
Chapter 5

Linear Algebra

The exalted position held by linear algebra is based upon the subject’s ubiquitous
utility and ease of application. The basic theory is developed here in full generality,
i.e., modules are defined over an arbitrary ring R and not just over a field. The
elementary facts about cosets, quotients, and homomorphisms follow the same pat-
tern as in the chapters on groups and rings. We give a simple proof that if R is a
commutative ring and f : Rn → Rn is a surjective R-module homomorphism, then
f is an isomorphism. This shows that finitely generated free R-modules have a well
defined dimension, and simplifies some of the development of linear algebra. It is in
this chapter that the concepts about functions, solutions of equations, matrices, and
generating sets come together in one unified theory.

After the general theory, we restrict our attention to vector spaces, i.e., modules
over a field. The key theorem is that any vector space V has a free basis, and thus
if V is finitely generated, it has a well defined dimension, and incredible as it may
seem, this single integer determines V up to isomorphism. Also any endomorphism
f : V → V may be represented by a matrix, and any change of basis corresponds to
conjugation of that matrix. One of the goals in linear algebra is to select a basis so
that the matrix representing f has a simple form. For example, if f is not injective,
then f may be represented by a matrix whose first column is zero. As another
example, if f is nilpotent, then f may be represented by a strictly upper triangular
matrix. The theorem on Jordan canonical form is not proved in this chapter, and
should not be considered part of this chapter. It is stated here in full generality only
for reference and completeness. The proof is given in the Appendix. This chapter
concludes with the study of real inner product spaces, and with the beautiful theory
relating orthogonal matrices and symmetric matrices.
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Definition Suppose R is a ring and M is an additive abelian group. The state-
ment that M is a right R-module means there is a scalar multiplication

M × R → M satisfying (a1 + a2)r = a1r + a2r
(m, r) → mr a(r1 + r2) = ar1 + ar2

a(r1 · r2) = (ar1)r2

a1
¯

= a

for all a, a1, a2 ∈ M and r, r1, r2 ∈ R.

The statement that M is a left R-module means there is a scalar multiplication

R × M → M satisfying r(a1 + a2) = ra1 + ra2

(r, m) → rm (r1 + r2)a = r1a + r2a
(r1 · r2)a = r1(r2a)

1
¯
a = a

Note that the plus sign is used ambiguously, as addition in M and as addition in R.

Notation The fact that M is a right (left) R-module will be denoted by M = MR

(M = RM). If R is commutative and M = MR then left scalar multiplication defined
by ra = ar makes M into a left R-module. Thus for commutative rings, we may write
the scalars on either side. In this text we stick to right R-modules.

Convention Unless otherwise stated, it is assumed that R is a ring and the word
“R-module” (or sometimes just “module”) means “right R-module”.

Theorem Suppose M is an R-module.

1) If r ∈ R, then f : M → M defined by f(a) = ar is a homomorphism of
additive groups. In particular (0

¯M)r = 0
¯M .

2) If a ∈ M , a0
¯R = 0

¯M .

3) If a ∈ M and r ∈ R, then (−a)r = −(ar) = a(−r).

Proof This is a good exercise in using the axioms for an R-module.
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Submodules If M is an R-module, the statement that a subset N ⊂ M is a
submodule means it is a subgroup which is closed under scalar multiplication, i.e., if
a ∈ N and r ∈ R, then ar ∈ N. In this case N will be an R-module because the
axioms will automatically be satisfied. Note that 0

¯
and M are submodules, called the

improper submodules of M .

Theorem Suppose M is an R-module, T is an index set, and for each t ∈ T ,
Nt is a submodule of M .

1)
⋂

t∈T

Nt is a submodule of M .

2) If {Nt} is a monotonic collection,
⋃

t∈T

Nt is a submodule.

3) +t∈T Nt = {all finite sums a1 + · · +am: each ai belongs
to some Nt} is a submodule. If T = {1, 2, .., n},
then this submodule may be written as
N1 + N2 + · · +Nn = {a1 + a2 + · · +an : each ai ∈ Ni}.

Proof We know from page 22 that versions of 1) and 2) hold for subgroups, and
in particular for subgroups of additive abelian groups. To finish the proofs it is only
necessary to check scalar multiplication, which is immediate. Also the proof of 3) is
immediate. Note that if N1 and N2 are submodules of M , N1 + N2 is the smallest
submodule of M containing N1 ∪ N2.

Exercise Suppose T is a non-void set, N is an R-module, and NT is the collection
of all functions f : T → N with addition defined by (f +g)(t) = f(t)+g(t), and scalar
multiplication defined by (fr)(t) = f(t)r. Show NT is an R-module. (We know from
the last exercise in Chapter 2 that NT is a group, and so it is only necessary to check
scalar multiplication.) This simple fact is quite useful in linear algebra. For example,
in 5) of the theorem below, it is stated that HomR(M, N) forms an abelian group.
So it is only necessary to show that HomR(M, N) is a subgroup of NM . Also in 8) it
is only necessary to show that HomR(M, N) is a submodule of NM .

Homomorphisms

Suppose M and N are R-modules. A function f : M → N is a homomorphism

(i.e., an R-module homomorphism) provided it is a group homomorphism and if
a ∈ M and r ∈ R, f(ar) = f(a)r. On the left, scalar multiplication is in M and on
the right it is in N . The basic facts about homomorphisms are listed below. Much
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of this work has already been done in the chapter on groups (see page 28).

Theorem

1) The zero map M → N is a homomorphism.

2) The identity map I : M → M is a homomorphism.

3) The composition of homomorphisms is a homomorphism.

4) The sum of homomorphisms is a homomorphism. If f, g : M → N are
homomorphisms, define (f + g) : M → N by (f + g)(a) = f(a) + g(a).
Then f + g is a homomorphism. Also (−f) defined by (−f)(a) = −f(a)
is a homomorphism. If h : N → P is a homomorphism,
h ◦ (f + g) = (h ◦ f) + (h ◦ g). If k : P → M is a homomorphism,
(f + g ) ◦ k = (f ◦ k) + (g ◦ k).

5) HomR(M, N) = Hom(MR, NR), the set of all homomorphisms from M
to N , forms an abelian group under addition. HomR(M, M), with
multiplication defined to be composition, is a ring.

6) If a bijection f : M → N is a homomorphism, then f−1 : N → M is also
a homomorphism. In this case f and f−1 are called isomorphisms. A
homomorphism f : M → M is called an endomorphism. An isomorphism
f : M → M is called an automorphism. The units of the endomorphism
ring HomR(M, M) are the automorphisms. Thus the automorphisms on
M form a group under composition. We will see later that if M = Rn,
HomR(Rn, Rn) is just the matrix ring Rn and the automorphisms
are merely the invertible matrices.

7) If R is commutative and r ∈ R, then g : M → M defined by g(a) = ar
is a homomorphism. Furthermore, if f : M → N is a homomorphism,
fr defined by (fr)(a) = f(ar) = f(a)r is a homomorphism.

8) If R is commutative, HomR(M, N) is an R-module.

9) Suppose f : M → N is a homomorphism, G ⊂ M is a submodule,
and H ⊂ N is a submodule. Then f(G) is a submodule of N
and f−1(H) is a submodule of M. In particular, image(f) is a
submodule of N and ker(f) = f−1(0

¯
) is a submodule of M .

Proof This is just a series of observations.
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Abelian groups are Z-modules On page 21, it is shown that any additive
group M admits a scalar multiplication by integers, and if M is abelian, the properties
are satisfied to make M a Z-module. Note that this is the only way M can be a Z-
module, because a1 = a, a2 = a + a, etc. Furthermore, if f : M → N is a group
homomorphism of abelian groups, then f is also a Z-module homomorphism.

Summary Additive abelian groups are “the same things” as Z-modules. While
group theory in general is quite separate from linear algebra, the study of additive
abelian groups is a special case of the study of R-modules.

Exercise R-modules are also Z-modules and R-module homomorphisms are also
Z-module homomorphisms. If M and N are Q-modules and f : M → N is a
Z-module homomorphism, must it also be a Q-module homomorphism?

Homomorphisms on Rn

Rn as an R-module On page 54 it was shown that the additive abelian
group Rm,n admits a scalar multiplication by elements in R. The properties listed
there were exactly those needed to make Rm,n an R-module. Of particular importance
is the case Rn = R ⊕ · · ⊕R = Rn,1 (see page 53). We begin with the case n = 1.

R as a right R-module Let M = R and define scalar multiplication on the right
by ar = a · r. That is, scalar multiplication is just ring multiplication. This makes
R a right R-module denoted by RR (or just R). This is the same as the definition
before for Rn when n = 1.

Theorem Suppose R is a ring and N is a subset of R. Then N is a submodule
of RR (RR) iff N is a right (left) ideal of R.

Proof The definitions are the same except expressed in different language.

Theorem Suppose M = MR and f, g : R → M are homomorphisms with f(1
¯
) =

g(1
¯
). Then f = g. Furthermore, if m ∈ M , ∃! homomorphism h : R → M with

h(1
¯
) = m. In other words, HomR(R, M) ≈ M .

Proof Suppose f(1
¯
) = g(1

¯
). Then f(r) = f(1

¯
· r) = f(1

¯
)r = g(1

¯
)r = g(1

¯
· r) =

g(r). Given m ∈ M , h : R → M defined by h(r) = mr is a homomorphism. Thus
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evaluation at 1
¯

gives a bijection from HomR(R, M) to M , and this bijection is clearly
a group isomorphism. If R is commutative, it is an isomorphism of R-modules.

In the case M = R, the above theorem states that multiplication on left by some
m ∈ R defines a right R-module homomorphism from R to R, and every module
homomorphism is of this form. The element m should be thought of as a 1 × 1
matrix. We now consider the case where the domain is Rn.

Homomorphisms on Rn Define ei ∈ Rn by ei =

















0
¯·
1
¯i

·
0
¯

















. Note that any
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can be written uniquely as e1r1 + · · +enrn. The sequence {e1, .., en} is called the
canonical free basis or standard basis for Rn.

Theorem Suppose M = MR and f, g : Rn → M are homomorphisms with
f(ei) = g(ei) for 1 ≤ i ≤ n. Then f = g. Furthermore, if m1, m2, ..., mn ∈ M , ∃!
homomorphism h : Rn → M with h(ei) = mi for 1 ≤ i ≤ m. The homomorphism
h is defined by h(e1r1 + · · +enrn) = m1r1 + · · +mnrn.

Proof The proof is straightforward. Note this theorem gives a bijection from
HomR(Rn, M) to Mn = M × M × · · ×M and this bijection is a group isomorphism.
We will see later that the product Mn is an R-module with scalar multiplication
defined by (m1, m2, .., mn)r = (m1r, m2r, .., mnr). If R is commutative so that
HomR(Rn, M) is an R-module, this theorem gives an R-module isomorphism from
HomR(Rn, M) to Mn.

This theorem reveals some of the great simplicity of linear algebra. It does not
matter how complicated the ring R is, or which R-module M is selected. Any
R-module homomorphism from Rn to M is determined by its values on the basis,
and any function from that basis to M extends uniquely to a homomorphism from
Rn to M .

Exercise Suppose R is a field and f : RR → M is a non-zero homomorphism.
Show f is injective.
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Now let’s examine the special case M = Rm and show HomR(Rn, Rm) ≈ Rm,n.

Theorem Suppose A = (ai,j) ∈ Rm,n. Then f : Rn → Rm defined by f(B) = AB
is a homomorphism with f(ei) = column i of A. Conversely, if v1, . . . , vn ∈ Rm, define
A ∈ Rm,n to be the matrix with column i = vi. Then f defined by f(B) = AB is
the unique homomorphism from Rn to Rm with f(ei) = vi.

Even though this follows easily from the previous theorem and properties of ma-
trices, it is one of the great classical facts of linear algebra. Matrices over R give
R-module homomorphisms! Furthermore, addition of matrices corresponds to addi-
tion of homomorphisms, and multiplication of matrices corresponds to composition
of homomorphisms. These properties are made explicit in the next two theorems.

Theorem If f, g : Rn → Rm are given by matrices A, C ∈ Rm,n, then f + g is
given by the matrix A+C. Thus HomR(Rn, Rm) and Rm,n are isomorphic as additive
groups. If R is commutative, they are isomorphic as R-modules.

Theorem If f : Rn → Rm is the homomorphism given by A ∈ Rm,n and g :
Rm → Rp is the homomorphism given by C ∈ Rp,m, then g ◦ f : Rn → Rp is given by
CA ∈ Rp,n. That is, composition of homomorphisms corresponds to multiplication
of matrices.

Proof This is just the associative law of matrix multiplication, C(AB) = (CA)B.

The previous theorem reveals where matrix multiplication comes from. It is the
matrix which represents the composition of the functions. In the case where the
domain and range are the same, we have the following elegant corollary.

Corollary HomR(Rn, Rn) and Rn are isomorphic as rings. The automorphisms
correspond to the invertible matrices.

This corollary shows one way non-commutative rings arise, namely as endomor-
phism rings. Even if R is commutative, Rn is never commutative unless n = 1.

We now return to the general theory of modules (over some given ring R).
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Cosets and Quotient Modules

After seeing quotient groups and quotient rings, quotient modules go through
without a hitch. As before, R is a ring and module means R-module.

Theorem Suppose M is a module and N ⊂ M is a submodule. Since N is a
normal subgroup of M , the additive abelian quotient group M/N is defined. Scalar
multiplication defined by (a + N)r = (ar + N) is well-defined and gives M/N the
structure of an R-module. The natural projection π : M → M/N is a surjective
homomorphism with kernel N . Furthermore, if f : M → M̄ is a surjective homomor-
phism with ker(f) = N , then M/N ≈ M̄ (see below).

Proof On the group level, this is all known from Chapter 2 (see pages 27 and 29).
It is only necessary to check the scalar multiplication, which is obvious.

The relationship between quotients and homomorphisms for modules is the same
as for groups and rings, as shown by the next theorem.

Theorem Suppose f : M → M̄ is a homomorphism and N is a submodule of M .
If N ⊂ ker(f), then f̄ : (M/N) → M̄ defined by f̄(a + N) = f(a) is a well-defined
homomorphism making the following diagram commute.

M M̄

M/N

f

?

-

�
�

�
�

�
�

��>

π
f̄

Thus defining a homomorphism on a quotient module is the same as defining a homo-
morphism on the numerator that sends the denominator to 0

¯
. The image of f̄ is the

image of f , and the kernel of f̄ is ker(f)/N . Thus if N = ker(f), f̄ is injective, and
thus (M/N) ≈ image(f). Therefore for any homomorphism f , (domain(f)/ker(f)) ≈
image(f).

Proof On the group level this is all known from Chapter 2 (see page 29). It is
only necessary to check that f̄ is a module homomorphism, and this is immediate.
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Theorem Suppose M is an R-module and K and L are submodules of M .

i) The natural homomorphism K → (K + L)/L is surjective with kernel

K ∩ L. Thus (K/K ∩ L)
≈→ (K + L)/L is an isomorphism.

ii) Suppose K ⊂ L. The natural homomorphism M/K → M/L is surjective

with kernel L/K. Thus (M/K)/(L/K)
≈→ M/L is an isomorphism.

Examples These two examples are for the case R = Z, i.e., for abelian groups.

1) M = Z K = 3Z L = 5Z K ∩ L = 15Z K + L = Z

K/K ∩ L = 3Z/15Z ≈ Z/5Z = (K + L)/L

2) M = Z K = 6Z L = 3Z (K ⊂ L)

(M/K)/(L/K) = (Z/6Z)/(3Z/6Z) ≈ Z/3Z = M/L

Products and Coproducts

Infinite products work fine for modules, just as they do for groups and rings.
This is stated below in full generality, although the student should think of the finite
case. In the finite case something important holds for modules that does not hold
for non-abelian groups or rings – namely, the finite product is also a coproduct. This
makes the structure of module homomorphisms much more simple. For the finite
case we may use either the product or sum notation, i.e., M1 × M2 × · · ×Mn =
M1 ⊕ M2 ⊕ · · ⊕Mn.

Theorem Suppose T is an index set and for each t ∈ T , Mt is an R-module. On
the additive abelian group

∏

t∈T

Mt =
∏

Mt define scalar multiplication by {mt}r =

{mtr}. Then
∏

Mt is an R-module and, for each s ∈ T , the natural projection
πs :

∏

Mt → Ms is a homomorphism. Suppose M is a module. Under the natural 1-1
correspondence from {functions f : M → ∏

Mt} to {sequence of functions {ft}t∈T

where ft : M → Mt}, f is a homomorphism iff each ft is a homomorphism.

Proof We already know from Chapter 2 that f is a group homomorphism iff each
ft is a group homomorphism. Since scalar multiplication is defined coordinatewise,
f is a module homomorphism iff each ft is a module homomorphism.
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Definition If T is finite, the coproduct and product are the same module. If T
is infinite, the coproduct or sum

∐

t∈T

Mt =
⊕

t∈T

Mt = ⊕Mt is the submodule of
∏

Mt

consisting of all sequences {mt} with only a finite number of non-zero terms. For
each s ∈ T , the inclusion homomorphisms is : Ms → ⊕Mt is defined by is(a) = {at}
where at = 0

¯
if t 6= s and as = a. Thus each Ms may be considered to be a submodule

of ⊕Mt.

Theorem Suppose M is an R-module. There is a 1-1 correspondence from
{homomorphisms g : ⊕Mt → M} and {sequences of homomorphisms {gt}t∈T where
gt : Mt → M} . Given g, gt is defined by gt = g ◦ it. Given {gt}, g is defined by
g({mt}) =

∑

t

gt(mt). Since there are only a finite number of non-zero terms, this

sum is well defined.

For T = {1, 2} the product and sum properties are displayed in the following
commutative diagrams.

M1 ⊕ M2M1 M2 M1 M2M1 ⊕ M2

M M

π1 i1π2 i2

f gf1 f2 g1 g2

� - - �
?

6�
�

�
�

�	 �
�

�
�

��@
@

@
@

@R @
@

@
@

@I

Theorem For finite T , the 1-1 correspondences in the above theorems actually
produce group isomorphisms. If R is commutative, they give isomorphisms of R-
modules.

HomR(M, M1 ⊕ · · ⊕Mn) ≈ HomR(M, M1) ⊕ · · ⊕HomR(M, Mn) and

HomR(M1 ⊕ · · ⊕Mn, M) ≈ HomR(M1, M) ⊕ · · ⊕HomR(Mn, M)

Proof Let’s look at this theorem for products with n = 2. All it says is that if f =
(f1, f2) and h = (h1, h2), then f +h = (f1 +h1, f2 +h2). If R is commutative, so that
the objects are R-modules and not merely additive groups, then the isomorphisms
are module isomorphisms. This says merely that fr = (f1, f2)r = (f1r, f2r).
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Exercise Suppose M and N are R-modules. Show that M ⊕ N is isomorphic to
N ⊕ M. Now suppose A ⊂ M, B ⊂ N are submodules and show (M ⊕ N)/(A ⊕ B)
is isomorphic to (M/A) ⊕ (N/B). In particular, if a ∈ R and b ∈ R, then
(R ⊕ R)/(aR ⊕ bR) is isomorphic to (R/aR) ⊕ (R/bR). For example, the abelian
group (Z ⊕ Z)/(2Z ⊕ 3Z) is isomorphic to Z2 ⊕ Z3. These isomorphisms are trans-
parent and are used routinely in algebra without comment (see Th 4, page 118).

Exercise Suppose R is a commutative ring, M is an R-module, and n ≥ 1. Define
a function α : HomR(Rn, M) → Mn which is a R-module isomorphism.

Summands

One basic question in algebra is “When does a module split as the sum of two
modules?”. Before defining summand, here are two theorems for background.

Theorem Consider M1 = M1⊕0
¯

as a submodule of M1⊕M2. Then the projection
map π2 : M1 ⊕ M2 → M2 is a surjective homomorphism with kernel M1. Thus
(M1 ⊕ M2)/M1 is isomorphic to M2. (See page 35 for the group version.)

This is exactly what you would expect, and the next theorem is almost as intuitive.

Theorem Suppose K and L are submodules of M and f : K ⊕ L → M is the
natural homomorphism, f(k, l) = k + l. Then the image of f is K + L and the
kernel of f is {(a,−a) : a ∈ K ∩ L}. Thus f is an isomorphism iff K + L = M and
K ∩ L = 0

¯
. In this case we write K ⊕ L = M . This abuse of notation allows us to

avoid talking about “internal” and “external” direct sums.

Definition Suppose K is a submodule of M . The statement that K is a summand

of M means ∃ a submodule L of M with K ⊕ L = M . According to the previous
theorem, this is the same as there exists a submodule L with K + L = M and
K ∩ L = 0

¯
. If such an L exists, it need not be unique, but it will be unique up to

isomorphism, because L ≈ M/K. Of course, M and 0
¯

are always summands of M .

Exercise Suppose M is a module and K = {(m, m) : m ∈ M} ⊂ M ⊕ M . Show
K is a submodule of M ⊕ M which is a summand.

Exercise R is a module over Q, and Q ⊂ R is a submodule. Is Q a summand of
R? With the material at hand, this is not an easy question. Later on, it will be easy.
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Exercise Answer the following questions about abelian groups, i.e., Z-modules.
(See the third exercise on page 35.)

1) Is 2Z a summand of Z?

2) Is 2Z4 a summand of Z4?

3) Is 3Z12 a summand of Z12?

4) Suppose m, n > 1. When is nZmn a summand of Zmn?

Exercise If T is a ring, define the center of T to be the subring {t : ts =
st for all s ∈ T}. Let R be a commutative ring and T = Rn. There is a exercise
on page 57 to show that the center of T is the subring of scalar matrices. Show Rn

is a left T -module and find HomT (Rn, Rn).

Independence, Generating Sets, and Free Basis

This section is a generalization and abstraction of the brief section Homomor-
phisms on Rn. These concepts work fine for an infinite index set T because linear
combination means finite linear combination. However, to avoid dizziness, the student
should first consider the case where T is finite.

Definition Suppose M is an R-module, T is an index set, and for each t ∈ T ,
st ∈ M . Let S be the sequence {st}t∈T = {st}. The statement that S is dependent

means ∃ a finite number of distinct elements t1, ..., tn in T , and elements r1, .., rn in
R, not all zero, such that the linear combination st1r1 + · · +stnrn = 0

¯
. Otherwise,

S is independent. Note that if some st = 0
¯
, then S is dependent. Also if ∃ distinct

elements t1 and t2 in T with st1 = st2 , then S is dependent.

Let SR be the set of all linear combinations st1r1 + · ·+stnrn. SR is a submodule
of M called the submodule generated by S. If S is independent and generates M ,
then S is said to be a basis or free basis for M . In this case any v ∈ M can be written
uniquely as a linear combination of elements in S. An R-module M is said to be a
free R-module if it is zero or if it has a basis. The next two theorems are obvious,
except for the confusing notation. You might try first the case T = {1, 2, ..., n} and
⊕Rt = Rn (see p 72).

Theorem For each t ∈ T , let Rt = RR and for each c ∈ T , let ec ∈ ⊕Rt =
⊕

t∈T

Rt

be ec = {rt} where rc = l
¯

and rt = 0
¯

if t 6= c. Then {ec}c∈T is a basis for ⊕Rt called
the canonical basis or standard basis.



Chapter 5 Linear Algebra 79

Theorem Suppose N is an R-module and M is a free R-module with a basis
{st}. Then ∃ a 1-1 correspondence from the set of all functions g :{st} → N and the
set of all homomorphisms f : M → N . Given g, define f by f(st1r1 + · · +stnrn) =
g(st1)r1 + · · +g(stn)rn. Given f , define g by g(st) = f(st). In other words, f is
completely determined by what it does on the basis S, and you are “free” to send the
basis any place you wish and extend to a homomorphism.

Recall that we have already had the preceding theorem in the case S is the canon-
ical basis for M = Rn (p 72). The next theorem is so basic in linear algebra that it
is used without comment. Although the proof is easy, it should be worked carefully.

Theorem Suppose N is a module, M is a free module with basis S = {st}, and
f : M → N is a homomorphism. Let f(S) be the sequence {f(st)} in N .

1) f(S) generates N iff f is surjective.

2) f(S) is independent in N iff f is injective.

3) f(S) is a basis for N iff f is an isomorphism.

4) If h : M → N is a homomorphism, then f = h iff f | S = h | S.

Exercise Let (A1, .., An) be a sequence of n vectors with each Ai ∈ Zn.
Show this sequence is linearly independent over Z iff it is linearly independent over Q.
Is it true the sequence is linearly independent over Z iff it is linearly independent
over R? This question is difficult until we learn more linear algebra.

Characterization of Free Modules

Any free R-module is isomorphic to one of the canonical free R-modules ⊕Rt.
This is just an observation, but it is a central fact in linear algebra.

Theorem A non-zero R-module M is free iff ∃ an index set T such that
M ≈

⊕

t∈T

Rt. In particular, M has a finite free basis of n elements iff M ≈ Rn.

Proof If M is isomorphic to ⊕Rt then M is certainly free. So now suppose M
has a free basis {st}. Then the homomorphism f : M → ⊕Rt with f(st) = et sends
the basis for M to the canonical basis for ⊕Rt. By 3) in the preceding theorem, f is
an isomorphism.
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Exercise Suppose R is a commutative ring, A ∈ Rn, and the homomorphism
f : Rn → Rn defined by f(B) = AB is surjective. Show f is an isomorphism, i.e.,
show A is invertible. This is a key theorem in linear algebra, although it is usually
stated only for the case where R is a field. Use the fact that {e1, .., en} is a free basis
for Rn.

The next exercise is routine, but still informative.

Exercise Let R = Z, A =

(

2 1 0
3 2 −5

)

and f: Z3 → Z2 be the group homo-

morphism defined by A. Find a non-trivial linear combination of the columns of A
which is 0

¯
. Also find a non-zero element of kernel(f).

If R is a commutative ring, you can relate properties of R as an R-module to
properties of R as a ring.

Exercise Suppose R is a commutative ring and v ∈ R, v 6= 0
¯
.

1) v is independent iff v is .
2) v is a basis for R iff v generates R iff v is .

Note that 2) here is essentially the first exercise for the case n = 1. That is, if
f : R → R is a surjective R-module homomorphism, then f is an isomorphism.

Relating these concepts to matrices

The theorem stated below gives a summary of results we have already had. It
shows that certain concepts about matrices, linear independence, injective homo-
morphisms, and solutions of equations, are all the same — they are merely stated in
different language. Suppose A ∈ Rm,n and f : Rn → Rm is the homomorphism associ-
ated with A, i.e., f(B) = AB. Let v1, .., vn ∈ Rm be the columns of A, i.e., f(ei) = vi

= column i of A. Let B =
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represent an element of Rm.

Theorem

1) The element f(B) is a linear combination of the columns of A, that is
f(B) = f(e1b1 + · · +enbn) = v1b1 + · · +vnbn. Thus the image of f
is generated by the columns of A. (See bottom of page 89.)

2) {v1, .., vn} generates Rm iff f is surjective iff (for any C ∈ Rm, AX = C
has a solution).

3) {v1, .., vn} is independent iff f is injective iff AX = 0
¯

has a unique
solution iff (∃ C ∈ Rm such that AX = C has a unique solution).

4) {v1, .., vn} is a basis for Rm iff f is an isomorphism iff (for any C ∈ Rm,
AX = C has a unique solution).

Relating these concepts to square matrices

We now look at the preceding theorem in the special case where n = m and R
is a commutative ring. So far in this chapter we have just been cataloging. Now we
prove something more substantial, namely that if f : Rn → Rn is surjective, then f
is injective. Later on we will prove that if R is a field, injective implies surjective.

Theorem Suppose R is a commutative ring, A ∈ Rn, and f : Rn → Rn is defined
by f(B) = AB. Let v1, .., vn ∈ Rn be the columns of A, and w1, .., wn ∈ Rn = R1,n

be the rows of A. Then the following are equivalent.

1) f is an automorphism.

2) A is invertible, i.e., | A | is a unit in R.

3) {v1, .., vn} is a basis for Rn.

4) {v1, .., vn} generates Rn.

5) f is surjective.

2t) At is invertible, i.e., | At | is a unit in R.

3t) {w1, .., wn} is a basis for Rn.
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4t) {w1, .., wn} generates Rn.

Proof Suppose 5) is true and show 2). Since f is onto, ∃ u1, ..., un ∈ Rn with
f(ui) = ei. Let g : Rn → Rn be the homomorphism satisfying g(ei) = ui. Then f ◦ g
is the identity. Now g comes from some matrix D and thus AD = I. This shows that
A has a right inverse and is thus invertible. Recall that the proof of this fact uses
determinant, which requires that R be commutative (see the exercise on page 64).

We already know the first three properties are equivalent, 4) and 5) are equivalent,
and 3) implies 4). Thus the first five are equivalent. Furthermore, applying this
result to At shows that the last three properties are equivalent to each other. Since
| A |=| At |, 2) and 2t) are equivalent.

Uniqueness of Dimension

There exists a ring R with R2 ≈ R3 as R-modules, but this is of little interest. If
R is commutative, this is impossible, as shown below. First we make a convention.

Convention For the remainder of this chapter, R will be a commutative ring.

Theorem If f : Rm → Rn is a surjective R-module homomorphism, then m ≥ n.

Proof Suppose k = n − m is positive. Define h : (Rm ⊕ Rk = Rn) → Rn by
h(u, v) = f(u). Then h is a surjective homomorphism, and by the previous section,
also injective. This is a contradiction and thus m ≥ n.

Corollary If f : Rm → Rn is an isomorphism, then m = n.

Proof Each of f and f−1 is surjective, so m = n by the previous theorem.

Corollary If {v1, .., vm} generates Rn, then m ≥ n.

Proof The hypothesis implies there is a surjective homomorphism Rm → Rn. So
this follows from the first theorem.

Lemma Suppose M is a f.g. module (i.e., a finite generated R-module). Then
if M has a basis, that basis is finite.
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Proof Suppose U ⊂ M is a finite generating set and S is a basis. Then any
element of U is a finite linear combination of elements of S, and thus S is finite.

Theorem Suppose M is a f.g. module. If M has a basis, that basis is finite
and any other basis has the same number of elements. This number is denoted by
dim(M), the dimension of M. (By convention, 0

¯
is a free module of dimension 0.)

Proof By the previous lemma, any basis for M must be finite. M has a basis of
n elements iff M ≈ Rn. The result follows because Rn ≈ Rm iff n = m.

Change of Basis

Before changing basis, we recall what a basis is. Previously we defined generat-
ing, independence, and basis for sequences, not for collections. For the concept of
generating it matters not whether you use sequences or collections, but for indepen-
dence and basis, you must use sequences. Consider the columns of the real matrix

A =

(

2 3 2
1 4 1

)

. If we consider the column vectors of A as a collection, there are

only two of them, yet we certainly don’t wish to say the columns of A form a basis for
R2. In a set or collection, there is no concept of repetition. In order to make sense,
we must consider the columns of A as an ordered triple of vectors, and this sequence
is dependent. In the definition of basis on page 78, basis is defined for sequences, not
for sets or collections.

Two sequences cannot begin to be equal unless they have the same index set.
Here we follow the classical convention that an index set with n elements will be
{1, 2, .., n}, and thus a basis for M with n elements is a sequence S = {u1, .., un}
or if you wish, S = (u1, .., un) ∈ Mn. Suppose M is an R-module with a basis of
n elements. Recall there is a bijection α : HomR(Rn, M) → Mn defined by α(h) =
(h(e1), .., h(en)). Now h : Rn → M is an isomorphism iff α(h) is a basis for M .

Summary The point of all this is that selecting a basis of n elements for M
is the same as selecting an isomorphism from Rn to M , and from this viewpoint,
change of basis can be displayed by the diagram below.

Endomorphisms on Rn are represented by square matrices, and thus have a de-
terminant and trace. Now suppose M is a f.g. free module and f : M → M is a
homomorphism. In order to represent f by a matrix, we must select a basis for M
(i.e., an isomorphism with Rn). We will show that this matrix is well defined up to
similarity, and thus the determinant, trace, and characteristic polynomial of f are
well-defined.
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Definition Suppose M is a free module, S = {u1, .., un} is a basis for M , and
f : M → M is a homomorphism. The matrix A = (ai,j) ∈ Rn of f w.r.t. the basis
S is defined by f(ui) = u1a1,i + · · +unan,i. (Note that if M = Rn and ui = ei, A is
the usual matrix associated with f).

Theorem Suppose T = {v1, .., vn} is another basis for M and B ∈ Rn is the
matrix of f w.r.t. T . Define C = (ci,j) ∈ Rn by vi = u1c1,i + · · +uncn,i. Then C is
invertible and B = C−1AC, i.e., A and B are similar. Therefore |A| = |B|,
trace(A)=trace(B), and A and B have the same characteristic polynomial (see page
66 of chapter 4).

Conversely, suppose C = (ci,j) ∈ Rn is invertible. Define T = {v1, .., vn} by
vi = u1c1,i + · · +uncn,i. Then T is a basis for M and the matrix of f w.r.t. T is
B = C−1AC. In other words, conjugation of matrices corresponds to change of basis.

Proof The proof follows by seeing that the following diagram is commutative.

Rn Rn

Rn Rn

M MC C

A

B

≈ ≈

≈ ≈

≈ ≈
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The diagram also explains what it means for A to be the matrix of f w.r.t. the
basis S. Let h : Rn → M be the isomorphism with h(ei) = ui for 1 ≤ i ≤ n. Then
the matrix A ∈ Rn is the one determined by the endomorphism h−1 ◦f ◦h : Rn → Rn.
In other words, column i of A is h−1(f(h(ei))).

An important special case is where M = Rn and f : Rn → Rn is given by some
matrix W . Then h is given by the matrix U whose ith column is ui and A =
U−1WU. In other words, W represents f w.r.t. the standard basis, and U−1WU
represents f w.r.t. the basis {u1, .., un}.

Definition Suppose M is a f.g. free module and f : M → M is a homomorphism.
Define |f | to be |A|, trace(f) to be trace(A), and CPf(x) to be CPA(x), where A is
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the matrix of f w.r.t. some basis. By the previous theorem, all three are well-defined,
i.e., do not depend upon the choice of basis.

Exercise Let R = Z and f : Z2 → Z2 be defined by f(D) =

(

3 3
0 −1

)

D.

Find the matrix of f w.r.t. the basis

{(

2
1

)

,

(

3
1

)}

.

Exercise Let L ⊂ R2 be the line L = {(r, 2r)t : r ∈ R}. Show there is one
and only one homomorphism f : R2 → R2 which is the identity on L and has
f((−1, 1)t) = (1,−1)t. Find the matrix A ∈ R2 which represents f with respect
to the basis {(1, 2)t, (−1, 1)t}. Find the determinant, trace, and characteristic
polynomial of f . Also find the matrix B ∈ R2 which represents f with respect to
the standard basis. Finally, find an invertible matrix C ∈ R2 with B = C−1AC.

Vector Spaces

So far in this chapter we have been developing the theory of linear algebra in
general. The previous theorem, for example, holds for any commutative ring R, but
it must be assumed that the module M is free. Endomorphisms in general will not
have a determinant, trace, or characteristic polynomial. We now focus on the case
where R is a field F , and show that in this case, every F -module is free. Thus any
finitely generated F -module will have a well-defined dimension, and endomorphisms
on it will have well-defined determinant, trace, and characteristic polynomial.

In this section, F is a field. F -modules may also be called vector spaces and
F -module homomorphisms may also be called linear transformations.

Theorem Suppose M is an F -module and v ∈ M . Then v 6= 0
¯

iff v is independent.
That is, if v ∈ V and r ∈ F , vr = 0

¯
implies v = 0

¯
in M or r = 0

¯
in F .

Proof Suppose vr = 0
¯

and r 6= 0
¯
. Then 0

¯
= (vr)r−1 = v1

¯
= v.

Theorem Suppose M 6= 0
¯

is an F -module and v ∈ M . Then v generates M iff v
is a basis for M . Furthermore, if these conditions hold, then M ≈ FF , any non-zero
element of M is a basis, and any two elements of M are dependent.
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Proof Suppose v generates M . Then v 6= 0
¯

and is thus independent by the
previous theorem. In this case M ≈ F , and any non-zero element of F is a basis, and
any two elements of F are dependent.

Theorem Suppose M 6= 0
¯

is a finitely generated F -module. If S = {v1, .., vm}
generates M , then any maximal independent subsequence of S is a basis for M . Thus
any finite independent sequence can be extended to a basis. In particular, M has a
finite free basis, and thus is a free F -module.

Proof Suppose, for notational convenience, that {v1, .., vn} is a maximal inde-
pendent subsequence of S, and n < i ≤ m. It must be shown that vi is a linear
combination of {v1, .., vn}. Since {v1, .., vn, vi} is dependent, ∃ r1, ..., rn, ri not all
zero, such that v1r1 + · ·+vnrn +viri = 0

¯
. Then ri 6= 0

¯
and vi = −(v1r1 + · ·+vnrn)r−1

i .
Thus {v1, .., vn} generates S and thus all of M . Now suppose T is a finite indepen-
dent sequence. T may be extended to a finite generating sequence, and inside that
sequence it may be extended to a maximal independent sequence. Thus T extends
to a basis.

After so many routine theorems, it is nice to have one with real power. It not
only says any finite independent sequence can be extended to a basis, but it can be
extended to a basis inside any finite generating set containing it. This is one of the
theorems that makes linear algebra tick. The key hypothesis here is that the ring
is a field. If R = Z, then Z is a free module over itself, and the element 2 of Z is
independent. However it certainly cannot be extended to a basis. Also the finiteness
hypothesis in this theorem is only for convenience, as will be seen momentarily.

Since F is a commutative ring, any two bases of M must have the same number
of elements, and thus the dimension of M is well defined (see theorem on page 83).

Theorem Suppose M is an F -module of dimension n, and {v1, ..., vm} is an
independent sequence in M. Then m ≤ n and if m = n, {v1, .., vm} is a basis.

Proof {v1, .., vm} extends to a basis with n elements.

The next theorem is just a collection of observations.

Theorem Suppose M and N are finitely generated F -modules.
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1) M ≈ F n iff dim(M) = n.

2) M ≈ N iff dim(M) = dim(N).

3) F m ≈ F n iff n = m.

4) dim(M ⊕ N) = dim(M) + dim(N).

Here is the basic theorem for vector spaces in full generality.

Theorem Suppose M 6= 0
¯

is an F -module and S = {vt}t∈T generates M .

1) Any maximal independent subsequence of S is a basis for M .

2) Any independent subsequence of S may be extended to a maximal

independent subsequence of S, and thus to a basis for M .

3) Any independent subsequence of M can be extended to a basis for M .

In particular, M has a free basis, and thus is a free F -module.

Proof The proof of 1) is the same as in the case where S is finite. Part 2) will
follow from the Hausdorff Maximality Principle. An independent subsequence of S is
contained in a maximal monotonic tower of independent subsequences. The union of
these independent subsequences is still independent, and so the result follows. Part
3) follows from 2) because an independent sequence can always be extended to a
generating sequence.

Theorem Suppose M is an F -module and K ⊂ M is a submodule.

1) K is a summand of M , i.e., ∃ a submodule L of M with K ⊕ L = M .

2) If M is f.g., then dim(K) ≤ dim(M) and K = M iff dim(K) = dim(M).

Proof Let T be a basis for K. Extend T to a basis S for M . Then S−T generates
a submodule L with K ⊕ L = M. Part 2) follows from 1).

Corollary Q is a summand of R. In other words, ∃ a Q-submodule V ⊂ R
with Q ⊕ V = R as Q-modules. (See exercise on page 77.)

Proof Q is a field, R is a Q-module, and Q is a submodule of R.

Corollary Suppose M is a f.g. F -module, N is an F -module, and f : M → N
is a homomorphism. Then dim(M) = dim(ker(f)) + dim(image(f)).
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Proof Let K = ker(f) and L ⊂ M be a submodule with K ⊕ L = M . Then
f | L : L → image(f) is an isomorphism.

Exercise Suppose R is a domain with the property that, for R-modules, every
submodule is a summand. Show R is a field.

Exercise Find a free Z-module which has a generating set containing no basis.

Exercise The real vector space R2 is generated by the sequence S =
{(π, 0), (2, 1), (3, 2)}. Show there are three maximal independent subsequences of
S, and each is a basis for R2. (Row vectors are used here just for convenience.)

The real vector space R3 is generated by S = {(1, 1, 2), (1, 2, 1), (3, 4, 5), (1, 2, 0)}.
Show there are three maximal independent subsequences of S and each is a basis
for R3. You may use determinant.

Square matrices over fields

This theorem is just a summary of what we have for square matrices over fields.

Theorem Suppose A ∈ Fn and f : F n → F n is defined by f(B) = AB. Let
v1, .., vn ∈ F n be the columns of A, and w1, .., wn ∈ F n = F1,n be the rows of A.
Then the following are equivalent.

1) {v1, .., vn} is independent, i.e., f is injective.

2) {v1, .., vn} is a basis for F n, i.e., f is an automorphism, i.e., A is

invertible, i.e., | A |6= 0
¯
.

3) {v1, .., vn} generates F n, i.e., f is surjective.

1t) {w1, .., wn} is independent.

2t) {w1, .., wn} is a basis for F n, i.e., At is invertible, i.e., | At |6= 0
¯
.

3t) {w1, .., wn} generates F n.
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Proof Except for 1) and 1t), this theorem holds for any commutative ring R.
(See the section Relating these concepts to square matrices, pages 81 and 82.)
Parts 1) and 1t) follow from the preceding section.

Exercise Add to this theorem more equivalent statements in terms of solutions
of n equations in n unknowns.

Overview Suppose each of X and Y is a set with n elements and f : X → Y is a
function. By the pigeonhole principle, f is injective iff f is bijective iff f is surjective.
Now suppose each of U and V is a vector space of dimension n and f : U → V is
a linear transformation. It follows from the work done so far that f is injective iff
f is bijective iff f is surjective. This shows some of the simple and definitive nature
of linear algebra.

Exercise Let A = (A1, .., An) be an n×n matrix over Z with column i = Ai ∈
Zn. Let f : Zn → Zn be defined by f(B) = AB and f̄ : Rn → Rn be defined by
f̄(C) = AC. Show the following are equivalent. (See the exercise on page 79.)

1) f : Zn → Zn is injective.

2) The sequence (A1, .., An) is linearly independent over Z.

3) |A| 6= 0.

4) f̄ : Rn → Rn is injective.

5) The sequence (A1, .., An) is linearly independent over R.

Rank of a matrix Suppose A ∈ Fm,n. The row (column) rank of A is defined
to be the dimension of the submodule of F n (F m) generated by the rows (columns)
of A.

Theorem If C ∈ Fm and D ∈ Fn are invertible, then the row (column) rank of
A is the same as the row (column) rank of CAD.

Proof Suppose f : F n → F m is defined by f(B) = AB. Each column of A
is a vector in the range F m, and we know from page 81 that each f(B) is a linear
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combination of those vectors. Thus the image of f is the submodule of F m generated
by the columns of A, and its dimension is the column rank of A. This dimension
is the same as the dimension of the image of g ◦ f ◦ h : F n → F m, where h is any
automorphism on F n and g is any automorphism on F m. This proves the theorem
for column rank. The theorem for row rank follows using transpose.

Theorem If A ∈ Fm,n, the row rank and the column rank of A are equal. This
number is called the rank of A and is ≤ min{m, n}.
Proof By the theorem above, elementary row and column operations change
neither the row rank nor the column rank. By row and column operations, A may be
changed to a matrix H where h1,1 = ·· = ht,t = 1

¯
and all other entries are 0

¯
(see the

first exercise on page 59). Thus row rank = t = column rank.

Exercise Suppose A has rank t. Show that it is possible to select t rows and t
columns of A such that the determined t× t matrix is invertible. Show that the rank
of A is the largest integer t such that this is possible.

Exercise Suppose A ∈ Fm,n has rank t. What is the dimension of the solution
set of AX = 0

¯
?

Definition If N and M are finite dimensional vector spaces and f : N → M is a
linear transformation, the rank of f is the dimension of the image of f . If f : F n → F m

is given by a matrix A, then the rank of f is the same as the rank of the matrix A.

Geometric Interpretation of Determinant

Suppose V ⊂ Rn is some nice subset. For example, if n = 2, V might be the
interior of a square or circle. There is a concept of the n-dimensional volume of V .
For n = 1, it is length. For n = 2, it is area, and for n = 3 it is “ordinary volume”.
Suppose A ∈ Rn and f : Rn → Rn is the homomorphism given by A. The volume of
V does not change under translation, i.e., V and V + p have the same volume. Thus
f(V ) and f(V +p) = f(V )+f(p) have the same volume. In street language, the next
theorem says that “f multiplies volume by the absolute value of its determinant”.

Theorem The n-dimensional volume of f(V ) is ±|A|(the n-dimensional volume
of V ). Thus if |A| = ±1, f preserves volume.
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Proof If |A| = 0, image(f) has dimension < n and thus f(V ) has n-dimensional
volume 0. If |A| 6= 0 then A is the product of elementary matrices (see page 59)
and for elementary matrices, the theorem is obvious. The result follows because the
determinant of the composition is the product of the determinants.

Corollary If P is the n-dimensional parallelepiped determined by the columns
v1, .. , vn of A, then the n-dimensional volume of P is ±|A|.

Proof Let V = [0, 1] × · · ×[0, 1] = {e1t1 + · · +entn : 0 ≤ ti ≤ 1}. Then
P = f(V ) = {v1t1 + · · +vntn : 0 ≤ ti ≤ 1}.

Linear functions approximate differentiable functions locally

We continue with the special case F = R. Linear functions arise naturally in
business, science, and mathematics. However this is not the only reason that linear
algebra is so useful. It is a central fact that smooth phenomena may be approx-
imated locally by linear phenomena. Without this great simplification, the world
of technology as we know it today would not exist. Of course, linear transforma-
tions send the origin to the origin, so they must be adjusted by a translation. As
a simple example, suppose h : R → R is differentiable and p is a real number. Let
f : R → R be the linear transformation f(x) = h′(p)x. Then h is approximated near
p by g(x) = h(p) + f(x − p) = h(p) + h′(p)(x − p).

Now suppose V ⊂ R2 is some nice subset and h = (h1, h2) : V → R2 is injective

and differentiable. Define the Jacobian by J(h)(x, y) =

(

∂h1

∂x
∂h1

∂y
∂h2

∂x
∂h2

∂y

)

and for each

(x, y) ∈ V , let f(x, y) : R2 → R2 be the homomorphism defined by J(h)(x, y).
Then for any (p1, p2) ∈ V , h is approximated near (p1, p2) (after translation) by

f(p1, p2). The area of V is
∫ ∫

V
1dxdy. From the previous section we know that

any homomorphism f multiplies area by | f |. The student may now understand
the following theorem from calculus. (Note that if h is the restriction of a linear
transformation from R2 to R2, this theorem is immediate from the previous section.)

Theorem Suppose the determinant of J(h)(x, y) is non-negative for each

(x, y) ∈ V . Then the area of h(V ) is
∫ ∫

V
| J(h) | dxdy.
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The Transpose Principle

We now return to the case where F is a field (of arbitrary characteristic). F -
modules may also be called vector spaces and submodules may be called subspaces.
The study of R-modules in general is important and complex. However the study of
F -modules is short and simple – every vector space is free and every subspace is a
summand. The core of classical linear algebra is not the study of vector spaces, but
the study of homomorphisms, and in particular, of endomorphisms. One goal is to
show that if f : V → V is a homomorphism with some given property, there exists
a basis of V so that the matrix representing f displays that property in a prominent
manner. The next theorem is an illustration of this.

Theorem Let F be a field and n be a positive integer.

1) Suppose V is an n-dimensional vector space and f : V → V is a
homomorphism with |f | = 0

¯
. Then ∃ a basis of V such that the matrix

representing f has its first row zero.
2) Suppose A ∈ Fn has |A| = 0

¯
. Then ∃ an invertible matrix C such that

C−1AC has its first row zero.
3) Suppose V is an n-dimensional vector space and f : V → V is a

homomorphism with |f | = 0. Then ∃ a basis of V such that the matrix
representing f has its first column zero.

4) Suppose A ∈ Fn has |A| = 0
¯
. Then ∃ an invertible matrix D such that

D−1AD has its first column zero.

We first wish to show that these 4 statements are equivalent. We know that
1) and 2) are equivalent and also that 3) and 4) are equivalent because change of
basis corresponds to conjugation of the matrix. Now suppose 2) is true and show
4) is true. Suppose |A| = 0

¯
. Then |At| = 0

¯
and by 2) ∃ C such that C−1AtC has

first row zero. Thus (C−1AtC)t = CtA(Ct)−1 has first row column zero. The result
follows by defining D = (C t)−1. Also 4) implies 2).

This is an example of the transpose principle. Loosely stated, it is that theorems
about change of basis correspond to theorems about conjugation of matrices and
theorems about the rows of a matrix correspond to theorems about the columns of a
matrix, using transpose. In the remainder of this chapter, this will be used without
further comment.
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Proof of the theorem We are free to select any of the 4 parts, and we select
part 3). Since | f |= 0, f is not injective and ∃ a non-zero v1 ∈ V with f(v1) = 0

¯
.

Now v1 is independent and extends to a basis {v1, .., vn}. Then the matrix of f w.r.t
this basis has first column zero.

Exercise Let A =

(

3π 6
2π 4

)

. Find an invertible matrix C ∈ R2 so that C−1AC

has first row zero. Also let A =







0 0 0
1 3 4
2 1 4





 and find an invertible matrix D ∈ R3

so that D−1AD has first column zero.

Exercise Suppose M is an n-dimensional vector space over a field F , k is an
integer with 0 < k < n, and f : M → M is an endomorphism of rank k. Show
there is a basis for M so that the matrix representing f has its first n − k rows zero.
Also show there is a basis for M so that the matrix representing f has its first n− k
columns zero. Work these out directly without using the transpose principle.

Nilpotent Homomorphisms

In this section it is shown that an endomorphism f is nilpotent iff all of its char-
acteristic roots are 0

¯
iff it may be represented by a strictly upper triangular matrix.

Definition An endomorphism f : V → V is nilpotent if ∃ m with fm = 0
¯
. Any

f represented by a strictly upper triangular matrix is nilpotent (see page 56).

Theorem Suppose V is an n-dimensional vector space and f : V → V is a
nilpotent homomorphism. Then fn = 0

¯
and ∃ a basis of V such that the matrix

representing f w.r.t. this basis is strictly upper triangular. Thus the characteristic
polynomial of f is CPf(x) = xn.

Proof Suppose f 6= 0
¯

is nilpotent. Let t be the largest positive integer with
f t 6= 0

¯
. Then f t(V ) ⊂ f t−1(V ) ⊂ ·· ⊂ f(V ) ⊂ V . Since f is nilpotent, all of these

inclusions are proper. Therefore t < n and fn = 0
¯
. Construct a basis for V by

starting with a basis for f t(V ), extending it to a basis for f t−1(V ), etc. Then the
matrix of f w.r.t. this basis is strictly upper triangular.

Note To obtain a matrix which is strictly lower triangular, reverse the order of
the basis.
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Exercise Use the transpose principle to write 3 other versions of this theorem.

Theorem Suppose V is an n-dimensional vector space and f : V → V is a
homomorphism. Then f is nilpotent iff CPf(x) = xn. (See the exercise at the end
of Chapter 4 for the case n = 2.)

Proof Suppose CPf(x) = xn. For n = 1 this implies f = 0
¯
, so suppose n > 1.

Since the constant term of CPf(x) is 0
¯
, the determinant of f is 0

¯
. Thus ∃ a basis

of V such that the matrix A representing f has its first column zero. Let B ∈ Fn−1

be the matrix obtained from A by removing its first row and first column. Now
CPA(x) = xn = xCPB(x). Thus CPB(x) = xn−1 and by induction on n, B is
nilpotent and so ∃ C such that C−1BC is strictly upper triangular. Then

















1 0 · · 0
0
· C−1

·
0

































0 ∗ · · ∗
·

B
·
0

































1 0 · · 0
0
· C
·
0

















=

















0 ∗ · · ∗
0
· C−1BC
·
0

















is strictly upper triangular.

Exercise Suppose F is a field, A ∈ F3 is a strictly lower triangular matrix of

rank 2, and B =







0 0 0
1 0 0
0 1 0





. Using conjugation by elementary matrices, show there

is an invertible matrix C so that C−1AC = B. Now suppose V is a 3-dimensional
vector space and f : V → V is a nilpotent endomorphism of rank 2. We know f can
be represented by a strictly lower triangular matrix. Show there is a basis {v1, v2, v3}
for V so that B is the matrix representing f . Also show that f(v1) = v2, f(v2) = v3,
and f(v3) = 0

¯
. In other words, there is a basis for V of the form {v, f(v), f 2(v)}

with f 3(v) = 0
¯
.

Exercise Suppose V is a 3-dimensional vector space and f : V → V is a nilpotent
endomorphism of rank 1. Show there is a basis for V so that the matrix representing

f is







0 0 0
1 0 0
0 0 0





.
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Eigenvalues

Our standing hypothesis is that V is an n-dimensional vector space over a field F
and f : V → V is a homomorphism.

Definition An element λ ∈ F is an eigenvalue of f if ∃ a non-zero v ∈ V with
f(v) = λv. Any such v is called an eigenvector. Eλ ⊂ V is defined to be the set of
all eigenvectors for λ (plus 0

¯
). Note that Eλ = ker(λI − f) is a subspace of V . The

next theorem shows the eigenvalues of f are just the characteristic roots of f .

Theorem If λ ∈ F then the following are equivalent.

1) λ is an eigenvalue of f , i.e., (λI − f) : V → V is not injective.
2) | (λI − f) |= 0

¯
.

3) λ is a characteristic root of f , i.e., a root of the characteristic
polynomial CPf(x) = | (xI −A) |, where A is any matrix representing f .

Proof It is immediate that 1) and 2) are equivalent, so let’s show 2) and 3)
are equivalent. The evaluation map F [x] → F which sends h(x) to h(λ) is a ring
homomorphism (see theorem on page 47). So evaluating (xI − A) at x = λ and
taking determinant gives the same result as taking the determinant of (xI − A) and
evaluating at x = λ. Thus 2) and 3) are equivalent.

The nicest thing you can say about a matrix is that it is similar to a diagonal
matrix. Here is one case where that happens.

Theorem Suppose λ1, .., λk are distinct eigenvalues of f , and vi is an eigenvector
of λi for 1 ≤ i ≤ k. Then the following hold.

1) {v1, .., vk} is independent.

2) If k = n, i.e., if CPf(x) = (x − λ1) · · · (x − λn), then {v1, .., vn} is a
basis for V . The matrix of f w.r.t. this basis is the diagonal matrix whose
(i, i) term is λi.

Proof Suppose {v1, .., vk} is dependent. Suppose t is the smallest positive integer
such that {v1, .., vt} is dependent, and v1r1 + · · +vtrt = 0

¯
is a non-trivial linear

combination. Note that at least two of the coefficients must be non-zero. Now
(f − λt)(v1r1 + · ·+vtrt) = v1(λ1 − λt)r1 + · ·+vt−1(λt−1 − λt)rt−1 + 0

¯
= 0

¯
is a shorter
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non-trivial linear combination. This is a contradiction and proves 1). Part 2) follows
from 1) because dim(V ) = n.

Exercise Let A =

(

0 1
−1 0

)

∈ R2. Find an invertible C ∈ C2 such that

C−1AC is diagonal. Show that C cannot be selected in R2. Find the characteristic
polynomial of A.

Exercise Suppose V is a 3-dimensional vector space and f : V → V is an endo-
morphism with CPf(x) = (x−λ)3. Show that (f −λI) has characteristic polynomial
x3 and is thus a nilpotent endomorphism. Show there is a basis for V so that the

matrix representing f is







λ 0 0
1 λ 0
0 1 λ





,







λ 0 0
1 λ 0
0 0 λ





 or







λ 0 0
0 λ 0
0 0 λ





.

We could continue and finally give an ad hoc proof of the Jordan canonical form,
but in this chapter we prefer to press on to inner product spaces. The Jordan form
will be developed in Chapter 6 as part of the general theory of finitely generated
modules over Euclidean domains. The next section is included only as a convenient
reference.

Jordan Canonical Form

This section should be just skimmed or omitted entirely. It is unnecessary for the
rest of this chapter, and is not properly part of the flow of the chapter. The basic
facts of Jordan form are summarized here simply for reference.

The statement that a square matrix B over a field F is a Jordan block means that
∃ λ ∈ F such that B is a lower triangular matrix of the form

B =

















λ 0
1 λ

·
·

0 1 λ

















. B gives a homomorphism g : F m → F m with g(em) = λem

and g(ei) = ei+1 + λei for 1 ≤ i < m. Note that CPB(x) = (x− λ)m and so λ is the
only eigenvalue of B, and B satisfies its characteristic polynomial, i.e., CPB(B) = 0

¯
.
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Definition A matrix D ∈ Fn is in Jordan form if ∃ Jordan blocks B1, .. , Bt such

that D =





















B1

B2 0
·

·
0

Bt





















. Suppose D is of this form and Bi ∈ Fni
has

eigenvalue λi. Then n1 + · ·+nt = n and CPD(x) = (x− λ1)
n1 · ·(x−λt)

nt. Note that
a diagonal matrix is a special case of Jordan form. D is a diagonal matrix iff each
ni = 1, i.e., iff each Jordan block is a 1 × 1 matrix.

Theorem If A ∈ Fn, the following are equivalent.

1) ∃ an invertible C ∈ Fn such that C−1AC is in Jordan form.

2) ∃ λ1, .., λn ∈ F (not necessarily distinct) such that CPA(x) = (x − λ1) · ·
(x − λn). (In this case we say that all the eigenvalues of A belong to F .)

Theorem Jordan form (when it exists) is unique. This means that if A and D are
similar matrices in Jordan form, they have the same Jordan blocks, except possibly
in different order.

The reader should use the transpose principle to write three other versions of the
first theorem. Also note that we know one special case of this theorem, namely that
if A has n distinct eigenvalues in F , then A is similar to a diagonal matrix. Later on
it will be shown that if A is a symmetric real matrix, then A is similar to a diagonal
matrix.

Let’s look at the classical case A ∈ Rn. The complex numbers are algebraically
closed. This means that CPA(x) will factor completely in C[x], and thus ∃ C ∈ Cn

with C−1AC in Jordan form. C may be selected to be in Rn iff all the eigenvalues
of A are real.

Exercise Find all real matrices in Jordan form that have the following charac-
teristic polynomials: x(x − 2), (x − 2)2, (x − 2)(x − 3)(x − 4), (x − 2)(x − 3)2,
(x − 2)2(x − 3)2, (x − 2)(x − 3)3.

Exercise Suppose D ∈ Fn is in Jordan form and has characteristic polynomial
a0 + a1x + · · +xn. Show a0I + a1D + · · +Dn = 0

¯
, i.e., show CPD(D) = 0

¯
.
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Exercise (Cayley-Hamilton Theorem) Suppose E is a field and A ∈ En.
Assume the theorem that there is a field F containing E such that CPA(x) factors
completely in F [x]. Thus ∃ an invertible C ∈ Fn such that D = C−1AC is in Jordan
form. Use this to show CPA(A) = 0

¯
. (See the second exercise on page 66.)

Exercise Suppose A ∈ Fn is in Jordan form. Show A is nilpotent iff An = 0
¯

iff CPA(x) = xn. (Note how easy this is in Jordan form.)

Inner Product Spaces

The two most important fields for mathematics and science in general are the
real numbers and the complex numbers. Finitely generated vector spaces over R or
C support inner products and are thus geometric as well as algebraic objects. The
theories for the real and complex cases are quite similar, and both could have been
treated here. However, for simplicity, attention is restricted to the case F = R.
In the remainder of this chapter, the power and elegance of linear algebra become
transparent for all to see.

Definition Suppose V is a real vector space. An inner product (or dot product)
on V is a function V × V → R which sends (u, v) to u · v and satisfies

1) (u1r1 + u2r2) · v = (u1 · v)r1 + (u2 · v)r2 for all u1, u2, v ∈ V
v · (u1r1 + u2r2) = (v · u1)r1 + (v · u2)r2 and r1, r2 ∈ R.

2) u · v = v · u for all u, v ∈ V .

3) u · u ≥ 0 and u · u = 0 iff u = 0
¯

for all u ∈ V .

Theorem Suppose V has an inner product.

1) If v ∈ V , f : V → R defined by f(u) = u · v is a homomorphism.
Thus 0

¯
· v = 0.

2) Schwarz’ inequality. If u, v ∈ V, (u · v)2 ≤ (u · u)(v · v).

Proof of 2) Let a =
√

v · v and b =
√

u · u. If a or b is 0, the result is obvious.
Suppose neither a nor b is 0. Now 0 ≤ (ua ± vb) · (ua ± vb) = (u · u)a2 ± 2ab(u · v)+
(v ·v)b2 = b2a2±2ab(u ·v)+a2b2. Dividing by 2ab yields 0 ≤ ab±(u ·v) or | u ·v |≤ ab.



Chapter 5 Linear Algebra 99

Theorem Suppose V has an inner product. Define the norm or length of a vector
v by ‖v‖ =

√
v · v. The following properties hold.

1) ‖v‖ = 0 iff v = 0
¯
.

2) ‖vr‖ = ‖v‖ | r |.

3) | u · v | ≤ ‖u‖‖v‖. (Schwarz’ inequality)

4) ‖u + v‖ ≤ ‖u‖ + ‖v‖. (The triangle inequality)

Proof of 4) ‖u + v‖2 = (u + v) · (u + v) = ‖u‖2 + 2(u · v) + ‖v‖2 ≤ ‖u‖2 +
2‖u‖‖v‖+ ‖v‖2 = (‖u‖ + ‖v‖)2.

Definition An Inner Product Space (IPS) is a real vector space with an
inner product. Suppose V is an IPS. A sequence {v1, .., vn} is orthogonal provided
vi · vj = 0 when i 6= j. The sequence is orthonormal if it is orthogonal and each
vector has length 1, i.e., vi · vj = δi,j for 1 ≤ i, j ≤ n.

Theorem If S = {v1, .., vn} is an orthogonal sequence of non-zero vectors in an

IPS V, then S is independent. Furthermore

{

v1

‖v1‖
, · · · , vn

‖vn‖

}

is orthonormal.

Proof Suppose v1r1 + · · +vnrn = 0
¯
. Then 0 = (v1r1 + · · +vnrn) · vi = ri(vi · vi)

and thus ri = 0. Thus S is independent. The second statement is transparent.

It is easy to define an inner product, as is shown by the following theorem.

Theorem Suppose V is a real vector space with a basis S = {v1, .., vn}. Then
there is a unique inner product on V which makes S an orthornormal basis. It is
given by the formula (v1r1 + · · +vnrn) · (v1s1 + · · +vnsn) = r1s1 + · · +rnsn.

Convention Rn will be assumed to have the standard inner product defined by
(r1, .., rn)t · (s1, .., sn)t = r1s1 + · ·+rnsn. S = {e1, .., en} will be called the canonical

or standard orthonormal basis (see page 72). The next theorem shows that this
inner product has an amazing geometry.

Theorem If u, v ∈ Rn, u · v = ‖u‖‖v‖ cos Θ where Θ is the angle between u
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and v.

Proof Let u = (r1, .., rn) and v = (s1, .., sn). By the law of cosines ‖u − v‖2 =
‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos Θ. So (r1 − s1)

2 + · · +(rn − sn)2 = r2
1 + · · +r2

n + s2
1 + · ·

+s2
n − 2‖u‖‖v‖ cos Θ. Thus r1s1 + · · +rnsn = ‖u‖‖v‖ cos Θ.

Exercise This is a simple exercise to observe that hyperplanes in Rn are cosets.
Suppose f : Rn → R is a non-zero homomorphism given by a matrix A = (a1, .., an) ∈
R1,n. Then L = ker(f) is the set of all solutions to a1x1 + · · +anxn = 0, i.e., the

set of all vectors perpendicular to A. Now suppose b ∈ R and C =











c1

·
·
cn











∈ Rn

has f(C) = b. Then f−1(b) is the set of all solutions to a1x1 + · · +anxn = b which
is the coset L+C, and this the set of all solutions to a1(x1−c1)+ · ·+an(xn−cn) = 0.

Gram-Schmidt orthonormalization

Theorem (Fourier series) Suppose W is an IPS with an orthonormal basis
{w1, .., wn}. Then if v ∈ W , v = w1(v · w1) + · · +wn(v · wn).

Proof v = w1r1 + · · +wnrn and v · wi = (w1r1 + · · +wnrn) · wi = ri

Theorem Suppose W is an IPS, Y ⊂ W is a subspace with an orthonormal basis
{w1, .., wk}, and v ∈ W −Y . Define the projection of v onto Y by p(v) = w1(v ·w1)+ · ·
+wk(v ·wk), and let w = v−p(v). Then (w ·wi) = (v−w1(v ·w1)··−wk(v ·wk))·wi = 0.

Thus if wk+1 =
w

‖w‖ , then {w1, .., wk+1} is an orthonormal basis for the subspace

generated by {w1, .., wk, v}. If {w1, .., wk, v} is already orthonormal, wk+1 = v.

Theorem (Gram-Schmidt) Suppose W is an IPS with a basis {v1, .., vn}.
Then W has an orthonormal basis {w1, .., wn}. Moreover, any orthonormal sequence
in W extends to an orthonormal basis of W .

Proof Let w1 =
v1

‖v1‖
. Suppose inductively that {w1, .., wk} is an orthonormal

basis for Y , the subspace generated by {v1, .., vk}. Let w = vk+1 − p(vk+1) and
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wk+1 =
w

‖w‖ . Then by the previous theorem, {w1, .., wk+1} is an orthonormal basis

for the subspace generated by {w1, .., wk, vk+1}. In this manner an orthonormal basis
for W is constructed. Notice that this construction defines a function h which sends
a basis for W to an orthonormal basis for W (see topology exercise on page 103).

Now suppose W has dimension n and {w1, .., wk} is an orthonormal sequence in
W . Since this sequence is independent, it extends to a basis {w1, .., wk, vk+1, .., vn}.
The process above may be used to modify this to an orthonormal basis {w1, .., wn}.

Exercise Let f : R3 → R be the homomorphism defined by the matrix (2,1,3).
Find an orthonormal basis for the kernel of f . Find the projection of (e1 + e2) onto
ker(f). Find the angle between e1 + e2 and the plane ker(f).

Exercise Let W = R3 have the standard inner product and Y ⊂ W be the
subspace generated by {w1, w2} where w1 = (1, 0, 0)t and w2 = (0, 1, 0)t. W is
generated by the sequence {w1, w2, v} where v = (1, 2, 3)t. As in the first theorem
of this section, let w = v − p(v), where p(v) is the projection of v onto Y , and set

w3 =
w

‖w‖ . Find w3 and show that for any t with 0 ≤ t ≤ 1, {w1, w2, (1− t)v + tw3}
is a basis for W . This is a key observation for an exercise on page 103 showing O(n)
is a deformation retract of GLn(R).

Isometries Suppose each of U and V is an IPS. A homomorphism f : U → V
is said to be an isometry provided it is an isomorphism and for any u1, u2 in U ,
(u1 · u2)U = (f(u1) · f(u2))V .

Theorem Suppose each of U and V is an n-dimensional IPS, {u1, .., un} is an
orthonormal basis for U , and f : U → V is a homomorphism. Then f is an isometry
iff {f(u1), .., f(un)} is an orthonormal sequence in V .

Proof Isometries certainly preserve orthonormal sequences. So suppose T =
{f(u1), .., f(un)} is an orthonormal sequence in V . Then T is independent and thus
T is a basis for V and thus f is an isomorphism (see the second theorem on page 79).
It is easy to check that f preserves inner products.

We now come to one of the definitive theorems in linear algebra. It is that, up to
isometry, there is only one inner product space for each dimension.
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Theorem Suppose each of U and V is an n-dimensional IPS. Then ∃ an isometry
f : U → V. In particular, U is isometric to Rn with its standard inner product.

Proof There exist orthonormal bases {u1, .., un} for U and {v1, .., vn} for V .
By the first theorem on page 79, there exists a homomorphism f : U → V with
f(ui) = vi, and by the previous theorem, f is an isometry.

Exercise Let f : R3 → R be the homomorphism defined by the matrix (2,1,3).
Find a linear transformation h : R2 → R3 which gives an isometry from R2 to ker(f).

Orthogonal Matrices

As noted earlier, linear algebra is not so much the study of vector spaces as it is
the study of endomorphisms. We now wish to study isometries from Rn to Rn.

We know from a theorem on page 90 that an endomorphism preserves volume iff
its determinant is ±1. Isometries preserve inner product, and thus preserve angle and
distance, and so certainly preserve volume.

Theorem Suppose A ∈ Rn and f : Rn → Rn is the homomorphism defined by
f(B) = AB. Then the following are equivalent.

1) The columns of A form an orthonormal basis for Rn, i.e., AtA = I.
2) The rows of A form an orthonormal basis for Rn, i.e., AAt = I.
3) f is an isometry.

Proof A left inverse of a matrix is also a right inverse (see the exercise on
page 64). Thus 1) and 2) are equivalent because each of them says A is invert-
ible with A−1 = At. Now {e1, .., en} is the canonical orthonormal basis for Rn, and
f(ei) is column i of A. Thus by the previous section, 1) and 3) are equivalent.

Definition If A ∈ Rn satisfies these three conditions, A is said to be orthogonal.
The set of all such A is denoted by O(n), and is called the orthogonal group.

Theorem

1) If A is orthogonal, | A |= ±1.

2) If A is orthogonal, A−1 is orthogonal. If A and C are orthogonal, AC is
orthogonal. Thus O(n) is a multiplicative subgroup of GLn(R).
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3) Suppose A is orthogonal and f is defined by f(B) = AB. Then f preserves

distances and angles. This means that if u, v ∈ Rn, ‖u − v‖ =

‖f(u)−f(v)‖ and the angle between u and v is equal to the angle between

f(u) and f(v).

Proof Part 1) follows from |A|2 = |A| |At| = |I| = 1. Part 2) is imme-
diate, because isometries clearly form a subgroup of the multiplicative group of
all automorphisms. For part 3) assume f : Rn → Rn is an isometry. Then
‖u − v‖2 = (u − v) · (u − v) = f(u − v) · f(u − v) = ‖f(u − v)‖2 = ‖f(u) − f(v)‖2.
The proof that f preserves angles follows from u · v = ‖u‖‖v‖cosΘ.

Exercise Show that if A ∈ O(2) has |A| = 1, then A =

(

cosΘ −sinΘ
sinΘ cosΘ

)

for

some number Θ. (See the exercise on page 56.)

Exercise (topology) Let Rn ≈ Rn2

have its usual metric topology. This means
a sequence of matrices {Ai} converges to A iff it converges coordinatewise. Show
GLn(R) is an open subset and O(n) is closed and compact. Let h : GLn(R) →
O(n) be defined by Gram-Schmidt. Show H : GLn(R) × [0, 1] → GLn(R) defined
by H(A, t) = (1 − t)A + th(A) is a deformation retract of GLn(R) to O(n).

Diagonalization of Symmetric Matrices

We continue with the case F = R. Our goals are to prove that, if A is a symmetric
matrix, all of its eigenvalues are real and that ∃ an orthogonal matrix C such that
C−1AC is diagonal. As background, we first note that symmetric is the same as
self-adjoint.

Theorem Suppose A ∈ Rn and u, v ∈ Rn. Then (Atu) · v = u · (Av).

Proof If y, z ∈ Rn, then the dot product y · z, is the matrix product ytz, and
matrix multiplication is associative. Thus (Atu) · v = (utA)v = ut(Av) = u · (Av).

Definition Suppose A ∈ Rn. A is said to be symmetric provided At = A. Note
that any diagonal matrix is symmetric. A is said to be self-adjoint if (Au)·v = u·(Av)
for all u, v ∈ Rn. The next theorem is just an exercise using the previous theorem.

Theorem A is symmetric iff A is self-adjoint.
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Theorem Suppose A ∈ Rn is symmetric. Then ∃ real numbers λ1, .., λn (not
necessarily distinct) such that CPA(x) = (x − λ1)(x − λ2) · · · (x − λn). That is, all
the eigenvalues of A are real.

Proof We know CPA(x) factors into linears over C. If µ = a + bi is a complex
number, its conjugate is defined by µ̄ = a − bi. If h : C → C is defined by h(µ) = µ̄,
then h is a ring isomorphism which is the identity on R. If w = (ai,j) is a complex
matrix or vector, its conjugate is defined by w̄ = (āi,j). Since A ∈ Rn is a real
symmetric matrix, A = At = Āt. Now suppose λ is a complex eigenvalue of A
and v ∈ Cn is an eigenvector with Av = λv. Then λ(vtv̄) = (λv)tv̄ = (Av)tv̄ =
(vtA)v̄ = vt(Av̄) = vt(Av) = vt(λv) = λ̄(vtv̄). Thus λ = λ̄ and λ ∈ R. Or
you can define a complex inner product on Cn by (w · v) = wtv̄. The proof then
reads as λ(v · v) = (λv · v) = (Av · v) = (v · Av) = (v · λv) = λ̄(v · v). Either way,
λ is a real number.

We know that eigenvectors belonging to distinct eigenvalues are linearly indepen-
dent. For symmetric matrices, we show more, namely that they are perpendicular.

Theorem Suppose A is symmetric, λ1, λ2 ∈ R are distinct eigenvalues of A, and
Au = λ1u and Av = λ2v. Then u · v = 0.

Proof λ1(u · v) = (Au) · v = u · (Av) = λ2(u · v).

Review Suppose A ∈ Rn and f : Rn → Rn is defined by f(B) = AB. Then A
represents f w.r.t. the canonical orthonormal basis. Let S = {v1, .., vn} be another
basis and C ∈ Rn be the matrix with vi as column i. Then C−1AC is the matrix
representing f w.r.t. S. Now S is an orthonormal basis iff C is an orthogonal matrix.

Summary Representing f w.r.t. an orthonormal basis is the same as conjugating
A by an orthogonal matrix.

Theorem Suppose A ∈ Rn and C ∈ O(n). Then A is symmetric iff C−1AC
is symmetric.

Proof Suppose A is symmetric. Then (C−1AC)t = CtA(C−1)t = C−1AC.

The next theorem has geometric and physical implications, but for us, just the
incredibility of it all will suffice.
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Theorem If A ∈ Rn, the following are equivalent.

1) A is symmetric.

2) ∃ C ∈ O(n) such that C−1AC is diagonal.

Proof By the previous theorem, 2) ⇒ 1). Show 1) ⇒ 2). Suppose A is a
symmetric 2×2 matrix. Let λ be an eigenvalue for A and {v1, v2} be an orthonormal
basis for R2 with Av1 = λv1. Then w.r.t this basis, the transformation determined

by A is represented by

(

λ b
0 d

)

. Since this matrix is symmetric, b = 0.

Now suppose by induction that the theorem is true for symmetric matrices in
Rt for t < n, and suppose A is a symmetric n × n matrix. Denote by λ1, .., λk the
distinct eigenvalues of A, k ≤ n. If k = n, the proof is immediate, because then there
is a basis of eigenvectors of length 1, and they must form an orthonormal basis. So
suppose k < n. Let v1, .., vk be eigenvectors for λ1, .., λk with each ‖ vi ‖= 1. They
may be extended to an orthonormal basis v1, .., vn. With respect to this basis, the

transformation determined by A is represented by































λ1

·
·

λk











(B)

(0) (D)





















.

Since this is a symmetric matrix, B = 0 and D is a symmetric matrix of smaller
size. By induction, ∃ an orthogonal C such that C−1DC is diagonal. Thus conjugating

by

(

I 0
0 C

)

makes the entire matrix diagonal.

This theorem is so basic we state it again in different terminology. If V is an IPS, a
linear transformation f : V → V is said to be self-adjoint provided (u·f(v)) = (f(u)·v)
for all u, v ∈ V .

Theorem If V is an n-dimensional IPS and f : V → V is a linear transformation,
then the following are equivalent.

1) f is self-adjoint.

2) ∃ an orthonormal basis {v1, ..., vn} for V with each

vi an eigenvector of f .
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Exercise Let A =

(

2 2
2 2

)

. Find an orthogonal C such that C−1AC is diagonal.

Do the same for A =

(

2 1
1 2

)

.

Exercise Suppose A, D ∈ Rn are symmetric. Under what conditions are A and D
similar? Show that, if A and D are similar, ∃ an orthogonal C such that D = C−1AC.

Exercise Suppose V is an n-dimensional real vector space. We know that V is
isomorphic to Rn. Suppose f and g are isomorphisms from V to Rn and A is a subset
of V . Show that f(A) is an open subset of Rn iff g(A) is an open subset of Rn. This
shows that V , an algebraic object, has a god-given topology. Of course, if V has
an inner product, it automatically has a metric, and this metric will determine that
same topology. Finally, suppose V and W are finite-dimensional real vector spaces
and h : V → W is a linear transformation. Show that h is continuous.

Exercise Define E : Cn → Cn by E(A) = eA = I + A + (1/2!)A2 + ··. This series
converges and thus E is a well defined function. If AB = BA, then E(A + B) =
E(A)E(B). Since A and −A commute, I = E(0

¯
) = E(A − A) = E(A)E(−A), and

thus E(A) is invertible with E(A)−1 = E(−A). Furthermore E(At) = E(A)t, and
if C is invertible, E(C−1AC) = C−1E(A)C. Now use the results of this section to
prove the statements below. (For part 1, assume the Jordan form, i.e., assume any
A ∈ Cn is similar to a lower triangular matrix.)

1) If A ∈ Cn, then | eA |= etrace(A). Thus if A ∈ Rn, | eA |= 1
iff trace(A) = 0.

2) ∃ a non-zero matrix N ∈ R2 with eN = I.

3) If N ∈ Rn is symmetric, then eN = I iff N = 0
¯
.

4) If A ∈ Rn and At = −A, then eA ∈ O(n).


