Parking Modules

Armstrong, Reiner, Rhoades

A parking function is a vector $(a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

"fits under a staircase"

A parking function is a vector $(a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

"fits under a staircase"

Think:

- One way street with n parking spaces
- Car i wants to park in space a_i
- If space a_i is full, she parks in next available space
- Car 1 parks first, then Car 2, etc.
- " \vec{a} is a **parking function**" means "everyone **is able** to park"

Example: 3 cars

Example: 3 cars

16 parking functions & 5 orbits

Example: 3 cars

16 parking functions & 5 orbits $(n+1)^{n-1}$ $\frac{1}{n+1} \binom{2n}{n}$ "Catalan"

Idea (Pollack, 1974): a **circular** street with n+1 spaces

- choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$
- Everyone can park. One empty spot remains.
- is parking function \iff space n+1 is empty
- one parking function per rotation class

Idea (Pollack, 1974): a **circular** street with n+1 spaces

- choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$
- Everyone can park. One empty spot remains.
- is parking function \iff space n+1 is empty
- one parking function per rotation class

Conclusion:

"modulo rotation"

Parking Functions = cosets $\left(\mathbb{Z}/(n+1)\mathbb{Z}\right)^n/(1,1,\ldots,1)$

$$(n+1)^{n-1} = \frac{(n+1)^n}{n+1}$$

Idea (Haiman, 1996): generalize to Weyl groups

- type A root lattice $Q = \mathbb{Z}^n/(1, 1, ..., 1)$
- …so Parking Functions are

$$\left(\mathbb{Z}/(n+1)\mathbb{Z}\right)^n/(1,1,\ldots,1) \cong_{S_n} Q/(n+1)Q$$

the "finite torus"

Idea (Haiman, 1996): generalize to Weyl groups

• type A root lattice
$$Q = \mathbb{Z}^n/(1, 1, ..., 1)$$

…so Parking Functions are

$$\left(\mathbb{Z}/(n+1)\mathbb{Z}\right)^n/(1,1,\ldots,1)\cong_{S_n} Q/(n+1)Q$$

the "finite torus"

Now consider:

- Weyl group $W \subseteq GL(V)$
- root lattice
- Coxeter number $h_{order of a}$ "Coxeter element"

The Original Parking Module (Haiman)

$\mathsf{Park}(W) = Q/(h+1)Q$

The Original Parking Module (Haiman)

$$\mathsf{Park}(W) = Q/(h+1)Q$$

The character is...

$$\chi_{\mathsf{Park}}(w) = (h+1)^{\dim(V^w)}$$

dimension of the "fixed space"

The Original Parking Module (Haiman)

$$\mathsf{Park}(W) = Q/(h+1)Q$$

The number of orbits is...

$$\mathsf{Cat}(W) = \prod_i \frac{h+d_i}{d_i}_{\text{the "degrees" of the group}}$$

The Shi arrangement of hyperplanes is:

$$\mathsf{Shi}(W) := \{H_{\alpha,k} : \alpha \in \Phi^+, k \in \{0,1\}\}$$

where $H_{\alpha,k} := \{x \in V : (x,\alpha) = k\}$

The Shi arrangement of hyperplanes is:

Shi(W) :=
$$\{H_{\alpha,k} : \alpha \in \Phi^+, k \in \{0,1\}\}$$

where $H_{\alpha,k} := \{x \in V : (x,\alpha) = k\}$

There exists a uniform **BIJECTION** (Cellini-Papi, Shi):

$$Q/(h+1)Q \longrightarrow \text{regions of } Shi(W)$$
Cellini-Papi Shi

$$(h+1)^{\dim(V)}$$

Picture for $W = S_3$

Type A: Label region R by pair (w, π) where permutation, partition

- R is in the **cone** corresponding to $w \in S_n$
- π is a **partition** of $\{1, 2, \ldots, n\}$ defined by

For example:

For example:

Theorem (Pak-Stanley, Athanasiadis-Linusson):

Shi regions = labels (w,π) where

 π is NN and blocks are increasing wrt w

For example:

Definition: The "**ceiling partition**" of the label (w,π) is...

 $w\cdot\pi$ i.e. w acting on π

For example:

Definition: The "ceiling partition" of the label (w,π) is...

 $w\cdot\pi$ i.e. w acting on π

e.g. w = 2137456 $\pi = \{1, 3, 6, 7\}, \{2, 5\}, \{4\}$ $w \cdot \pi = \{1, 4\}, \{2, 3, 5, 6\}, \{7\}$

For example:

Theorem (Armstrong-Rhoades):

Let μ be a partition of $\{1, 2, \ldots, n\}$ with k blocks. Then...

Number of Shi regions with ceiling partition μ is $\frac{n!}{(n-k+1)!}$

Corollary:

Total number of Shi chambers

$$= \sum_{k} \operatorname{Stir}(n,k) \frac{n!}{(n-k+1)!}$$

$$= (n+1)^{n-1}$$
new proof

NN to NC

Q: Why not do the same for nonCrossing partitions?

- i.e. Consider pairs (w,π) where
 - π is a NC partition
 - $\bullet \ w$ is a permutation ${\it increasing}$ on blocks of π

NN to NC

Q: Why not do the same for nonCrossing partitions?

- i.e. Consider pairs (w,π) where
 - π is a NC partition
 - $\bullet \ w$ is a permutation ${\it increasing}$ on blocks of π
- A: Indeed, why not?

Again consider Weyl group $W \subseteq GL(V)$

A "Galois Correspondence":

...some flats/partitions are NN, some are NC...

A General Construction: For $\mathscr{F} \subseteq \mathscr{L}(W)$ define

$$\mathsf{Park}^{\mathscr{F}} := \{(w,X): w \in W, X \in \mathscr{L}(W), w \cdot X \in \mathscr{F}\} / \sim$$

ere
$$(w, X) \sim (w', X') \iff M = X'$$

 $wW_X = w'W_{X'}$

where

Note: Park^F is a W-module. $u \cdot [w, X] := [wu^{-1}, uX]$

Special Kinds of Flats/Partitions:

- **1.** $\mathsf{NN}(W) \subseteq \mathscr{L}(W)$
 - A "nonnesting partition" is an antichain in (Φ^+, \leq)

Special Kinds of Flats/Partitions:

- $\mathsf{I}_{\bullet} \mathsf{NN}(W) \subseteq \mathscr{L}(W)$
 - A flat/partition $X \in \mathscr{L}(W)$ is called "nonnesting" if

$$X = \bigcap_{a \in A} a^{\perp}$$

for some antichain $A \in \Phi^+$

Special Kinds of Flats/Partitions:

2. $NC(W) \subseteq \mathscr{L}(W)$

- Let $c \in W$ be a "Coxeter element" (e.g. an n-cycle)
- A "noncrossing partition" is a group element

$$w \in [\mathrm{id}, c]_T$$

where $T \subseteq W$ are the **reflections** in Wand $[\mathrm{id}, c]_T$ is an interval in the **Cayley graph** wrt T

Special Kinds of Flats/Partitions:

2. $NC(W) \subseteq \mathscr{L}(W)$

• A flat/partition $X \in \mathscr{L}(W)$ is called "noncrossing" if

$$X = V^w$$

for some noncrossing $\,w\in W\,$

Special Kinds of Flats/Partitions:

2. $NC(W) \subseteq \mathscr{L}(W)$

• A flat/partition $X \in \mathscr{L}(W)$ is called "noncrossing" if

$$X = V^w$$

for some noncrossing $\,w\in W\,$

Now Some Theorems??

Some Theorems (ARR):

1. $Park^{NN(W)}$ is a parking module.

i.e.
$$\operatorname{Park}^{\operatorname{NN}(W)} \cong_W Q/(h+1)Q$$

Proof is **Uniform** for Weyl Groups. (smile)

Some Theorems (ARR):

2. $Park^{NC(W)}$ is a parking module.

i.e.
$$\operatorname{Park}^{\operatorname{NC}(W)} \cong_W Q/(h+1)Q$$

Proof is Case-By-Case. (frown)

Some Theorems (ARR):

But wait... $Park^{NC(W)}$ has more structure.

cyclic group of order "h" generated by Coxeter element Let $\, C = \langle c \rangle \,$

Then $\mathsf{Park}^{\mathsf{NC}(W)}$ is a $W \times C$ -module:

$$(u, c^d) \cdot [w, X] := [c^d w u^{-1}, uX]$$

Some Theorems (ARR):

2'. Park^{NC(W)} has $W \times C$ -character (not yet checked for exceptional types)

$$\chi(w, c^d) = \lim_{q \to \zeta^d} \frac{\det(1 - q^{h+1}w)}{\det(1 - qw)}$$

$$\zeta = e^{2\pi i/h}$$

$$= (h+1)^{\operatorname{mult}_w(\zeta^d)}$$
eigenvalue multiplicity

Second Last Slide

Some Remarks:

- 1. $Park^{\mathscr{F}}$ for other kinds of flats/partitions?
- **2.** $\mathsf{Park}^{\mathsf{NC}(W)}$ works for more groups W.
- 3. Where's the cyclic action on Park^{NN(W)}? Panyushev?

Last Slide

Wanted: Equivariant Bijection

