ON A THEOREM OF AX

SHULIM KALIMAN¹

Department of Mathematics, University of Miami Coral Gables, Florida 33124, USA

In 1969 J. Ax proved a remarkable theorem [A] which implies that every injective endomorphism of an algebraic variety X (over an algebraically closed field k of characteristics 0) is surjective. A. Borel [B] gave another proof of this result based on a cohomology-theoretic argument. A similar approach was used by Kawamata who rediscovered this theorem later [I]. M. Miyanishi [OP] asked whether the following generalization of this result is true.

Conjecture. Let $\varphi : X \to X$ an endomorphism of an algebraic variety X over k, and let E be a closed subvariety of X of codimension at least 2. Suppose that the restriction of φ to $X \setminus E$ is injective. Then φ is an automorphism.

Unlike the Ax theorem this conjecture cannot be extended to schemes.

Example. Let X be the union of two samples of \mathbf{C}^n glued along $\mathbf{C}^n \setminus o$ where o is the origin, i.e. the preimage E of o under the natural projection $X \to \mathbf{C}^n$ consists of two points x_1 and x_2 . Consider the endomorphism $\varphi : X \to X$ which is identical on $X \setminus E$ and sends E to x_1 . This is the desired counterexample.

Nevertheless, following the idea of Borel and Kawamata, we shall show that the answer is positive in the case of affine and complete algebraic varieties.

Lemma 1. Let $\varphi : X \to X$ be a bijective endomorphism of an algebraic variety over a field k of characteristics zero. Then φ is an automorphism.

Proof. Consider a normalization $\nu : Y \to X$ of X. Then φ generates a bijective endomorphism $\psi : Y \to Y$. Since k is of zero characteristics this means that ψ is birational and, therefore, an automorphism by the Zariski Main theorem. Let \mathcal{R} and \mathcal{S} be the structure sheaves on Y and X respectively. Treat \mathcal{S} as a subsheaf of \mathcal{R} (by identifying \mathcal{S} with $\nu^*(\mathcal{S})$). Put $\mathcal{S}_1 = (\psi^*)^{-1}(\mathcal{S})$ and $\mathcal{S}_i = (\psi^*)^{-1}(\mathcal{S}_{i-1})$. Assume

¹The author was partially supported by the NSA grant MDA904-03-1-0009.

that $S_1 \neq S$. Then $S_i \neq S_{i-1}$ since ψ^* is bijective, i.e. we get a sequence of strict inclusions $S \subset S_1 \subset S_2 \subset \ldots$ On the other hand choose a finite affine open covering $\{X_j\}$ of X. Then $\{Y_j\}$ is an open affine covering of Y where $Y_j = \nu^{-1}(X_i)$. The restriction $\mathcal{R}|_{Y_j}$ (resp. $S|_{Y_j}, S_i|_{Y_j}$) is generated by its global sections which form an affine domain R^j (resp. S^j, S_i^j). Note that R^j is a finitely generated module over S^j and each S_i^j is an S^j -submodule of R^j . Hence the ascending chain condition implies that sequence $S|_{Y_j} \subset S_1|_{Y_j} \subset S_2|_{Y_j} \subset \ldots$ must be stationary. As our covering is finite, sequence $S \subset S_1 \subset S_2 \subset \ldots$ must be also stationary which is a contradiction. Thus $S_1 = S$. Since $\varphi^* = \psi^*|_S$ we see that φ^* is an automorphism. \Box

Lemma 2. The Conjecture is true provided it is true for normal algebraic varieties.

Proof. Consider a normalization $\nu: Y \to X$ of X. Then $\varphi: X \to X$ generates an endomorphism $\psi: Y \to Y$. By the hypothesis ψ is surjective. Let $\ell(x)$ be the number of points of $\nu^{-1}(x)$ for $x \in X$, $n = \max_{x \in X} \ell(x)$, and X_n be the subvariety of X that consists of all points x such that $\ell(x) = n$. As $\psi(\nu^{-1}(x)) \subset \nu^{-1}(\varphi(x))$ for every $x \in X$ and ψ is bijective, $\ell(\varphi(x)) \ge \ell(x)$. Hence $\varphi(x) \in X_n$ for every $x \in X_n$, and by the same reason there is no $x_1 \neq x$ such that $\varphi(x_1) = \varphi(x)$. That is, $\varphi|_{X_n}: X_n \to X_n$ is injective and, therefore, surjective by the Ax theorem. Thus $\varphi(X \setminus X_n) \subset X \setminus X_n$. Replacing X by $X \setminus X_n$ we see that $\varphi(X_{n-1}) \subset X_{n-1}$ and $\varphi|_{X_{n-1}}: X_{n-1} \to X_{n-1}$ is injective. Induction implies that $\varphi: X \to X$ is injective; hence it is an automorphism by the Ax theorem and Lemma 1. \Box

Lemma 3. Let *E* be a closed subvariety of *X* of codimension at least 2, and $\varphi: X \setminus E \to X$ be an injective morphism. Let $F = X \setminus \varphi(X \setminus E)$. Then dim $E = \dim F$.

Proof. Assume the contrary. Let, say $m = \dim E < \dim F = n$ (the case of $\dim E > \dim F$ is similar). Without loss of generality we can suppose that X is normal. Then by the Zariski Main theorem, φ is an embedding. Hence $\varphi(X \setminus E)$ is open in X and F is closed. Let $F_1 = F \cup \varphi(F \setminus E)$. Note that F_1 is closed and it contains more irreducible components of dimension n than F does. Let $E_1 = E \cup \varphi^{-1}(E)$. Note that E_1 is closed, $\dim E_1 = m$, and φ^2 generates an isomorphism between $X \setminus E_1$ and $X \setminus F_1$. Replacing E (resp. F, φ) by E_1 (resp. F_1, φ^2) we increase the number of irreducible components of F of dimension n; hence we can make it as large as we wish while keeping the dimension of E the same.

Following the proof of Kawamata we shall use De Rham homology from [H]. For every *l*-dimensional variety Y we have $H_i(Y) = 0$ for i > 2l, and $H_i(Y)$ is a finitedimensional k-vector space which is nonzero for i = 2l. Hence the Mayer-Viertoris sequence implies that the dimension of $H_{2l}(Y)$ is at least the number of irreducible components of Y. Furthermore, we have the following exact sequences [H, Th. 1.2].

$$\dots \to H_i(E) \to H_i(X) \to H_i(X \setminus E) \to H_{i-1}(E) \to \dots,$$
$$\dots \to H_i(F) \to H_i(X) \to H_i(X \setminus F) \to H_{i-1}(F) \to \dots.$$

As $m < n < j = \dim X$ we get from the first sequence $H_i(X) \simeq H_i(X \setminus E)$ for $2j \ge i \ge 2m + 2$. As $X \setminus E$ is isomorphic to $X \setminus F$ we have $H_i(X) \simeq H_i(X \setminus F)$ for $2j \ge i \ge 2m + 2$. Hence from the second sequence we have

$$0 \to H_{2n+1}(X) \to H_{2n+1}(X) \to H_{2n}(F) \to H_{2n}(X) \to \dots$$

That is, we have a monomorphism $H_{2n}(F) \to H_{2n}(X)$. As we mentioned the dimension of the last k-vector space is bounded while we can make the dimension of $H_{2n}(F)$ as large as we wish by increasing the number of components of F. This is the desired contradiction. \Box

Theorem. The Miyanishi Conjecture is true for affine and complete varieties.

Proof. Let us suppose first that X is affine. By Lemma 2 we can also suppose that X is normal. Note that F does not contain irreducible components of codimension at least 2 since φ^{-1} can be extended to these components by the theorem about deleting singularities of regular functions on normal varieties. Lemma 3 implies that F and E must be empty.

When X is complete then $F = \varphi(E)$ as $\varphi(X) = X$. Since we can assume normality, dim $F < \dim E$ by the Zariski Main theorem whence F and E are empty by Lemma 3. Now Lemma 1 implies the desired conclusion. \Box

Remark. Lemmas above remain true for an integral scheme X of finite type over k (in the case of algebraic varieties Lemma 3 can be also extracted from the "conservation property" proven in [G] by metamathematical argument). The reason why the Miyanishi conjecture is not valid for such (non-separated) schemes is that the image $\varphi(X)$ may not be closed in X as in the counterexample in the beginning of the paper. However, if we require additionally in the Miyanishi conjecture that morphism φ is closed than the conjecture holds for complete schemes of finite type and the proof remains valid without any change.

REFERENCES

[A] J. Ax, Injective endomorphisms of varieties and schemes, Pacific J. Math., **31** (1969), 1–7.

[B] A. Borel, Injective endomorphisms of algebraic varieties, Arch. Math. 20 (1969), 531–537.

[G] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. 1:2 (1999), 109–197.

[H] R. Hartshorne, Algebraic De Rham cohomology, Manuscripta Math. 7(1972), 125–140.

 [I] S. Iitaka On logarithmic Kodaira dimension for algebraic varieties, In: Complex Analysis and Algebraic Geometry, 175–189, Kinokuniya, Tokyo, 1978.

[OP] *Open Problems*, Workshop on Group Actions on Rational Varieties, edited by G. Freudenburg and P. Russell, CICMA Report 2002-04 (to appear).