set W̃ = W ′/Γ, that is
W = W̃/F . Then p̃ : W̃ → X is a principal SL2-bundle induced by p : W → X. As
we mentioned this bundle is Zariski locally trivial and therefore it has a section over
a Zariski neighborhood of each point in X. Hence p : W → X has similar sections
which implies that this PSL2-bundle is also locally trivial. This yields the desired
conclusion. ¤

In the rest of the section we suppose that Convention 5.10 is valid. Then we have
the following.

5.12. Lemma.
(1) A function g ∈ C[W ] is contained in F (W, p) if and only if its restriction to each

general fiber of p belongs to FY . Furthermore, if Y has property (C) from 5.1 then
C[W ] ' F (W, p)⊕ C[X]4.

(2) Suppose that Y has the algebraic volume density property.
Then VFωY

alg(W, p) = LieωY
alg(W, p).

Proof. There exists a cover X =
⋃

i Xi such that for each i one can find an étale
surjective morphism X ′

i → Xi for which the variety W ′
i := Wi ×Xi

X ′
i is naturally

isomorphic to X ′
i × Y where Wi = p−1(Xi). Lifting functions on W to some W ′

i0
which

is the direct product we can introduce filtration C[W ] =
⋃

i≥0 Gi as we did in the Claim
in Proposition 4.3 (i.e. take a closed embedding Y ↪→ Cm and consider the minimal
degrees of extensions of function on W ′

i0
to X ′

i0
×Cm with respect to the second factor).

Consider now the set S of functions g ∈ C[W ] such that for a general x ∈ X the
restriction g|p−1(x) is in FY . Since the degree (generated by the embedding Y ↪→ Cm)
of the restriction of g to each (not necessarily general) fiber p−1(x0) ' Y is bounded by

4In fact for (1) one needs only that the sets {δi(C[Y ])} generate the vector space FY with δi running
over the family S from Convention 5.10 .
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the same constant we see that g|p−1(x0) belongs to FY (because the finite-dimensional
subspace of FY that consists its elements, whose degrees are bounded by this constant,
is closed). Set Si = S ∩ Gi and Fi = F (W, p) ∩ Gi. If suffices to show that Si = Fi

for every i. Note that both Si and Fi are finitely generated C[X]-modules and because
of the existence of fields δ′1, . . . , δ

′
l, . . . in Convention 5.10 we see that for every x ∈ X

there is an equality Si/Mx = Fi/Mx where Mx is the maximal ideal in C[X] associated
with x. Hence the first statement of (1) follows from Lemma 5.8.

For the second statement of (1) note that Gi/Mx = (Fi ⊕ C[X])/Mx since Y has
property (C) from 5.1 and C[X]/Mx = C. Thus another application of Lemma 5.8
implies the desired conclusion.

The filtration of functions that we introduced, yields a filtrations of vector fields
VFωY

alg(W, p) =
⋃

Bi and LieωY
alg(W, p) =

⋃
Li as where Bi and Li are again finitely

generated C[X]-modules. Because S in Convention 5.10 satisfies Condition (D) from
5.6 and Y has the algebraic volume density property we have Bi/Mx = Li/Mx. Thus
by Lemma 5.8 Bi = Li which yields (2). ¤

5.13. Definition. (1) Suppose that ωX is a volume form on X, X =
⋃

Xi, X ′
i, Wi, and

W ′
i are as in the proof of Lemma 5.12, ϕi : W ′

i → X ′
i×Y is the natural isomorphism and

ω is an algebraic volume form on W such that up to a constant factor ϕ∗i (ω) coincides
with (ωX × ωY )|Xi×Y for each i. Then we call p : W → X a volume fibration (with
respect to the volume forms ωX , ωY , and ω).

(2) We call a derivation σ′ ∈ Lieω
alg(W ) a lift of a derivation σ ∈ LieωX

alg (X) if for
every w ∈ W and x = p(w) one has p∗(σ′(w)) = σ(x). (Note that the Lie bracket of
two lifts is a lift.) We say that σ′ is p-compatible if for any δ′ ∈ VFω

alg(W, p) we have
[σ′, δ′] ∈ VFω

alg(W, p) and the span Span (Ker σ′ ·Ker δ′) coincides with C[W ].
We shall see later (Lemma 6.11) that for a reductive group G and its Levi semi-simple

subgroup L the natural morphism p : G → G/L can be viewed as a volume fibration
with respect to appropriate volume forms such that the base possesses a family of
algebraic vector fields satisfying condition (D) and admitting p-compatible lifts.

Since any algebraic vector field tangent to fiber of p : W → X has zero ω-divergence
if and only if its restriction on each fiber has zero ωY -divergence we have the following
consequence of Lemma 5.12 (2).

5.14. Corollary. Let p : W → X be a volume fibration whose fiber has the alge-
braic volume density property and VFω

alg(W, p) (resp. Lieω
alg(W, p)) be the space of zero

ω-divergence algebraic vector fields tangent to the fibers of p (resp. the Lie algebra
generated by completely integrable algebraic vector fields tangent to the fibers of p and
of zero ω-divergence). Then VFω

alg(W, p) = Lieω
alg(W, p).

The next fact will not be used further but it is interesting by itself.

5.15. Proposition. Let p : W → X be a a volume fibration with both fiber Y and base
X having property (C) from 5.1. Suppose also that X possesses a family of algebraic
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vector fields satisfying condition (D) and admitting p-compatible lifts. Then W has
property (C) as well.

Proof. Indeed, the existence of lifts for a family of vector fields satisfying condition (D)
from 5.6 makes FX and, therefore, F (W, p)⊕FX a natural subspace of FW . It remains
to note that C[W ] = F (W, p)⊕ FX ⊕ C by the assumption and by Lemma 5.12.

¤
5.16. Proposition. Let p : W → X be a volume fibration such that its fibers have
property (C) and LieωX

alg (X) contains a family of vector fields satisfying condition (D)
and admitting p-compatible lifts. Let Θ be the set of p-compatible lifts of this family.
Consider the space L generated by Lieω

alg(W, p) and vector fields of form ν := [fσ′, δ′]
where σ′ ∈ Θ, δ′ ∈ Lieω

alg(W, p), and f ∈ Ker σ′. Suppose that T = p∗(TX) is the
pull-back of the tangent bundle TX to W , % : TW → T is the natural projection, and
L = %(L). Then

(1) L is a C[X]-module;
(2) L consists of all finite sums

∑
σ′∈Θ hσ′%(σ′) where hσ′ ∈ F (W, p).

Proof. The space Lieω
alg(W, p) is, of course, a C[X]-module. Thus it suffices to consider

fields like ν = [σ′, δ′] only. Since σ′ is a lift of σ ∈ LieωX
alg (X) we see that σ′(C[X]) ⊂ C[X]

where we treat C[X] in this formula as a subring of C[W ]. Then for every α ∈ C[X]
we have αν = [σ′, αδ′]− σ′(α)δ′ which implies (1).

Let f1 ∈ Ker σ′, f2 ∈ Kerδ′, and h = δ′(f1f2). Then by the p-compatibility assump-
tion [f1σ

′, f2δ
′] = hσ′ + a with a ∈ VFalg(W, p) and, furthermore, the span of functions

like h coincides with δ′(C[W ]). Thus L contains F (W, p)%(σ′) which is (2).
¤

Theorem 4. Let p : W → X and Θ be as in Proposition 5.16 and let Convention 5.10
hold. Suppose also that the fibers and the base of p have the algebraic volume density
property. Then W has the algebraic volume density property.

Proof. Suppose that δ′i is as in Convention 5.10, {σi} is a family on X satisfying Con-
dition (D), and σ′i ∈ Lieω

alg(W ) is a p-compatible lift of σi. Let κ ∈ VFω
alg(W ). Then

κ =
∑

i hiσ
′
i+θ where hi ∈ C[W ] and θ ∈ VFalg(W, p). By Proposition 5.16 and Lemma

5.12(1) adding an element of L to κ one can suppose that each hi ∈ C[X]. Since θ
is a C[W ]-combination of δ′1, . . . , δ

′
l, . . . and divω(fδ′i) = δ′i(f), we see that divω θ ∈

F (W, p). On the other hand divω

∑
i hiσ

′
i =

∑
i σi(hi) = divωX

∑
i hiσi ∈ C[X]. Hence

divωX

∑
i hiσi = 0 and θ ∈ VFω

alg(W, p). By assumption
∑

i hiσi ∈ LieωX
alg (X). In com-

bination with the existence of lifts for σi and Corollary 5.14 this implies the desired
conclusion.

¤

6. Volume forms on homogeneous spaces

6.1. Definition. We say that an affine algebraic variety X is (weakly) rationally
connected if for any (resp. general) points x, y ∈ X there are a sequence of points
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x0 = x, x1, x2, . . . , xn = y and a sequence of polynomial curves C1, . . . , Cn in X such
that xi−1, xi ∈ Ci.

6.2. Remark. (1) This notion of rational connectness is not, of course, new. For
projective varieties it was introduced independently in [5] and in [16] where it means
that any two general points can be connected by a chain of rational curves.

(2) Since finite morphisms transform polynomial curves into polynomial curves we
have the following: if X is an affine (weakly) rationally connected variety and f : X →
Y is a finite morphism then Y is also an affine (weakly) rationally connected variety.

6.3. Example. It is easy to see that SL2(C) is affine rationally connected. (Indeed,
SL2(C) can be presented as an algebraic locally trivial C-fibration over C2 without
the origin o. Over any line in C2 that does not contain o this fibration is trivial
and, therefore, admits sections which implies the desired conclusion.) Hence any semi-
simple group is rationally connected since its simply connected covering is generated
by SL2(C)-subgroups.

6.4. Proposition. Let X be an affine manifold and ω, ω1 be algebraic volume forms
on X.

(1) If X is weakly rationally connected then ω = cω1 for nonzero constant c.
(2) If G is a rationally connected linear algebraic group (say, unipotent or semi-

simple) acting on X then ω ◦ Φg = ω for the action Φg : X → X of any element
g ∈ G.

Proof. (1) Note that ω = hω1 where h is an invertible regular function on X. Let
x, y, xi, Ci be as in Definition 6.1. By the fundamental theorem of algebra h must be
constant on each Ci. Hence h(x) = h(y) which implies the first statement.

(2) Let e be the identity in G. Then we have a sequence g0 = e, g1, g2, . . . , gm = g in
g such that for any i ≥ 1 there is a polynomial curve Ci in G joining gi−1 and gi. Again
for every a ∈ Ci we have ω ◦Φa = h(a)ω where h is a nonvanishing regular function on
Ci, i.e. a constant. This implies ω ◦ Φg = ω ◦ Φe = ω which concludes the proof. ¤

For a Lie group G one can construct a left-invariant (resp. right-invariant) algebraic
volume form by spreading the volume element at identity by left (resp. right) multi-
plication (one of these forms can be transformed into the other by the automorphism
ϕ : G → G given by ϕ(g) = g−1). Proposition 6.4 yields now the following well-known
facts.

6.5. Corollary. For a semi-simple Lie group G its left-invariant volume form is auto-
matically also right-invariant.

6.6. Remark. Since up to a finite covering any reductive group G is a product of a
torus and a semi-simple group we see that the left-invariant volume form on this group
is also right-invariant.

6.7. Proposition. Let W be a linear algebraic group group, Y be its rationally con-
nected subgroup, and X = W/Y be the homogeneous space of left cosets. Then there
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exists an algebraic volume form ωX on X invariant under the action of W generated
by left multiplication.

Proof. Consider a left-invariant volume form ω on W and left-invariant vector fields
ν1, . . . , νm on the coset eY ' Y , where e is the identity of W , so that they generate
basis of the tangent space at any point of this coset. Extend these vector fields to W
using left multiplication. Since eY is a fiber of the natural projection p : W → X and
left multiplication preserves the fibers of p we see that the extended fields are tangent
to all fibers of p. Consider the left-invariant form ωX = ιν1 ◦ . . .◦ινm(ω) (where ινi

is the
inner product of vector fields and differential forms). By construction it can be viewed
as a non-vanishing form on vectors from the pull-back of the tangent bundle TX to
W . To see that it is actually a volume form on X we have to show that it is invariant
under right multiplication by any element y ∈ Y . Such multiplication generates an
automorphism of TW that sends vectors tangent (and, therefore, transversal) to fibers
of p to similar vectors. Hence it transforms ωX into fyωX where y → fy is an algebraic
homomorphism from Y into the group of non-vanishing regular functions of W . Since
the rationally connected group Y has no nontrivial algebraic homomorphisms into C∗
we have fy ≡ 1 which yields the desired conclusion.

¤
By Mostow’s theorem [17] a linear algebraic group W contains a Levi reductive

subgroup X such that as an affine algebraic variety W is isomorphic to X × Y where
Y is the unipotent radical of W . More precisely, each element w ∈ W can be uniquely
presented as w = g · r where g ∈ X and r ∈ Y . This presentation allows us to choose
this isomorphism W → X × Y uniquely.

6.8. Corollary. For the isomorphism W → X × Y as before the left invariant volume
form ω on W coincides with ωX × ωY where ωX is a left-invariant volume form on X
and ωY is an invariant form on Y .

Proof. Note that ω is invariant by left multiplications (in particular by elements of X)
and also by right multiplication by elements of Y (see, Lemma 6.4 (2)). This determines
ω uniquely up to a constant factor. Similarly, by construction ωX × ωY is invariant by
left multiplications by elements of X and by right multiplication by elements of Y .

¤

6.9. Example. Consider the group W of affine automorphisms z → az + b of the
complex line C with coordinate z. Then Y ' C+ is the group of translations z → z + b
and we can choose X ' C∗ so that its elements are automorphisms of form z → az.
One can check that the left-invariant volume ω on W coincides with da

a2 ∧ db while
ωX = da/a and ωY = db. The isomorphism W → X × Y we were talking about
presents az + b as a composition of az and z + b/a. Thus in this case Corollary 6.8
boils down to the equality

da

a2
∧ db =

da

a
∧ db

a
.
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This example admits natural extensions to groups of higher dimensional affine trans-
formations. For the sake of notation we consider such an extension only for the group
of 3× 3 invertible upper triangular matrices

W =




x1 y z
0 x2 w
0 0 x3




where x1, x2, x3 ∈ C∗, y, z, w ∈ C. Its Haar form is given by

dx1

x3
1

∧ dx2

x2
2

∧ dx1

x1

∧ dy ∧ dz ∧ dw.

Then Y ' C3 is the group of unipotent upper triangular matrices and X ' (C∗)3 is
the group of the invertible diagonal matrices. The isomorphism W → X × Y is given
by




x1 y z
0 x2 w
0 0 x3


 7→ (




x1 0 0
0 x2 0
0 0 x3


 ,




1 y
x1

z
x1

0 1 w
x2

0 0 1


)

In this case Corollary 6.8 yields the equality

dx1

x3
1

∧ dx2

x2
2

∧ dx3

x3

∧ dy ∧ dz ∧ dw = (
dx1

x1

∧ dx2

x2

∧ dx3

x3

) ∧ (
dy

x1

∧ dz

x1

∧ dw

x2

).

6.10. Proposition. Let W be a linear algebraic group group, Y be its rationally con-
nected subgroup, and X = W/Y be the homogeneous space of left cosets. Suppose that
ω is the left-invariant volume form on W , ωY the invariant volume form on Y and
ωX the volume form on the quotient constructed in Proposition 6.7. Then the natural
projection p : W → X is a volume fibration with respect to the volume forms ω, ωX ,
and ωY .

Proof. Choose locally nilpotent derivations σ′1, . . . , σ
′
k and semi-simple derivations σ′k+1,

. . . , σ′n on W generated by the left multiplication of W by elements of its C+ and C∗-
subgroups and such that they generate tangent space at each point of W . Since they
commute with morphism p they yield locally nilpotent and semi-simple derivations
σ1, . . . , σn on X with the same property. Take any point x ∈ X and suppose that
σl, . . . , σm generate the tangent space TxX (where l ≤ k ≤ m). Then we have the
dominant natural morphism ψ : G → X from the group G := Ck−l+1 × (C∗)m−k given
by the formula t̄ = (tl, . . . , tm) → htl ◦ · · · ◦ htm(x) where t̄ ∈ G and htj is the action
of the element tj from the C+ or C∗-group corresponding to the j-th factor in G. This
morphism is étale at the identical element o = (0, . . . , 0, 1, . . . , 1) of G and ψ(o) = x.
The restriction of ψ to an open Zariski dense subvariety Z of Cm−l+1 may be viewed
as an étale neighborhood of x ∈ X. Suppose that ωZ (resp. σ̃i) is the lift of the
form ωX (resp. vector field σi) to Z. By Proposition 6.7 ωZ is invariant under the
local phase flow generated by σ̃i. Set W ′ = W ×X Z. Then by construction, W ′ is
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naturally isomorphic to Z×Y and under this isomorphism each field σ′i corresponds to
the horizontal lift of σ̃i to Z×Y . Hence ωZ×ωY is invariant under the local phase flow
generated by this lift of σ̃i. It is also invariant under right multiplication by elements
of Y by Proposition 6.4 (2) and, therefore, determined uniquely by its value at one
point. But the form ω is also invariant under the local phase flow generated by σ′i and
under right multiplication by elements of Y again by Proposition 6.4 (2). Therefore,
the preimage of ω on W coincides with ωZ × ωY since one can choose ωY so that both
forms coincide at one point.

¤
We finish this section with the following useful observation.

6.11. Lemma. Let W be a reductive group and Y be its Levi semi-simple subgroup.
Then the base of the volume fibration p : W → X := W/Y possesses a family of
algebraic vector fields satisfying condition (D) and such that every element of this
family admits a p-compatible lift.

Proof. Let T be the connected component of the center of G. That is, T is a torus
(C∗)n and X ' T/(T ∩ Y ) is also a torus (C∗)n since the group T ∩ Y is finite. Let
us start with the case when T ∩ Y is trivial, i.e. X = T . Then W = X × Y and p
is the projection to the first factor. In particular, any “vertical” field δ′ ∈ AVF(W, p)
contains C[X] ⊂ C[W ] in its kernel. Every vector field σ ∈ LieωX

alg (X) has similarly
a lift σ′ ∈ Lieω

alg(W ) such that this lift contains C[Y ] in its kernel. In particular,
Span Ker σ′ ·Ker δ′ = C[W ]. Furthermore, any vertical field δ′ is of form

∑
j fjδj where

fj ∈ C[W ] and δj is the natural lift of vector field on Y to W . Since [σ′, δj] = 0 we
have [σ′, δ′] ∈ AVF(W, p) which shows that any family of vector fields on X satisfying
Condition (D) has the desired p-compatible lifts.

In the general case when T ∩ Y is not trivial we have a commutative diagram

T × Y
ϕ→ W

↓ q ↓ p

T
ψ→ X

where the horizontal arrows are unramified finite coverings. Let z1, . . . , zn be natural
coordinates on T ' (C∗)n and w1, . . . , wn be natural coordinates on X ' (C∗)n. Then
up to constant factors we have wj =

∏n
i=1 zkij . By Example 5.9 a family on X satisfying

Condition (D) consists of vector fields of form ν = fjwj∂/∂wj where fj is a function
on X independent of wj. Note that wj∂/∂wj =

∑n
i=1 kijzi∂/∂zi. Since zi∂/∂zi is

associated with multiplication by elements of a C∗-subgroup of T it may be viewed as
a field on X and we can find its lift to W . Thus the fields wj∂/∂wj and also ν have
lifts to W and we need to check that they are p-compatible.

Let σ′ be the lift of one of these fields and σ′′ be its preimage on T ×Y . Each vertical
vector field δ′ on W (i.e. it is from the kernel of p∗) generates a vertical vector field δ′′

on T ×Y (i.e. it is from the kernel of q∗). As we showed before [σ′′, δ′′] ∈ AVF(T ×Y, q)
and therefore [σ′, δ′] ∈ AVF(W, p). Furthermore, since Span Ker σ′′ ·Ker δ′′ = C[T ×Y ]
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we have still the equality Span Ker σ′ · Ker δ′ = C[W ] by virtue of Lemma 9.4. This
concludes the proof of p-compatibility and the Lemma.

¤

6.12. Remark. Convention 5.10 holds under the assumption of Lemma 6.11. This is
clear in the case of W isomorphic to the direct product of Y and a torus T = (C∗)k.
In the general case when W = (Y × T )/F (where F is a finite subgroup of the center
of Y × T ) one can note that up to factors the vector fields on Y , that will be used
in the construction in Section 8, are associated with multiplications by elements of
C∗ and C+-subgroups. Therefore, their natural extensions to Y × T commute with
multiplications by elements of F and can be pushed down to W .

7. Compatibility

7.1. Notation. Let G be a semi-simple Lie group, S0 and S be its SL2 or PSL2-
subgroups, and p : G → X := G/S0 be the natural projection into the set of left
cosets. Suppose that δ is a completely integrable algebraic vector field on S0 generated
by right multiplications. Then it generates δ′ ∈ Lieω

alg(G, p). Let H ' C+ be a subgroup
of S. Left multiplication by elements of H generate a locally nilpotent derivation σ′

on G. Note that [σ′, δ′] = 0 (i.e. we have an (S × S0)-action on G) and σ′ generates a
locally nilpotent derivation σ on X associated with the corresponding H-action on X.

We think of S0 being fixed and our aim is to find ”many” S such that σ′ is p-
compatible for S, i.e. the vector space generated by Ker σ′ ·Ker δ′ coincides with C[G].
From now on we use the (seemingly overloaded) notation of strictly semi-compatibility
for pairs of vector fields (for Definition see the Appendix) since it was introduced in
the work of Donzelli, Dvorsky and the first author [6] and we like to stick to this
earlier introduced notation. We apologize for any inconvenience to the reader.

7.2. Lemma. Suppose g0 ∈ G and S ∩ g0S0g
−1
0 = Γ. Then the isotropy group of the

point g0S0 ∈ X under the S-action is Γ. In particular, if the S-orbit of g0S0 is closed
then Γ is reductive by the Matsushima theorem.

Proof. The coset g0S0 is fixed under the action of s ∈ S if and only if sg0S0 ⊂ g0S0

which implies that g−1
0 sg0 ∈ S0 and we have the desired conclusion.

¤
In the proof of Proposition 7.3 we use slightly modified results from [12]. For the

reader’s convenience we discuss these results in the Appendix (Lemmas 9.4 and 9.5).

7.3. Proposition. Let Γg = S ∩ gS0g
−1 be finite for every g ∈ G. Then σ′ is p-

compatible.

Proof. Consider the quotient morphism r : G → Z := G//(S × S0). Since Γg is always
finite all orbits are equidimensional and, therefore, closed (indeed, for a reductive group
S × S0 the closure of a non-closed orbit must contain a closed orbit, automatically of
smaller dimension, which is impossible because all orbits are of the same dimension).
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By Luna’s slice theorem for every point z ∈ Z there exists a Zariski neighborhood
U ⊂ Z, a Γg-invariant slice V ⊂ G through a point of r−1(z) such that r|V : V → U
is a surjective quasi-finite morphism, and a surjective étale morphism W → r−1(U)
where W = V ×Γg (S × S0). In particular, we have a natural surjective quasi-finite
morphism W ′′ := V × (S×S0) → r−1(U). Clearly, the algebraic vector fields σ′′ and δ′′

on W ′′ induced by σ′ and δ′ are strictly semi-compatible, i.e. the span of Ker σ′′ ·Ker δ′′

coincides with C[W ′′]. Note also that for any C+ ' H < S the quotient G//H is
smooth and the quotient morphism G → G//H is a holomorphic C-fibration over its
image. By Lemmas 9.4 and 9.5 in Appendix the restrictions of σ′ and δ′ to r−1(U) are
also strictly semi-compatible. Thus there is a cover Z =

⋃
Ui such that each Ui is of

form Ui = Z \ g−1
i (0) with gi ∈ C[Z] and the restrictions of of σ′ and δ′ are strictly

semi-compatible on each Wi = r−1(Ui). For any function h ∈ C[Z] its restriction h|Wi

is contained in Ker σ′|Wi
∩ Ker δ′|Wi

. Since for any function ϕ ∈ C[Wi] there exists
m > 0 such that ϕgm

i ∈ C[G] and since gi ∈ Ker σ′ ∩ Ker δ′, for an appropriate m the
function hgm

i belongs to the span of Ker σ′ ·Ker δ′. Now the desired conclusion follows
from the standard application of the Nullstellensatz.

¤

7.4. Lemma. Let G, S0, X, and S be as in Lemma 7.2 and Γg = S ∩ gS0g
−1 where

g ∈ G. Suppose that Γg does not contain a torus C∗ for every g ∈ G. Then every Γg

is finite.

Proof. Assume that Γg0 is not finite for some g0 ∈ G. Then Γg0 cannot be reductive
(without a torus) and the S-orbit O of g0S0 ∈ X is not closed by the second statement of
Lemma 7.2. Furthermore, since any two-dimensional subgroup of SL2(C) contains C∗
we see that Γg0 is one-dimensional, i.e. O is two-dimensional. Since S is reductive the
closure of O must contain a closed orbit O1 of some point g1S0 ∈ X. Thus dim O1 ≤ 1
and dim Γg1 ≥ 2. But in this case as we mentioned Γg1 contains a torus which yields a
contradiction.

¤
In order to find S such that Γg = g−1S0g∩S does not contain a torus for every g ∈ G

we need to remind the notion of a principal SL2 or PSL2-subgroup of a semi-simple
group G (resp. principal sl2-subalgebra in the Lie algebra g of G) from [4]. Recall that
a semi-simple element h of g is called regular if the dimension of its centralizer is equal
to the rank of g (more precisely, this centralizer coincides with a Cartan subalgebra h
of g). An sl2 subalgebra s of g is called principal if it contains a regular semi-simple
element h such that every eigenvalue of its adjoint operator is an even integer. The
SL2 (or PSL2) subgroup generated by such subalgebra is also called principal. For
instance, in SLn up to conjugation every regular element is a diagonal matrix with
distinct eigenvalues and any principal SL2-subgroup acts irreducibly on the natural
n-space. Any two principal SL2-subgroups are conjugated in G and any SL2-subgroup
corresponding to a root is not principal (unless g = sl2) since its semi-simple elements
are not regular.
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7.5. Lemma. If S is a principal SL2 (resp. PSL2) subgroup of a semi-simple group G
and S0 be any subgroup of G that does not contain regular semi-simple elements. Then
Γg = g−1S0g ∩ S is finite for every g ∈ G.

Proof. Note that Γg cannot contain a torus since otherwise S0 contains a regular semi-
simple element. Lemma 7.4 implies now the desired conclusion.

¤

7.6. Proposition. Let G be a semi-simple Lie group different from SL2(C) or PSL2(C).
Suppose that S0, Z = G/S0, p : G → Z, and σ′ are is in Notation 7.1. Let S0 corre-
spond to a root in the Dynkin diagram. Then σ′ can be chosen that it is p-compatible
(for any S0 corresponding to a root in the Dynkin diagram!!). Furthermore, there are
enough of these p-compatible completely integrable algebraic vector fields σ′, so that the
Lie algebra L generated by them generates VFalg(Z) as a C[Z]-module.

Proof. Let an SL2 (or PSL2) subgroup S0 correspond to a root and S be a principal
SL2 (or PSL2) subgroup. By Proposition 7.3 and Lemma 7.5 σ′ is p-compatible and
we are left with the second statement. Suppose that X,Y,H is a standard triple in the
sl2-subalgebra s of S, i.e. [X, Y ] = H, [H, X] = 2X, [H, Y ] = −2Y 5. In particular,
the locally nilpotent vector fields generated by X and Y are of form σ′ and they are
p-compatible. Suppose that the centralizer of H is the Cartan subalgebra h associated
with the choice of a root system and X0, Y0, H0 is an sl2-triple corresponding to one
of the roots. Conjugate S by x0 = eεX0 where ε is a small parameter. Up to terms of
order 2 element H goes to H + ε[H, X0] after such conjugation, i.e. [H, X0] belongs
(up to second order) to the Lie algebra generated by X, Y , and the nilpotent elements
of the Lie algebra of principal SL2-subgroup x−1

0 Sx0. Since each X0 is an eigenvector
of the adjoint action of H we have [H,X0] = aX0. Furthermore, a 6= 0 since otherwise
X0 belongs to the centralizer h of the regular element H. Thus X0 and similarly Y0

are (up to second order) in the Lie algebra L generated by fields of form σ′. The same
is true for H0 = [X0, Y0]. Thus values of L at any point z ∈ Z generate the tangent
space TzZ which implies L generates VFalg(Z) as a C[Z]-module. ¤

8. Main Theorem

8.1. Notation. In this section G is a semi-simple Lie group except for the proof of
Theorem 2. By Si we denote an SL2 or PSL2-subgroup of G (for each index i ≥ 0)
and by pi : G → Xi = G/Si the natural projection. In the case of Si ' PSL2 we
assume additionally the validity of Convention 5.10 (which is true under the assumption
of Lemma 5.11). By abusing notation we treat C[Xi] as the subring p∗i (C[Xi]) in
C[G] . Note that Lemma 5.12 implies that C[G] ' F (G, pi) ⊕ C[Xi] and denote
by pri : C[G] → C[Xi] the natural projection. For any semi-simple complex Lie
group B denote by BR its maximal compact subgroup whose complexification coincides

5It is unfortunate, but we have to use the classical notation X, Y, H for a standard triple of an
sl2-algebra while in the rest of the text these symbols denote affine algebraic varieties and groups.
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with B (it is unique up to conjugation). Let Ki = SRi . Define a linear operator
avi : C[G] → C[G] by

avi(f) =

∫

Ki

f(wk) d µKi
(k)

for any function f ∈ C[G] where µKi
(k) is the bi-invariant normalized Haar measure

on Ki.

8.2. Lemma. In Notation 8.1 we have
(i) the right multiplication by an element k ∈ Ki generates a map Ψ : C[G] → C[G]

(given by f(w) → f(wk)) whose restriction to F (G, pi) is an isomorphism;
(ii) Ker avi = F (G, pi), i.e. avi = pri and f − avi(f) ∈ F (G, pi) for every f ∈ C[G].

Proof. The right multiplication transforms every fiber Y := p−1
i (x) into itself and each

completely integrable algebraic vector field on it into a similar field. Hence for every
f ∈ F (G, pi) we have Ψ(f)|p−1

i (x) ∈ FY . Now (i) follows from Lemma 5.12. Thus

operator avi respects the direct sum C[G] ' F (G, pi) ⊕ C[Xi] and sends C[G] onto
C[Xi] so that its restriction to C[Xi] is identical map. This implies (ii).

¤

8.3. Lemma. Let S0 and K0 be as before and let L = GR contain K0. Consider the
natural inner product on C[G] given by

h1 · h2 =

∫

l∈L

h1(l)h̄2(l)dµL(l)

where µL is the bi-invariant measure on L. Then C[X0] is the orthogonal complement
of F (G, p0).

Proof. Consider h1 ∈ C[G] and h2 ∈ C[X0]. Show that av0(h1) · h2 = h1 · h2. We have

I := av0(h1) · h2 =

∫

L

∫

K0

h1(lk0)h̄2(l)dµK0(k0)dµL(l).

By Fubini’s theorem

I =

∫

K0

∫

L

h1(lk0)h̄2(l)dµL(l)dµK0(k0).

Set l′ = lk0. Then h1(lk0) = h1(l
′) and h2(l) = h2(l

′k−1
0 ) = h2(l

′) since h2 is right
K0-invariant. Using the fact that measures are invariant we see that I coincides with∫

K0

∫

L

h1(l
′)h̄2(l

′)dµL(l′)dµK0(k0) =

∫

L

h1(l
′)h̄2(l

′)dµL(l′)

where the last equality holds since measure µK0 is normalized. Thus av(h1) · h2 =
h1 · h2. Now the desired conclusion follows from Lemma 8.2 and the fact that C[G] '
F (G, p0)⊕ C[X0]. ¤
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8.4. Corollary. Let S0, . . . , Sm be as in Notation 8.1 with each Ki = SRi ⊂ L. Set
F =

∑m
i=0 F (G, pi). Then the orthogonal complement of F in C[G] coincides with

the subspace V of functions that are invariant with respect to any Si-action generated
by the right multiplication. In particular, if this set S0, . . . , Sm contains all SL2 or
PSL2-subgroups corresponding to simple positive roots for the Lie algebra of G then
this orthogonal complement V consists of constants only and C[G] ' F ⊕ C.

Proof. Indeed, treating C[Xi] as p∗i (C[Xi]) we see that by Lemma 8.3 the orthogonal
complement of F in C[G] is V =

⋂m
i=0C[Xi] which is exactly the space of functions

invariant under each Si-action. For the second statement note that if the sequence
{Si} of subgroups generate the whole group G then these invariant functions must be
constants. ¤

8.5. Lemma. Let {Si}m
i=0, F , and V be as in Corollary 8.4 and f0 ∈ C[G]\F . Consider

the smallest subspace U ⊂ C[G] that contains f0 and such that for every i and every
f ∈ U function avi(f) is also in U . Then

(1) U is of some finite dimension N ;
(2) dim U ∩ F = N − 1 and dim U ∩ V = 1.

Proof. Consider a closed embedding ρ : G ↪→ Cn such that the induced action of G on
Cn is linear. This yields a filtration on C[G] defined by minimal degrees of polynomial
extensions of regular functions on G to Cn. Let Wk be the subspace of C[G] that
consists of functions of degree at most k and Φl : C[G] → C[G] be the automorphism
given by f(w) → f(wl) for l ∈ L. Since the G-action on Cn is linear each automorphism
Φl sends Wk into itself. Hence the definition of avi implies that avi(Wk) ⊂ Wk. Thus
U ⊂ Wk as soon as f0 ∈ Wk which yields (1).

Denote the orthogonal projection onto V by pr : C[G] → V and let f ′0 = pr(f0).
Since f0 /∈ F we have f ′0 6= 0. Let P be the hyperplane in C[G] that consists of vectors
of form f ′0 + P0 where P0 is the hyperspace orthogonal to f ′0. In particular P contains
f0. Since f ′0 ∈ C[Xi] for every i we see that P is orthogonal to each C[Xi]. Recall that
the operator avi = pri is just the orthogonal projection to C[Xi], i.e. P is invariant
with respect to these operators. In particular, if we set fJ = avj1 ◦ · · · ◦ avjs(f0) for a
multi-index J = (j1, . . . , js) with jt ∈ {0, . . . , m} then fJ ∈ P ∩ U .

We want to show that for some sequence of such multi-indices fJ is convergent to
a nonzero element of V or, equivalently, f ′J is convergent to an element of V ∩ P0

for f ′J = fJ − f ′0. Consider the subspace U ′ generated by vectors of form f ′J . Let
U ′

i = U ′ ∩ C[Xi] and I = (J, i), i.e. f ′I = avi(f
′
J). By construction the operator

pri |U ′ = avi |U ′ is just the orthogonal projection to U ′
i . Hence if f ′J /∈ U ′

i we have
||f ′I || < ||f ′J ||. Since U ′ is finite-dimensional this implies that one can choose {fJ}
convergent to an element v ∈ U ′ and we can suppose that v has the smallest possible
norm. Then pr(v) = v because of the last inequality. On the other hand pr(f ′J) =
pr(fJ) − pr(f ′0) = pr ◦ avj1 ◦ · · · ◦ avjs ◦(f0) − pr(f0) = f ′0 − f ′0 = 0. Thus v = 0. This
shows f ′0 ∈ V ∩ U and therefore dim U ∩ V ≥ 1.
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On the other hand U contains a subspace U0 generated by vectors of form f0 − fJ .
One can see that U0 is of codimension 1 in U . Furthermore, f0−fI = (f0−fJ)+(fJ−fI).
Note that fJ −fI = fJ −avi(fJ) ∈ F (G, pi) ⊂ F by Lemma 8.2. Thus, using induction
by the length of the multi-index J one can show that f0−fJ ∈ F . That is, dim U∩F ≥
N − 1 which concludes the proof.

¤

8.6. Proposition. Any semi-simple group G has the algebraic volume density with
respect to the invariant volume.

Proof. Choose S0, . . . , Sm as in Corollary 8.4 and such that they correspond to simple
nodes in the Dynkin diagram (it is possible since every semi-simple group G has a
compact real form, i.e. we can suppose that SRi = Ki ⊂ L = GR). Consider the
natural projections pi : G → Xi := G/Si to the sets of left cosets. Choose pi-compatible
completely integrable algebraic vector fields σ′ as in Proposition 7.6 and denote their
collection by Θ. That is, vector fields from Θ are of zero divergence, they commute
with any δ ∈ VFω

alg(G, pi), and they are independent from index i. Furthermore, these
fields from Θ can be viewed also as zero divergence vector fields on Xi that generate
VFalg(Xi) as a C[Xi]-module.

Let us fix an index i. Any algebraic vector field on G is of form

ν =
∑

θ∈Θ

hθθ + δ

where the sum contains only finite number of nonzero terms, hθ ∈ C[G] and δ ∈
VFalg(G, pi). Since SL2(C) and PSL2(C) have property (C) from 5.1, C[G] = F (G, pi)⊕
C[Xi] by Lemma 5.12. Thus by virtue of Proposition 5.16 adding fields from Lieω

alg(G)
to ν we get a field

νi =
∑

θ∈Θ

hi
θθ + δi

where δi ∈ VFω
alg(G, pi), hi

θ = avi(hθ), and avi = pri is as Notation 8.1. That is,

hi
θ ∈ C[Xi]. Suppose that divω ν = 0 and, therefore, divω(νi) = 0. Note that

divω(
∑

θ∈Θ

hi
θθ) =

∑

θ∈Θ

θ(hi
θ) ∈ C[Xi]

while divω δi ∈ F (G, pi). Hence divω(
∑

θ∈Θ hi
θθ) = divω(δi) = 0. Since SL2(C) and

PSL2(C) have the algebraic volume density property, δi ∈ Lieω
alg(G, p) by Corollary

5.14. Thus ν − ν̃i ∈ Lieω
alg(G) where

ν̃i =
∑

θ∈Θ

hi
θθ.

In particular it suffices to show that ν̃i ∈ Lieω
alg(G) and, therefore, we can suppose that

δ = 0 in the original formula for ν. Repeating this procedure we see that ν − ν̃J ∈
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Lieω
alg(G) where

ν̃J =
∑

θ∈Θ

hJ
θ θ

for a multi-index J = (j1, . . . , js) with jt ∈ {0, . . . , m} and hJ
θ = avj1 ◦ · · · ◦ avjs(hθ).

By Corollary 8.4 and Lemma 8.5 the vector space generated by hθ and functions of
form hJ

θ is also generated by constants and functions of form hθ − hJ
θ . Thus adding to

ν =
∑

θ∈Θ hθθ vector fields of form ν − ν̃J
θ and cθ (where c ∈ C) we can reduce the

number of nonzero terms in this sum. Hence ν ∈ Lieω
alg(G) which implies the desired

conclusion.
¤

8.7. Proof of Theorem 2. Let us start with the case when G is reductive. Suppose
that Y is its Levi semi-simple subgroup. Then by Proposition 6.11 p : G → X := G/Y
is a volume fibration whose base possesses a family of algebraic vector fields with
property (C) admitting p-compatible lifts. Furthermore, the base (which is a torus)
and the fiber of this fibration have algebraic volume density property by Proposition
8.6. Thus G has the algebraic volume density property by Theorem 4.

Now consider an arbitrary linear algebraic group G and let Y be its unipotent ideal
and X be a Levi reductive subgroup of G. By Corollary 6.8 the Mostow isomorphism
G → X × Y makes the left invariant volume ω on G equal to ωX × ωY where ωX

is left invariant on X and ωY is invariant on Y . Now by Proposition 4.3 G has the
algebraic volume density property with respect to ω which concludes the proof of our
Main Theorem.

8.8. Remark. Theorem 2 remains, of course, valid if instead of the left invariant
volume form we consider the right invariant one, because the affine automorphism
G → G, g → g−1 transforms the left invariant volume form into the right one while
preserving the complete integrability of the algebraic vector fields.

9. Appendix: Strictly semi-compatible fields

9.1. Notation. In this section Hi is isomorphic to C+ for i = 1, 2. We suppose also
that X is a normal affine algebraic variety equipped with nontrivial algebraic Hi-actions
(in particular, each Hi generates an algebraic vector field δi on X). The categorical
quotients will be denoted Xi = X//Hi and the quotient morphisms by ρi : X → Xi.

9.2. Definition. A pair (δ1, δ2) of algebraic vector fields (as in Notation 9.1) is called
strictly semi-compatible if the span of Ker δ1 ·Ker δ2 coincides with C[X].

We shall need the following obvious geometric reformulation of Definition.

9.3. Proposition. Let δ1 and δ2 be as in Notation 9.1. Set ρ = (ρ1, ρ2) : X →
Y := X1 × X2 and Z equal to the closure of ρ(X) in Y . Then δ1 and δ2 are strictly
semi-compatible if and only if ρ : X → Z is an isomorphism.
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9.4. Lemma. Let X, Hi, Xi, δi, and ρi be as in Notation 9.1 with δ1 and δ2 being
strictly semi-compatible and [δ1, δ2] = 0. Set Γ = H1 ×H2. Let X ′ be a normal affine
algebraic variety equipped with a non-degenerate Γ-action and p : X → X ′ be a finite
Γ-equivariant morphism (for each i = 1, 2), i.e. we have commutative diagrams

X
ρi→ Xi

↓ p ↓ qi

X ′ ρ′i→ X ′
i

where ρ′i : X ′ → X ′
i = X ′//Hi is the quotient morphism of the Hi-action on X ′.

Suppose also that ρ′1 makes X ′ an étale locally trivial C-fibration over ρ′1(X
′), and

X1, X2 are affine6. Then Span(C[X ′
1] · C[X ′

2]) = C[X ′].

Proof. Since p is finite, every f ∈ C[Xi] ⊂ C[X] is a root of a minimal monic polynomial
with coefficients in C[X ′] that are constant on Hi-orbits (since otherwise f is not
constant on these orbits). By the universal property these coefficients are regular on
X ′

i, i.e. f is integral over C[X ′
i] and qi is finite. Consider the commutative diagram

X
ρ→ X1 ×X2

↓ p ↓ q

X ′ ρ′→ X ′
1 ×X ′

2

where ρ = (ρ1, ρ2), ρ′ = (ρ′1, ρ
′
2), and q = (q1, q2). Let Z (resp. Z ′) be the closure of

ρ(X) in X1 × X2 (resp. ρ′(X ′) in X ′
1 × X ′

2). By Proposition 9.3 ρ : X → Z is an
isomorphism and, therefore, by Lemma 3.6 in [12] ρ′ : X ′ → Z ′ is birational finite.
Since the statement of this Lemma is equivalent to the fact that ρ′ is an isomorphism,
it suffices to prove ρ′ is a holomorphic embedding.

Consider an orbit O ⊂ X of H1 and set O′ = p(O), O′
2 = ρ′2(O

′). Each of these
orbits is isomorphic to C+ and, therefore, the H1-equivariant finite morphisms p|O :
O → O′ and ρ′2|O′ : O′ → O′

2 must be isomorphisms. Thus one has a regular function
on X ′

2 whose restriction yields a coordinate on O′ ' O′
2 ⊂ X ′

2. Since locally X ′ is
biholomorphic to U × O′ where U is an open subset of ρ′1(X

′) ⊂ X ′
1 we see that

ρ′ : X ′ → X ′
1 × X ′

2 is a local holomorphic embedding, i.e. it remains to show that ρ′

is injective. For any x ∈ X set x′ = p(x), and x′i = ρ′i(x
′). Assume that x and y ∈ X

are such that (x′1, x
′
2) = (y′1, y

′
2). Arguing as in Lemma 3.67 in [12] we can suppose

that x and y belong to the same fiber of ρ1 that is, by assumption, an H1-orbit O.
Since ρ′2|O′ : O′ → O′

2 is an isomorphism we have x′ = y′ which implies the desired
conclusion.

¤
6In all cases we apply this Lemma the C+-action generated by Hi extends to an algebraic SL2(C)-

action and, therefore, Xi is affine automatically by the Hadziev theorem [11].
7It is shown in that Lemma that ρj(p−1(x′)) = q−1

j (x′j) for a general point x ∈ X and to adjust
the argument to the present situation one needs it to be true for every point in X, but this follows,
of course, from continuity and finiteness of qj .



ALGEBRAIC VOLUME DENSITY PROPERTY OF AFFINE ALGEBRAIC MANIFOLDS 35

9.5. Lemma. Let the assumption of Lemma 9.4 hold with one exception: instead of the
finiteness of p we suppose that there are a surjective quasi-finite morphism r : S → S ′

of normal affine algebraic varieties equipped with trivial Γ-actions and a surjective Γ-
equivariant morphism %′ : X ′ → S ′ such that X is isomorphic to fibred product X ′×S′S
with p : X → X ′ being the natural projection (i.e. p is surjective quasi-finite). Then
the conclusion of Lemma 9.4 remains valid.

Proof. By construction, Xi = X ′
i ×S′ S. Thus we have the following commutative

diagram

X
ρ→ (X ′

1 ×X ′
2)×(S′×S′) (S × S)

(τ,τ)→ S × S
↓ p ↓ q ↓ (r, r)

X ′ ρ′→ X ′
1 ×X ′

2

(τ ′,τ ′)→ S ′ × S ′.
Set Z (resp. Z ′) equal to the closure of ρ(X) in X1 × X2 (resp. ρ′(X ′) in X ′

1 × X ′
2)

and let D ' S (resp. D′ ' S ′) be the diagonal subset in S × S (resp. S ′ × S ′). Since
X = X ′ ×S′ S we see that Z = Z ′ ×D′ D.

Assume that ρ′(x′) = ρ′(y′) =: z′ for some x′, y′ ∈ X ′. Then by the commutativity
of the diagram we have also %′(x′) = %′(y′) =: s′. Since r is surjective r(s) = s′ for
some s ∈ S. Thus the elements (x′, s) and (y′, s) of X ′ ×S′ S go to the same element
(z′, s′) of Z ′ ×D′ D under morphism ρ. By Lemma 9.3 ρ : X → Z is an isomorphism
and therefore x′ = y′. Hence ρ′ : X ′ → Z ′ is bijective8. It was shown in the proof of
Lemma 9.4 that ρ′ is locally biholomorphic, i.e. it is an isomorphism which implies the
desired conclusion.

¤
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