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What is a Tesler Matrix?

Definition

We say that A = (ai,j) ∈ Matn(Z) is a Tesler matrix if:

I A is upper triangular.

I For all 1 ≤ k ≤ n we have

(ak,k + ak,k+1 + · · ·+ ak,n)− (a1,k + a2,k + · · · ak−1,k) = 1.
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What is a Tesler Matrix?

Recursion

Let Tesler(n) be the set of n × n Tesler matrices. There is a natural map

Tesler(n)→ Tesler(n − 1)

defined by adding ak,n to ak,k then deleting the n-th row and column:
0 0 1 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 0 2
0 0 0 0 4

 −→


0 0 1 0
0 1 0 0
0 0 1 1
0 0 0 2


This can be used to efficiently generate Tesler(n).
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What is a Tesler Matrix?

Example

Tesler(3)

 1 0 0
1 0

1

  1 0 0
0 1

2


 0 0 1

1 0
2

  0 0 1
0 1

3



 0 1 0
2 0

1


 0 1 0

0 2
3


 0 1 0

1 1
2


Tesler(2)

(
1 0

1

) (
0 1

2

)



What is a Tesler Matrix?

History

I The sequence Tes(n) := #Tesler(n) is A008608 in the OEIS:

1, 2, 7, 40, 357, 4820, 96030, 2766572, 113300265, . . .

I Entered by Glenn Tesler (1996), then forgotten for 15 years.

I Rediscovered by Jim Haglund (2011), who named them

“Tesler matrices”

I Now everybody cares. Why?
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Why Do We Care?

Coinvariants

I The symmetric group Sn acts on S := C[x1, . . . , xn].

I (Newton) The subalgebra of symmetric polynomials is isomorphic to
a polynomial algebra

SSn ≈ C[p1, . . . , pn],

where pk =
∑n

i=1 x
k
i are the power sum polynomials.

I (Chevalley) The coinvariant algebra

R := S/(p1, . . . , pn)

is isomorphic to the regular representation (R ≈ CSn) and its
Hilbert series is given by the q-factorial:

Hilb(n; q) :=
∑
i

dim(Ri ) q
i = [n]q!
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Why Do We Care?

Coinvariants

I The symmetric group Sn acts diagonally on the double algebra

DS := C[x1, . . . , xn, y1, . . . , yn].

I (Weyl) The subalgebra of diagonal invariants is generated by the
polarized power sums

pk,` =
n∑

i=1

xki y
`
i for k + ` > 0,

but these are not algebraically independent.

I (Haiman) The algebra of diagonal coinvariants

DR := DS/(pk,` : k + ` > 0)

has dimension (n + 1)n−1. The proof is hard :(
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Why Do We Care?

Coinvariants

The diagonal Hilbert series

Hilb(n; q, t) :=
∑
i,j

dim(DRi,j) q
i t j

satisfies:

I Hilb(n; q, t) = Hilb(n; t, q)

I Hilb(n; q, 0) = Hilb(n; q) = [n]q!

I Hilb(n; 1, 1) = (n + 1)n−1

I Hilb(n; q, q−1) = ([n + 1]q)n−1/q(n
2)

But after many years it is still a big mystery :(
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Here’s Why We Care.

Haglund’s Theorem (2011)

Given a Tesler matrix A ∈ Tesler(n), let Pos(A) be the set of positive
entries of A and let pos(A) := #Pos(A). We define the weight by

weight(A) := (−M)pos(A)−n
∏

ai,j∈Pos(A)

[ai,j ]q,t ∈ Z[q, t],

where M = (1− q)(1− t) and [k]q,t = (qk − tk)/(q − t).

weight


0 0 1 0 0
0 1 0 0 0
0 0 0 1 1
0 0 0 0 2
0 0 0 0 4

 = (−(1− q)(1− t))1[1]4q,t [2]q,t [4]q,t
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Here’s Why We Care.

Haglund’s Theorem (2011)

If we define
Tes(n; q, t) :=

∑
A∈Tesler(n)

weight(A),

then it is true that
Tes(n; q, t) = Hilb(n; q, t).

In particular, we have

Tes(n; q, t) ∈ N[q, t],

which is not obvious.
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Here’s Why We Care.

Example (n = 3)

1
1

1


1

1
2

  1
2

1

  1
1 1

2

  1
2
3

  1
1

2


 1

1
3


1 q+t q+t −M(q+t) (q+t)(q2+qt+t2) q+t q2+qt+t2

1



1

1




1
1




−1 1
−1 2 −1
1 −1




1
2

2
1




1
1




1
1

1



Tes(3; q, t) =


1 2 2 1
2 3 1
2 1
1





Here’s Why We Care.

A New Hope

I Maybe Haglund’s Theorem can be used to prove the famous
“Shuffle Conjecture” of HHLRU (2005).

I To do this we must relate Tesler matrices to parking functions.
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Refinement of Haglund’s Theorem

Definition

Given a Tesler matrix A ∈ Tesler(n) consider the lowest lattice path
above the positive entries. Let Touch(A) ⊆ {1, 2, . . . , n − 1} be the set
of positions where this path touches the diagonal.

Examples:
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Refinement of Haglund’s Theorem

Definition

Given a Tesler matrix A ∈ Tesler(n) consider the lowest lattice path
above the positive entries. Let Touch(A) ⊆ {1, 2, . . . , n − 1} be the set
of positions where this path touches the diagonal.

Examples:

Touch


0 1 0 0 0

2 0 0 0
1 0 0

0 1
2

 = {2, 3}



Refinement of Haglund’s Theorem

Definition

We say A ∈ Tesler(n) is connected if Touch(A) = { }. Let

CTesler(n) := {A ∈ Tesler(n) : A is connected }

and define
CTes(n; q, t) :=

∑
A∈CTesler(n)

weight(A).



Refinement of Haglund’s Theorem

Example

Here are the first few values of CTes(n; q, t):

n = 1 n = 2 n = 3 n = 4

[
1
] [

1
1

] 
2 1

3 1
2 1
1





4 5 3 1
9 9 4 1

9 9 4 1
4 9 4 1
5 4 1
3 1
1





Refinement of Haglund’s Theorem

Theorem

It is sufficient to study connected Tesler matrices:

Tes(n; q, t) =
∑

{s1<···<sk}⊆[n−1]

k−1∏
i=1

CTes(si+1 − si ; q, t).



Refinement of Haglund’s Theorem

Example

Tes(3; q, t) = CTes(1; q, t)3 + 2 CTes(1; q, t)Tes(2; q, t) + CTes(3; q, t)


1 2 2 1
2 3 1
2 1
1

 =
[
1
]3

+ 2
[
1
] [ 1

1

]
+


2 1

3 1
2 1
1





Refinement of Haglund’s Theorem

Conjectures and Problems

I CTes(n; q, t) ∈ N[q, t] for all n ∈ N.

I CTes(n; 1, 1) = # “connected parking functions” CPF(n) in the
sense of Novelli and Thibon (2007). This is A122708 in OEIS:

1, 2, 11, 92, 1014, 13795, 223061, 4180785, 89191196, . . .

I Find statistics qstat, tstat : CPF(n)→ N such that

CTes(n; q, t) =
∑

cpf∈CPF(n)

qqstat(cpf )ttstat(cpf ).

I Prove the Shuffle Conjecture.
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Generalized Tesler Matrices

Definition

Given any positive integer vector r = (r1, . . . , rn) ∈ Nn we say that
A = (ai,j) ∈ Matn(Z) is an r-Tesler matrix if:

I A is upper triangular.

I For all 1 ≤ k ≤ n we have

(ak,k + ak,k+1 + · · ·+ ak,n)− (a1,k + a2,k + · · · ak−1,k) = rk .

Picture: The k-th “hook sum” equals rk

k

k


−

0 −
0 0 + + + +
0 0 0
0 0 0 0
0 0 0 0 0


= rk for all k.
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Generalized Tesler Matrices

Definition

Given r ∈ Nn, let Tesler(r) be the set of r-Tesler matrices and define

Tes(r; q, t) :=
∑

A∈Tesler(r)

weight(A)

=
∑

A∈Tesler(r)

(−M)pos(A)−n
∏

ai,j∈Pos(A)

[ai,j ]q,t ,

as before.



Generalized Tesler Matrices

Conjecture (Haglund)

If r ∈ Nn is increasing (1 ≤ r1 ≤ r2 ≤ · · · ≤ rn) then we have

Tes(r; q, t) ∈ N[q, t].

Question

For which other r ∈ Nn is Tes(r; q, t) ∈ N[q, t]?
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Generalized Tesler Matrices

Theorem (Armstrong → Sagan → Haglund)

Recall from Haglund’s and Haiman’s Theorems that we have

Tes(n; 1, 1) = Hilb(n; 1, 1) = (n + 1)n−1.

For general r = (r1, . . . , rn) ∈ Nn we have

Tes(r; 1, 1) = r1(r1 + nr2)(r1 + r2 + (n − 1)r3) · · · (r1 + · · ·+ rn−1 + 2rn).

Conjectured by me; proved by Bruce.
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Generalized Tesler Matrices

Theorem (Armstrong → Sagan → Haglund)

Then Jim defined r-parking functions PF(r) such that

Tes(r; 1, 1) = #PF(r).

Special Case: m-parking functions

Tes((1,m,m, . . . ,m); 1, 1) = (mn + 1)n−1.



Generalized Parking Functions

Conjecture

For all r ∈ Nn we have

q(
∑

i i·rn−i+1)−n · Tes(r; q, q−1) =

[r1]qn+1 [r1 + nr2]q[r1 + r2 + (n − 1)r3]q · · · [r1 + · · ·+ rn−1 + 2rn]q.

Problem

Find an algebraic interpretation of Tes(r; q, t).
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Tesler Polytopes (New!)



Tesler Polytopes

Definition

We say that A = (ai,j) ∈ Matn(R) is a “null-hook matrix” if

I A is upper triangular.

I For all 1 ≤ k ≤ n we have

(ak,k + ak,k+1 + · · ·+ ak,n)− (a1,k + a2,k + · · · ak−1,k) = 0.

Picture: The k-th “hook sum” equals 0

k

k


−

0 −
0 0 + + + +
0 0 0
0 0 0 0
0 0 0 0 0


= 0 for all k.
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Tesler Polytopes

Observations

Let Hook0 ⊆ Matn(R) be the set of null-hook matrices. These form an
R-subspace of Matn(R) of dimension

(
n
2

)
:

Hook0 ≈ R(n
2)

with basis given by the following “null-transposition” matrices:

T (i , j) :=

i j

i

j


0
0 0 −1 1
0 0 0
0 0 0 0 1
0 0 0 0 0


for all 1 ≤ i < j ≤ n.



Tesler Polytopes

Observations

Let ZHook0 denote the lattice of integer points in Hook0:

ZHook0 := Z{T (i , j) : 1 ≤ i < j ≤ n} ≤ Hook0.

And given any r ∈ Nn, let ZHookr be the lattice of integer points in the
affine space of “r-hook matrices”:

ZHookr ≤ Hookr := Hook0 +


r1

r2
. . .

rn

 .

Given any two r-Tesler matrices A,B ∈ Tesler(r) observe that we have
A− B ∈ Hook0, and hence

Tesler(r) ⊆ ZHookr.
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Tesler Polytopes

Observations

In fact, the r-Tesler matrices are precisely the integer points in the
polytope of “positive r-hook matrices”:

Tesler(r) ⊆ Hookr ∩ (R≥0)(n
2)



Tesler Polytopes

Suggestion

Study this polytope. Call it the “r-Tesler polytope”:

∆Tes(r) := Hookr ∩ (R≥0)(n
2).

One example has been studied before. If r = (1, 2, 3, . . . , n) then

CRYn := ∆Tes(r)

is called the Chan-Robbins-Yuen polytope. Its volume was conjectured by
Chan-Robbins-Yuen and proved by Zeilberger (1998) to be a product of
Catalan numbers:

Vol(CRYn) =
n−2∏
i=1

1

i + 1

(
2i

i

)
.
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Tesler Polytopes

More generally, the r-Tesler polytope is an example of a flow polytope.
These have been studied by Postnikov-Stanley, Baldoni-Vergne, Mèszàros
and Morales. They have beautiful properties related to the Kostant
partition function for type A root systems.



Tesler Polytopes

Conjecture (Morales)

If r = (1, 1, . . . , 1) ∈ Nn we say that

∆Tes(n) := ∆Tes(r)

is the standard Tesler polytope. Its volume seems to be

Vol(∆Tes(n)) = 2(n
2)

(
n
2

)
!

1!2! · · · n!
.



Tesler Polytopes

Final Suggestions

I Can one learn more about diagonal Hilbert series by studing Tesler
polytopes?

I Is there a way to incorporate q and t into the Ehrhart series?

I It seems that the vertices of ∆Tes(r) are the monomial r-Tesler
matrices:

MTesler(r) := {A ∈ Tesler(r) : pos(A)− n = 0}.

Paul Levande gave a natural bijection MTesler(r)↔ Sn.

I More genrally, given A ∈ Tesler(r) it seems that pos(A)− n is the
dimension of the face of ∆Tes(r) containing A. That should be
important.
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Happy Birthday Bruce!


