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A parking function is a vector                               whose
increasing rearrangement                             satisfies: 

	 PF

∀i, bi ≤ i
“fits under a staircase”

b1 ≤ b2 ≤ · · · ≤ bn

(a1, a2, . . . , an) ∈ Nn



A parking function is a vector                               whose
increasing rearrangement                             satisfies: 

	 PF

∀i, bi ≤ i

Think:
“fits under a staircase”

b1 ≤ b2 ≤ · · · ≤ bn

(a1, a2, . . . , an) ∈ Nn

• One way street with    parking spaces

• Car    wants to park in space

• If space     is full, she parks in next available space

• Car 1 parks first, then Car 2, etc.

• “    is a parking function” means “everyone is able to park”
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Example: 3 cars

(1, 1, 1)
(1, 1, 2) (1, 2, 1) (2, 1, 1)
(1, 1, 3) (1, 3, 1) (3, 1, 1)
(1, 2, 2) (2, 1, 2) (2, 2, 1)
(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)



	 PF
Example: 3 cars

(1, 1, 1)
(1, 1, 2) (1, 2, 1) (2, 1, 1)
(1, 1, 3) (1, 3, 1) (3, 1, 1)
(1, 2, 2) (2, 1, 2) (2, 2, 1)
(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

16 parking functions    & 5 orbits
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Example: 3 cars

(1, 1, 1)
(1, 1, 2) (1, 2, 1) (2, 1, 1)
(1, 1, 3) (1, 3, 1) (3, 1, 1)
(1, 2, 2) (2, 1, 2) (2, 2, 1)
(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

16 parking functions    & 5 orbits

(n + 1)n−1 1
n + 1

(
2n

n

)

“Catalan”



	 PF to algebra
Idea (Pollack, 1974): a circular street with           spaces n + 1

• choice functions 

• Everyone can park. One empty spot remains.

• is parking function        space          is empty

• one parking function per rotation class  

(Z/(n + 1)Z)n

⇐⇒ n + 1

=



	 PF to algebra
Idea (Pollack, 1974): a circular street with           spaces n + 1

• choice functions 

• Everyone can park. One empty spot remains.

• is parking function        space          is empty

• one parking function per rotation class  

(Z/(n + 1)Z)n

⇐⇒ n + 1

Conclusion:
Parking Functions     cosets

“modulo rotation”
=

(n + 1)n−1 =
(n + 1)n

n + 1

(Z/(n + 1)Z)n /(1, 1, . . . , 1)

=



	 PF to algebra
Idea (Haiman, 1996): generalize to Weyl groups

• type A root lattice    

• ...so Parking Functions are
Q = Zn/(1, 1, . . . , 1)

(Z/(n + 1)Z)n /(1, 1, . . . , 1) ∼=Sn Q/(n + 1)Q
the “finite torus”



	 PF to algebra
Idea (Haiman, 1996): generalize to Weyl groups

• type A root lattice    

• ...so Parking Functions are
Q = Zn/(1, 1, . . . , 1)

(Z/(n + 1)Z)n /(1, 1, . . . , 1) ∼=Sn Q/(n + 1)Q
the “finite torus”

Now consider:

• Weyl group 

• root lattice

• Coxeter number

W ⊆ GL(V )
Q

horder of a “Coxeter element”



	 PF to algebra

The Original Parking Module (Haiman)

Park(W ) = Q/(h + 1)Q



	 PF to algebra

The Original Parking Module (Haiman)

The character is...

Park(W ) = Q/(h + 1)Q

χPark(w) = (h + 1)dim(V w)

dimension of the “fixed space”



	 PF to algebra

The Original Parking Module (Haiman)

The number of orbits is...

Park(W ) = Q/(h + 1)Q

Cat(W ) =
∏

i

h + di

di
the “degrees” of the group
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	 PF to Shi
The Shi arrangement of hyperplanes is:

Shi(W ) := {Hα,k : α ∈ Φ+, k ∈ {0, 1}}
where Hα,k := {x ∈ V : (x, α) = k}



	 PF to Shi
The Shi arrangement of hyperplanes is:

Shi(W ) := {Hα,k : α ∈ Φ+, k ∈ {0, 1}}
where Hα,k := {x ∈ V : (x, α) = k}

There exists a uniform BIJECTION (Cellini-Papi, Shi):

Q/(h + 1)Q −−−−−−−−→ regions of Shi(W )

(h + 1)dim(V )

Cellini-Papi Shi



	 PF to Shi
Picture for 

e1 − e2 = 0

e1 − e2 = 1

e2 − e3 = 0 e2 − e3 = 1

e1 − e3 = 0 e1 − e3 = 1

W = S3

16 regions
5 “dominant”

regions



	 Shi to NN
Type A: Label  region     by pair          where R (w, π)

permutation, partition

•       is in the cone corresponding to

•       is a partition of                        defined by

w ∈ SnR

{1, 2, . . . , n}π

i ∼π j
⇐⇒

ei − ej = 1
is above Ri ≤ j



	 Shi to NN
For example:

2 1 3 7 4 5 6



	 Shi to NN
For example:

2 1 3 7 4 5 6

Theorem (Pak-Stanley, Athanasiadis-Linusson):

Shi regions      labels             where  (w, π)=

is NN and blocks are increasing wrt  wπ



	 Shi to NN
For example:

2 1 3 7 4 5 6

Definition: The “ceiling partition” of the label              is...(w, π)

w · π i.e.     acting on  w π



	 Shi to NN
For example:

2 1 3 7 4 5 6

Definition: The “ceiling partition” of the label              is...(w, π)

w · π i.e.     acting on  w π

e.g. w = 2137456
π = {1, 3, 6, 7}, {2, 5}, {4}

w · π = {1, 4}, {2, 3, 5, 6}, {7}



	 Shi to NN
For example:

2 1 3 7 4 5 6

Theorem (Armstrong-Rhoades):
Let     be a partition of                   with     blocks. Then...µ {1, 2, . . . , n} k

Number of Shi regions with ceiling partition      is µ n!
(n− k + 1)!



	 Shi to NN
Corollary:

Total number of Shi chambers  

=
∑

k

Stir(n, k)
n!

(n− k + 1)!

= (n + 1)n−1

new proof



	 NN to NC
Q: Why not do the same for nonCrossing partitions?

2 1 3 7 4 5 6

i.e. Consider pairs             where (w, π)

•     is a NC partition

•     is a permutation increasing on blocks of w

π
π



	 NN to NC
Q: Why not do the same for nonCrossing partitions?

2 1 3 7 4 5 6

i.e. Consider pairs             where (w, π)

•     is a NC partition

•     is a permutation increasing on blocks of w

π
π

A: Indeed, why not?



	 Now Some Algebra
Again consider Weyl group                        W ⊆ GL(V )
A “Galois Correspondence”:

lattice of
parabolic subgroups lattice of “flats”

the “fixed space”

P(W ) → L (W )

U "→ V U
parabolic subgroup

...or “partitions”

...some flats/partitions are NN, some are NC...



	 Now Some Algebra
A General Construction:   For                          define F ⊆ L (W )

{(w, X) : w ∈ W, X ∈ L (W ), w · X ∈ F}/ ∼ParkF :=

where

X = X ′

wWX = w′WX′

and

Note:            is a     -module.ParkF W

u · [w, X] := [wu−1, uX]

(w, X) ∼ (w′, X ′) ⇐⇒



	 Now Some Algebra
Special Kinds of Flats/Partitions: 

NN(W ) ⊆ L (W )1.

• A “nonnesting partition” is an antichain in  (Φ+,≤)

e.g.



	 Now Some Algebra
Special Kinds of Flats/Partitions: 

NN(W ) ⊆ L (W )1.

• A flat/partition                       is called  “nonnesting” ifX ∈ L (W )

for some antichain A ∈ Φ+

X =
⋂

a∈A

a⊥



NC(W ) ⊆ L (W )

	 Now Some Algebra
Special Kinds of Flats/Partitions: 

2.

• Let            be a “Coxeter element” (e.g. an n-cycle)

• A “noncrossing partition” is a group element

c ∈ W

and               is an interval in the Cayley graph wrt 

where               are the reflections in  T ⊆W W

w ∈ [id, c]T

[id, c]T T



NC(W ) ⊆ L (W )

	 Now Some Algebra
Special Kinds of Flats/Partitions: 

2.

• A flat/partition                       is called  “noncrossing” ifX ∈ L (W )

for some noncrossing w ∈ W

X = V w



NC(W ) ⊆ L (W )

	 Now Some Algebra
Special Kinds of Flats/Partitions: 

2.

• A flat/partition                       is called  “noncrossing” ifX ∈ L (W )

for some noncrossing w ∈ W

X = V w

Now Some Theorems??



	 Now Some Theorems
Some Theorems (ARR):

1.                is a parking module.ParkNN(W )

i.e. ParkNN(W ) ∼=W Q/(h + 1)Q

Proof is Uniform for Weyl Groups.  (smile)



ParkNC(W ) ∼=W Q/(h + 1)Q

ParkNC(W )

	 Now Some Theorems
Some Theorems (ARR):

2.                is a parking module.

i.e. 

Proof is Case-By-Case. (frown)



But wait...               has more structure.ParkNC(W )

	 Now Some Theorems
Some Theorems (ARR):

Let C = 〈c〉
cyclic group of order “h” generated by Coxeter element

Then                    is a              -module: 

(u, cd) · [w, X] := [cdwu−1, uX]

ParkNC(W ) W × C



χ(w, cd) = lim
q→ζd

det(1− qh+1w)
det(1− qw)

ParkNC(W )

	 Now Some Theorems
Some Theorems (ARR):

2’.               has           -character W × C
(not yet checked for exceptional types)

= (h + 1)multw(ζd)

eigenvalue multiplicity

ζ = e2πi/h



	 Second Last Slide
Some Remarks:

ParkF1.              for other kinds of flats/partitions?

2.                     works for more groups     . 

3. Where’s the cyclic action on                   ?  

ParkNC(W ) W

ParkNN(W )

Panyushev?



	 Last Slide
Wanted: Equivariant Bijection

ParkNN(W ) ParkNC(W )

enumeration enumeration

cyclic action cyclic action

Thanks!


