Hyperplane Arrangements & Diagonal Harmonics

Drew Armstrong

arXiv:1005.1949

Theorems (Newton-Chevalley-etc):

• Let \mathfrak{S}_n act on $S = \mathbb{C}[x_1, \dots, x_n]$ by permuting variables.

Theorems (Newton-Chevalley-etc):

Let S_n act on S = C[x₁,...,x_n] by permuting variables.
Then we have

$$S^{\mathfrak{S}_n} \cong \mathbb{C}[p_1, \dots, p_n]$$

where
$$p_k = \sum_{i=1}^n x_i^k$$
 are the

power sum symmetric polynomials.

Theorems (Newton-Chevalley-etc):

• The coinvariant ring $R := S/(p_1, \ldots, p_n)$ is isomorphic to the regular representation:

$$R \cong_{\mathfrak{S}_n} \mathbb{C}\mathfrak{S}_n$$

Theorems (Newton-Chevalley-etc):

• The coinvariant ring $R := S/(p_1, \ldots, p_n)$ is isomorphic to the regular representation:

$$R \cong_{\mathfrak{S}_n} \mathbb{C}\mathfrak{S}_n$$

• And it's graded, with Hilbert series

$$\sum_i \dim R_i \, q^i = \prod_{j=1}^n (1+q+\dots+q^{j-1}) = [n]_q!$$
 "the q-factorial"

What's next?

• Let \mathfrak{S}_n act on $DS = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ diagonally.

What's next?

- Let \mathfrak{S}_n act on $DS = \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ diagonally.
- (Weyl) Then the ring of diagonal invariants DS^{S_n}
 is generated by the "polarized" power sums

$$p_{k,\ell} = \sum_{i=1}^{n} x_i^k y_i^\ell \quad \text{for} \quad k+\ell > 0$$

NOT algebraically independent

Hard Theorem (Haiman, 2001):

The diagonal coinvariant ring

$$DR := DS/(p_{k,\ell} : k + \ell > 0)$$

has dimension $(n+1)^{n-1}$

Hard Theorem (Haiman, 2001):

The diagonal coinvariant ring

$$DR := DS/(p_{k,\ell} : k + \ell > 0)$$

has dimension $(n+1)^{n-1}$

Ongoing Project:

- Describe the (bigraded) Hilbert/Frobenius series!
- New science of "parking functions"

- Bijections: $\pi: \mathbb{Z} \to \mathbb{Z}$
- "Periodic": $\forall k \in \mathbb{Z}, \ \pi(k+n) = \pi(k) + n$
- Frame of Reference: $\pi(1) + \pi(2) + \dots + \pi(n) = \binom{n+1}{2}$

• Bijections: $\pi: \mathbb{Z} \to \mathbb{Z}$

• "Periodic": $\forall k \in \mathbb{Z}, \ \pi(k+n) = \pi(k) + n$

• Frame of Reference: $\pi(1) + \pi(2) + \dots + \pi(n) = \binom{n+1}{2}$

example

The "window notation": $\pi = [0, 2, 4]$

• Bijections: $\pi: \mathbb{Z} \to \mathbb{Z}$

• "Periodic": $\forall k \in \mathbb{Z}, \ \pi(k+n) = \pi(k) + n$

• Frame of Reference: $\pi(1) + \pi(2) + \dots + \pi(n) = \binom{n+1}{2}$

example

The "window notation": $\pi = [0, 2, 4]$

Also observe: $\pi = \cdots (-3, -2)(0, 1)(3, 4)(6, 7) \cdots$

Define affine transpositions:

$$((i,j)) := \prod_{k \in \mathbb{Z}} (i+kn, j+kn)$$

Define affine transpositions:

$$((i,j)) := \prod_{k \in \mathbb{Z}} (i+kn, j+kn)$$

Then we have:

$$\tilde{\mathfrak{S}}_n = \left\langle ((1,2)), ((2,3)), \dots, ((n,n+1)) \right\rangle$$

"affine symmetric group" generated by "affine adjacent transpositions"

(Lusztig, 1983) says it's a Weyl group

"transposition"	"reflection in hyperpl	ane″
((1,2))	$\rightarrow \qquad x_1 - x_2 = 0$	
((2,3))	$\rightarrow \qquad x_2 - x_3 = 0$	
	• •	
((n-1,n))	$\rightarrow x_{n-1} - x_n = 0$	
((n, n+1))	$\rightarrow \qquad x_1 - x_n = 1$	

(Lusztig, 1983) says it's a Weyl group

"transposition"	"reflection in hyperplane"
((1,2))	$\rightarrow \qquad x_1 - x_2 = 0$
((2,3))	$\rightarrow \qquad x_2 - x_3 = 0$
	• •
((n-1,n))	$\rightarrow x_{n-1} - x_n = 0$
((n, n + 1))	$\rightarrow \qquad x_1 - x_n = 1$

Abuse of notation:

$$\mathfrak{S}_n = \left\langle ((1,2)), ((2,3)), \dots, ((n-1,n)) \right\rangle$$

"finite symmetric group"

Picture of Affine S3

Two ways to think

Two ways to think

Way 1.

- $\tilde{\mathfrak{S}}_n = \mathfrak{S}_n \times \mathfrak{S}^n$
 - = (finite symmetric group) X (minimal coset reps)
 - = (which cone are you in?) X (where in the cone?)
 - = (permute window notation) X (into increasing order)

Two ways to think

Way 1.

- $\tilde{\mathfrak{S}}_n = \mathfrak{S}_n \times \mathfrak{S}^n$
 - = (finite symmetric group) X (minimal coset reps)
 - = (which cone are you in?) X (where in the cone?)
 - = (permute window notation) X (into increasing order)

example

$$[6, -3, 8, -1] = [3, 1, 4, 2] \times [-3, -1, 8, 6]$$

Picture of Way 1

Picture of Way 1

For Posterity:

Note (finite) **ascent sets** in window notation

 $\triangle = \emptyset$

 $\bigwedge = \{1\}$

 $\bigwedge = \{2\}$

 $= \{1, 2\}$

What if we invert?

Invert!

$$\begin{split} \tilde{\mathfrak{S}}_n &= \mathfrak{S}_n \ltimes Q_n \\ &= \mathfrak{S}_n \text{ semi-direct product with the root lattice} \\ Q_n &= \left\{ (r_1, \dots, r_n) \in \mathbb{Z}^n : \sum_i r_i = 0 \right\} \end{split}$$

$$\begin{split} \tilde{\mathfrak{S}}_n &= \mathfrak{S}_n \ltimes Q_n \\ &= \mathfrak{S}_n \text{ semi-direct product with the root lattice} \\ Q_n &= \left\{ (r_1, \dots, r_n) \in \mathbb{Z}^n : \sum_i r_i = 0 \right\} \end{split}$$

In terms of window notation:

$$[6, -3, 8, -1] = (2, 1, 4, 3) + 4 \cdot (1, -1, 1, -1)$$

"finite permutation + n times a root"

"division with remainder"

a copy of \mathfrak{S}_3 around each root vector $\circ \in Q_3$

Consider a special simplex

Bounded by: $x_1 - x_2 = -1$ $x_2 - x_3 = -1$ \vdots $x_{n-1} - x_n = -1$ $x_1 - x_n = 2$

Consider a special simplex

It's a dilation of the **fundamental alcove** by a factor of n + 1

Hence it contains $(n+1)^{n-1}$ alcoves!

Cut it with the Shi arrangement

Shi arrangement:

$$x_i - x_j = 0, 1$$

for all
$$1 \le i < j \le n$$

And consider the "distance enumerator" (call it **"shi"**)

And consider the "distance enumerator" (call it **"shi"**)

example

$$\sum q^{\rm shi} = 6 + 6q + 3q^2 + q^3$$

Next define a statistic on the root lattice:

Next define a statistic on the root lattice:

Given $\mathbf{r} = (r_1, \dots, r_n) \in Q_n$ let j be maximal such that r_j is minimal.

Next define a statistic on the root lattice:

Given $\mathbf{r} = (r_1, \ldots, r_n) \in Q_n$ let j be maximal such that r_j is minimal.

Then

$$\mathsf{ish}(\mathbf{r}) := j - n(r_j + 1)$$

Next define a statistic on the root lattice:

Given $\mathbf{r} = (r_1, \ldots, r_n) \in Q_n$ let j be maximal such that r_j is minimal.

Then
$$ish(\mathbf{r}) := j - n(r_j + 1)$$

$$\mathsf{ish}(2, -2, 2, -2, 0) = 4 - 5 \cdot (-2 + 1) = 9$$

here $n = 5, j = 4, r_j = -2$

ish spirals.

ish spirals.

example

$$\sum t^{\sf ish} = 6 + 6t + 3t^2 + t^3$$

The joint distribution:

The joint distribution:

Conjectures:

• Joint Symmetry: $\sum q^{shi}t^{ish} = \sum t^{shi}q^{ish}$

The joint distribution:

Conjectures:

Joint Symmetry: \$\sum q^{\shi}t^{\text{ish}} = \sum t^{\shi}q^{\text{ish}}\$
In fact, we have \$\sum q^{\shi}t^{\text{ish}} = \text{Hilbert series of } DR\$ diagonal coinvariants

Finally...

to each alcove ascent set Asc we associate the (Gessel) Fundamental Quasisymmetric Function

Finally...

to each alcove ascent set Asc we associate the (Gessel) Fundamental Quasisymmetric Function $F_{Asc} = \sum_{\substack{i_1 \leq \cdots \leq i_n \\ j \in Asc \Rightarrow i_j < i_{j+1}}} z_{i_1} z_{i_2} \cdots z_{i_n}$ $= F_{\emptyset} = F_{\{1\}} = F_{\{2\}} = F_{\{1,2\}}$

Finally...

to each alcove ascent set ASC we associate the (Gessel) Fundamental Quasisymmetric Function $F_{Asc} = \sum z_{i_1} z_{i_2} \cdots z_{i_n}$ $i_1 \leq \cdots \leq i_n$ $j \in Asc \Rightarrow \overline{i_j} < i_{j+1}$ $= F_{\emptyset} \quad = F_{\{1\}} \quad = F_{\{2\}} \quad = F_{\{1,2\}}$ $= \operatorname{schur}(3) \quad \text{(trivial representation)} \\ + = \operatorname{schur}(2,1) \quad \text{(the other one)} \\ = \operatorname{schur}(1,1,1) \quad \text{(sign representation)} \\ \end{array}$

(Shuffle) Conjecture:

$\sum q^{\rm shi} t^{\rm ish} F_{\rm Asc}\;$ is the Frobenius series of DR

Theorem (me):

• My "shuffle conjecture" = The Shuffle Conjecture (HHLRU05).

Theorem (me):

- My "shuffle conjecture" = The Shuffle Conjecture (HHLRU05).
- That is, \exists (at least) two natural maps to parking functions:

"Haglund-Haiman-Loehr statistics"

If you invert this picture...

...you will get this picture.

...you will get this picture.

The Shi Arrangement

If you invert this picture...

...you will get this picture.

...you will get this picture.

The Ish Arrangement

(please see Brendon's talk)

Þakka þér fyrir