Parking Modules

Armstrong, Reiner, Rhoades

PF

A parking function is a vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, b_{i} \leq i
$$

"fits under a staircase"

A parking function is a vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, \quad b_{i} \leq i
$$

"fits under a staircase"

- One way street with n parking spaces
- Car i wants to park in space a_{i}
- If space a_{i} is full, she parks in next available space
- Car 1 parks first, then Car 2, etc.
- " \vec{a} is a parking function" means "everyone is able to park"

PF

Example: 3 cars

$$
\begin{array}{llllll}
(1,1,1) & & & & & \\
(1,1,2) & (1,2,1) & (2,1,1) & & & \\
(1,1,3) & (1,3,1) & (3,1,1) & & & \\
(1,2,2) & (2,1,2) & (2,2,1) & & & \\
(1,2,3) & (1,3,2) & (2,1,3) & (2,3,1) & (3,1,2) & (3,2,1)
\end{array}
$$

PF

Example: 3 cars

$(1,1,1)$					
$(1,1,2)$	$(1,2,1)$	$(2,1,1)$			
$(1,1,3)$	$(1,3,1)$	$(3,1,1)$			
$(1,2,2)$	$(2,1,2)$	$(2,2,1)$		$(3,1,2)$	$(3,2,1)$

16 parking functions \& 5 orbits

Example: 3 cars

$(1,1,1)$
$(1,1,2) \quad(1,2,1) \quad(2,1,1)$
$(1,1,3) \quad(1,3,1) \quad(3,1,1)$
$(1,2,2) \quad(2,1,2) \quad(2,2,1)$
$(1,2,3) \quad(1,3,2) \quad(2,1,3)$
$(2,3,1) \quad(3,1,2) \quad(3,2,1)$

16 parking functions \& 5 orbits

$$
(n+1)^{n-1} \quad \frac{1}{n+1}\binom{2 n}{n}
$$

"Catalan"

PF to algebra

Idea (Pollack, 1974): a circular street with $n+1$ spaces

- choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$
- Everyone can park. One empty spot remains.
- is parking function \Longleftrightarrow space $n+1$ is empty
- one parking function per rotation class

PF to algebra

Idea (Pollack, 1974): a circular street with $n+1$ spaces

- choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$
- Everyone can park. One empty spot remains.
- is parking function \Longleftrightarrow space $n+1$ is empty
- one parking function per rotation class

Conclusion:

"modulo rotation"
Parking Functions $=\operatorname{cosets}(\mathbb{Z} /(n+1) \mathbb{Z})^{n} /(1,1, \ldots, 1)$

$$
(n+1)^{n-1}=\frac{(n+1)^{n}}{n+1}
$$

PF to algebra

Idea (Haiman, 1996): generalize to Weyl groups

- type A root lattice $Q=\mathbb{Z}^{n} /(1,1, \ldots, 1)$
- ...so Parking Functions are

$$
(\mathbb{Z} /(n+1) \mathbb{Z})^{n} /(1,1, \ldots, 1) \cong_{S_{n}} Q /(n+1) Q
$$

the "finite torus"

PF to algebra

Idea (Haiman, 1996): generalize to Weyl groups

- type A root lattice $Q=\mathbb{Z}^{n} /(1,1, \ldots, 1)$
- ...so Parking Functions are

$$
(\mathbb{Z} /(n+1) \mathbb{Z})^{n} /(1,1, \ldots, 1) \cong_{S_{n}} Q /(n+1) Q
$$

the "finite torus"
Now consider:

- Weyl group

$$
W \subseteq G L(V)
$$

- root lattice
Q
- Coxeter number $h_{\text {order of a "Coxeter element" }}$

PF to algebra

The Original Parking Module (Haiman)

$$
\operatorname{Park}(W)=Q /(h+1) Q
$$

PF to algebra

The Original Parking Module (Haiman)

$$
\operatorname{Park}(W)=Q /(h+1) Q
$$

The character is...

$$
\chi_{\text {Park }}(w)=(h+1)^{\operatorname{dim}\left(V^{w}\right)}
$$

dimension of the "fixed space"

PF to algebra

The Original Parking Module (Haiman)

$\operatorname{Park}(W)=Q /(h+1) Q$
The number of orbits is...
$\operatorname{Cat}(W)=\prod_{i} \frac{h+d_{i}}{d_{i}}$
the "degrees" of the group

PF to Shi

The Shi arrangement of hyperplanes is:

$$
\begin{aligned}
& \operatorname{Shi}(W):=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k \in\{0,1\}\right\} \\
& \quad \text { where } H_{\alpha, k}:=\{x \in V:(x, \alpha)=k\}
\end{aligned}
$$

PF to Shi

The Shi arrangement of hyperplanes is:

$$
\begin{aligned}
& \operatorname{Shi}(W):=\left\{H_{\alpha, k}: \alpha \in \Phi^{+}, k \in\{0,1\}\right\} \\
& \quad \text { where } H_{\alpha, k}:=\{x \in V:(x, \alpha)=k\}
\end{aligned}
$$

There exists a uniform BIJECTION (Cellini-Papi, Shi):

$$
Q /(h+1) Q \underset{\text { Cellini-Papi }}{\longrightarrow} \text { regions of } \operatorname{Shi}(W)
$$

$$
(h+1)^{\operatorname{dim}(V)}
$$

PF to Shi

Picture for $W=S_{3}$

Shi to NN

Type A: Label region R by pair (w, π) where permutation, partition

- R is in the cone corresponding to $w \in S_{n}$
- π is a partition of $\{1,2, \ldots, n\}$ defined by

$$
\begin{gathered}
i \sim_{\pi j} j \\
i \leq j
\end{gathered} \Longleftrightarrow \begin{gathered}
e_{i}-e_{j}=1 \\
\text { is above } R
\end{gathered}
$$

Shi to NN

For example:

Shi to NN

For example:

Theorem (Pak-Stanley, Athanasiadis-Linusson):
Shi regions $=$ labels (w, π) where
π is NN and blocks are increasing wrt w

Shi to NN

For example:

Definition: The "ceiling partition" of the label (w, π) is...

$$
w \cdot \pi \quad \text { i.e. } w \text { acting on } \pi
$$

Shi to NN

For example:

Definition: The "ceiling partition" of the label (w, π) is...

$$
w \cdot \pi \quad \text { i.e. } w \text { acting on } \pi
$$

$$
\text { e.g. } \begin{aligned}
w & =2137456 \\
\pi & =\{1,3,6,7\},\{2,5\},\{4\} \\
w \cdot \pi & =\{1,4\},\{2,3,5,6\},\{7\}
\end{aligned}
$$

Shi to NN

For example:

Theorem (Armstrong-Rhoades):

Let μ be a partition of $\{1,2, \ldots, n\}$ with k blocks. Then...
Number of Shi regions with ceiling partition μ is $\frac{n!}{(n-k+1)!}$

Shi to NN

Corollary:

Total number of Shi chambers

$$
\begin{aligned}
& =\sum_{k} \operatorname{Stir}(n, k) \frac{n!}{(n-k+1)!} \\
& =(n+1)^{n-1} \\
& \text { new proof }
\end{aligned}
$$

NN to NC

Q: Why not do the same for nonCrossing partitions?

i.e. Consider pairs (w, π) where

- π is a NC partition
- w is a permutation increasing on blocks of π

NN to NC

Q: Why not do the same for nonCrossing partitions?

i.e. Consider pairs (w, π) where

- π is a NC partition
- w is a permutation increasing on blocks of π

A: Indeed, why not?

Now Some Algebra

Again consider Weyl group $W \subseteq G L(V)$
A "Galois Correspondence":
lattice of
parabolic subgroups
$\mathscr{P}(W) \quad \rightarrow \quad \mathscr{L}(W) \quad \ldots o r "$ "artitions"
parabolic subgroup U
$\mapsto \quad V^{U}$
the "fixed space"
...some flats/partitions are NN, some are NC...

Now Some Algebra

A General Construction: For $\mathscr{F} \subseteq \mathscr{L}(W)$ define

$$
\operatorname{Park}^{\mathscr{F}}:=\{(w, X): w \in W, X \in \mathscr{L}(W), w \cdot X \in \mathscr{F}\} / \sim
$$

$$
\text { where } \begin{array}{ccc}
& & X=X^{\prime} \\
(w, X) \sim\left(w^{\prime}, X^{\prime}\right) \Longleftrightarrow & \begin{array}{c}
\text { and } \\
w W_{X}=w^{\prime} W_{X^{\prime}}
\end{array}
\end{array}
$$

Note: Park ${ }^{\mathscr{F}}$ is a W-module.

$$
u \cdot[w, X]:=\left[w u^{-1}, u X\right]
$$

Now Some Algebra

Special Kinds of Flats/Partitions:

1. $\mathrm{NN}(W) \subseteq \mathscr{L}(W)$

- A "nonnesting partition" is an antichain in $\left(\Phi^{+}, \leq\right)$
e.g.

Now Some Algebra

Special Kinds of Flats/Partitions:

1. $\mathrm{NN}(W) \subseteq \mathscr{L}(W)$

- A flat/partition $X \in \mathscr{L}(W)$ is called "nonnesting" if

$$
X=\bigcap_{a \in A} a^{\perp}
$$

for some antichain $A \in \Phi^{+}$

Now Some Algebra

Special Kinds of Flats/Partitions:

2. $\mathrm{NC}(W) \subseteq \mathscr{L}(W)$

- Let $c \in W$ be a "Coxeter element" (e.g. an n-cycle)
- A "noncrossing partition" is a group element

$$
w \in[\mathrm{id}, c]_{T}
$$

where $T \subseteq W$ are the reflections in W and $[\mathrm{id}, c]_{T}$ is an interval in the Cayley graph wrt T

Now Some Algebra

Special Kinds of Flats/Partitions:

2. $\mathrm{NC}(W) \subseteq \mathscr{L}(W)$

- A flat/partition $X \in \mathscr{L}(W)$ is called "noncrossing" if

$$
X=V^{w}
$$

for some noncrossing $w \in W$

Now Some Algebra

Special Kinds of Flats/Partitions:

2. $\mathrm{NC}(W) \subseteq \mathscr{L}(W)$

- A flat/partition $X \in \mathscr{L}(W)$ is called "noncrossing" if

$$
X=V^{w}
$$

for some noncrossing $w \in W$

Now Some Theorems??

Now Some Theorems

Some Theorems (ARR):

1. Park ${ }^{\mathrm{NN}(W)}$ is a parking module.
i.e. $\operatorname{Park}^{\mathrm{NN}(W)} \cong_{W} Q /(h+1) Q$

Proof is Uniform for Weyl Groups. (smile)

Now Some Theorems

Some Theorems (ARR):

2. $\operatorname{Park}{ }^{\mathrm{NC}(W)}$ is a parking module.
i.e. $\operatorname{Park}^{\mathrm{NC}(W)} \cong_{W} Q /(h+1) Q$

Proof is Case-By-Case. (frown)

Now Some Theorems

Some Theorems (ARR):

But wait... Park ${ }^{N C(W)}$ has more structure.
cyclic group of order " h " generated by Coxeter element
Let $C=\langle c\rangle$
Then Park ${ }^{\mathrm{NC}(W)}$ is a $W \times C$-module:

$$
\left(u, c^{d}\right) \cdot[w, X]:=\left[c^{d} w u^{-1}, u X\right]
$$

Now Some Theorems

Some Theorems (ARR):

2^{\prime}. Park ${ }^{\mathrm{NC}(W)}$ has $W \times C$-character
(not yet checked for exceptional types)

$$
\begin{array}{rlr}
\chi\left(w, c^{d}\right) & =\lim _{q \rightarrow \zeta^{d}} \frac{\operatorname{det}\left(1-q^{h+1} w\right)}{\operatorname{det}(1-q w)} & \\
& =(h+1)^{\operatorname{mult}_{w}\left(\zeta^{d}\right)} \quad \zeta=e^{2 \pi i / h} \\
& \quad \text { eigenvalue multiplicity }
\end{array}
$$

Second Last Slide

Some Remarks:

1. Park ${ }^{\mathscr{F}}$ for other kinds of flats/partitions?
2. Park ${ }^{\mathrm{NC}(W)}$ works for more groups W.
3. Where's the cyclic action on Park ${ }^{\mathrm{NN}(W)}$?

Panyushev?

Last Slide

Wanted: Equivariant Bijection

$$
\operatorname{Park}^{\mathrm{NN}(W)} \longleftrightarrow \operatorname{Park}^{\mathrm{NC}(W)}
$$

cyclic action

?
enumeration
cyclic action

Thanks!

