## **Rational Parking Functions**

Drew Armstrong et al.

University of Miami www.math.miami.edu/~armstrong

December 9, 2012

## Rational Catalan Numbers

#### CONVENTION

Given  $x \in \mathbb{Q} \setminus [-1, 0]$ , there exist **unique coprime**  $(a, b) \in \mathbb{N}^2$  such that

$$c = \frac{a}{b-a}$$

We will always identify  $x \leftrightarrow (a, b)$ .

#### Definition

For each  $x \in \mathbb{Q} \setminus [-1, 0]$  we define the **Catalan number**:

$$Cat(x) = Cat(a, b) := \frac{1}{a+b} \binom{a+b}{a, b} = \frac{(a+b-1)!}{a!b!}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

## Rational Catalan Numbers

## CONVENTION

Given  $x \in \mathbb{Q} \setminus [-1, 0]$ , there exist **unique coprime**  $(a, b) \in \mathbb{N}^2$  such that

$$x = \frac{a}{b-a}$$

We will always identify  $x \leftrightarrow (a, b)$ .

### Definition

For each  $x \in \mathbb{Q} \setminus [-1, 0]$  we define the **Catalan number**:

$$\operatorname{Cat}(x) = \operatorname{Cat}(a, b) := \frac{1}{a+b} \binom{a+b}{a, b} = \frac{(a+b-1)!}{a!b!}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## When $b = 1 \mod a \ldots$

Eugène Charles Catalan (1814-1894)

(a,b) = (n, n+1) gives the good old Catalan number:

$$\operatorname{Cat}(n) = \operatorname{Cat}\left(\frac{n}{(n+1)-n}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$$

Nicolaus Fuss (1755-1826)

(a,b) = (n, kn + 1) gives the **Fuss-Catalan number**:

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

### When $b = 1 \mod a \ldots$

• Eugène Charles Catalan (1814-1894) (a, b) = (n, n + 1) gives the good old Catalan number:  $Cat(n) = Cat\left(\frac{n}{(n+1)-n}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$ 

Nicolaus Fuss (1755-1826)

(a,b) = (n, kn + 1) gives the **Fuss-Catalan number**:

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### When $b = 1 \mod a \ldots$

Eugène Charles Catalan (1814-1894)

(a, b) = (n, n+1) gives the good old Catalan number:

$$\operatorname{Cat}(n) = \operatorname{Cat}\left(\frac{n}{(n+1)-n}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$$

Nicolaus Fuss (1755-1826)

(a, b) = (n, kn + 1) gives the **Fuss-Catalan number**:

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$Cat(x) = Cat(-x-1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$Cat(x) = Cat(-x-1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$Cat(x) = Cat(-x-1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$\operatorname{Cat}(x) = \operatorname{Cat}(-x-1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### Observation

The process  $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$  is a categorification of the Euclidean algorithm.

## Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

 $\begin{array}{l} {\sf Cat}(5,8)=99,\\ {\sf Cat}'(5,8)={\sf Cat}(3,5)=7,\\ {\sf Cat}''(5,8)={\sf Cat}'(3,5)={\sf Cat}(2,3)=2,\\ {\sf Cat}''(5,8)={\sf Cat}''(3,5)={\sf Cat}'(2,3)={\sf Cat}(1,2)=1 \ \ ({\sf STOP}) \end{array}$ 

### Observation

The process  $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$  is a categorification of the Euclidean algorithm.

## Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

Cat(5,8) = 99, Cat'(5,8) = Cat(3,5) = 7, Cat''(5,8) = Cat'(3,5) = Cat(2,3) = 2,Cat'''(5,8) = Cat''(3,5) = Cat'(2,3) = Cat(1,2) = 1 (STOP)

#### Observation

The process  $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$  is a categorification of the Euclidean algorithm.

## Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

Cat(5,8) = 99, Cat'(5,8) = Cat(3,5) = 7, Cat''(5,8) = Cat'(3,5) = Cat(2,3) = 2,Cat'''(5,8) = Cat''(3,5) = Cat'(2,3) = Cat(1,2) = 1 (STOP)

### Observation

The process  $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$  is a categorification of the Euclidean algorithm.

## Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

$$\begin{aligned} & \mathsf{Cat}(5,8) = 99, \\ & \mathsf{Cat}'(5,8) = \mathsf{Cat}(3,5) = 7, \\ & \mathsf{Cat}''(5,8) = \mathsf{Cat}'(3,5) = \mathsf{Cat}(2,3) = 2, \\ & \mathsf{Cat}'''(5,8) = \mathsf{Cat}''(3,5) = \mathsf{Cat}'(2,3) = \mathsf{Cat}(1,2) = 1 \quad (\mathsf{STOP}) \end{aligned}$$

## How to put it in Sloane's OEIS



▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 = のへの

### Suggestion

The **Calkin-Wilf sequence** is defined by  $q_1 = 1$  and

$$q_n := rac{1}{2\lfloor q_{n-1} 
floor - q_{n-1} + 1}.$$

Theorem:  $(q_1, q_2, ...) = \mathbb{Q}_{>0}$ . Proof: See "Proofs from THE BOOK", Chapter 17.

#### Study the function $n \mapsto Cat(q_n)$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

### Suggestion

The **Calkin-Wilf sequence** is defined by  $q_1 = 1$  and

$$q_n := rac{1}{2\lfloor q_{n-1} 
floor - q_{n-1} + 1}.$$

Theorem:  $(q_1, q_2, \ldots) = \mathbb{Q}_{>0}$ . Proof: See "Proofs from THE BOOK", Chapter 17.

Study the function  $n \mapsto Cat(q_n)$ .

Well, that was fun.



• Consider the "Dyck paths" in an  $a \times b$  rectangle.



• Again let x = a/(b-a) with a, b positive and coprime.

## Example (a, b) = (5, 8)



• Let  $\mathcal{D}(x) = \mathcal{D}(a, b)$  denote the set of Dyck paths.



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (<sup>a+b</sup><sub>a,b</sub>) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

イロト 人間ト イヨト イヨト 三日

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (<sup>a+b</sup><sub>a,b</sub>) lattice paths into cyclic orbits of size a + b.
   Each orbit contains a unique Dyck path.

SQA

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

► Claimed by Grossman (1950), "Fun with lattice points, part 22".

- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break <sup>(a+b)</sup><sub>(a,b)</sub> lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

▶ Claimed by Grossman (1950), "Fun with lattice points, part 22".

Proved by Bizley (1954), in Journal of the Institute of Actuaries.

 Proof: Break <sup>(a+b)</sup><sub>a,b</sub> lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- ► Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (<sup>a+b</sup><sub>a,b</sub>) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

## Theorem (Armstrong 2010, Loehr 2010)

► The number of Dyck paths with k vertical runs equals

$$\operatorname{Nar}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}.$$

Call these the Narayana numbers

And the number with r<sub>j</sub> vertical runs of length j equals

Krew(x; **r**) := 
$$\frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} = \frac{(b-1)!}{r_0!r_1!\cdots r_a!}$$

Э

Sac

Call these the Kreweras numbers.

## Theorem (Armstrong 2010, Loehr 2010)

The number of Dyck paths with k vertical runs equals

$$\operatorname{Nar}(x;k) := \frac{1}{a} {a \choose k} {b-1 \choose k-1}$$

#### Call these the Narayana numbers.

And the number with r<sub>i</sub> vertical runs of length j equals

Krew(x; **r**) := 
$$\frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_a \end{pmatrix} = \frac{(b-1)!}{r_0! r_1! \cdots r_a!}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Call these the Kreweras numbers.

## Theorem (Armstrong 2010, Loehr 2010)

▶ The number of Dyck paths with *k* vertical runs equals

$$\operatorname{Nar}(x;k) := \frac{1}{a} {a \choose k} {b-1 \choose k-1}$$

#### Call these the Narayana numbers.

► And the number with r<sub>j</sub> vertical runs of length j equals

Krew(x; **r**) := 
$$\frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_a \end{pmatrix} = \frac{(b-1)!}{r_0!r_1!\cdots r_a!}$$

Call these the Kreweras numbers.

#### Definition

Let  $\lambda \vdash n$  be an integer partition of "size" n.

- Say  $\lambda$  is a *p*-core if it has no cell with hook length *p*.
- Say  $\lambda$  is an (a, b)-core if it has no cell with hook length a or b.

#### Example

The partition  $(5, 4, 2, 1, 1) \vdash 13$  is a (5, 8)-core.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへ⊙

#### Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}.$$

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime  $\exists$  unique largest (a, b)-core of size  $\frac{(a^2-1)(b^2-1)}{24}$ , which contains all others as subdiagrams.

#### Suggestion

Study Young's lattice restricted to (a, b)-cores

#### Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}.$$

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime  $\exists$  unique largest (a, b)-core of size  $\frac{(a^c-1)(b^c-1)}{24}$ , which contains all others as subdiagrams.

(日) (聞) (同) (同) 一日

Suggestion

Study Young's lattice restricted to (a, b)-cores.

### Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}.$$

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime  $\exists$  unique largest (a, b)-core of size  $\frac{(a^2-1)(b^2-1)}{24}$ , which contains all others as subdiagrams.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

#### Suggestion

Study Young's lattice restricted to (*a*, *b*)-cores.

#### Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}$$

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime  $\exists$  unique largest (a, b)-core of size  $\frac{(a^2-1)(b^2-1)}{24}$ , which contains all others as subdiagrams.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

#### Suggestion

Study Young's lattice restricted to (a, b)-cores.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

## Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is  $\begin{pmatrix} \lfloor \frac{d}{2} \rfloor + \lfloor \frac{d}{2} \rfloor \\ \lfloor \frac{d}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$ . Note: Beautiful bijective proof! (omitted)

#### Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{q=-1}$$

### Conjecture (Armstrong 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to  $\frac{(a+b+1)(a-1)(b-1)}{24}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is  $\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$ . Note: Beautiful bijective proof! (omitted)

#### Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{q=-1}$$

#### Conjecture (Armstrong 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to  $\frac{(a+b+1)(a-1)(b-1)}{24}$ .

#### Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is  $\begin{pmatrix} \lfloor \frac{b}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{b}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$ . Note: Beautiful bijective proof! (omitted)

#### Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{a=-1}$$

#### Conjecture (Armstrong 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to  $\frac{(a+b+1)(a-1)(b-1)}{24}$ .

#### Proof.

Bijection: (a, b)-cores  $\leftrightarrow$  Dyck paths in  $a \times b$  rectangle

### Example (The (5, 8)-core from earlier.)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

#### Proof.

Bijection: (a, b)-cores  $\leftrightarrow$  Dyck paths in  $a \times b$  rectangle

### Example (Label the rectangle cells by "height".)





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Proof.

Bijection: (a, b)-cores  $\leftrightarrow$  Dyck paths in  $a \times b$  rectangle

### Example (Label the first column hook lengths.)





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Proof.

Bijection: (a, b)-cores  $\leftrightarrow$  Dyck paths in  $a \times b$  rectangle

### Example (Voila!)

| 9 | 6 | 4 | 3 | 1 |
|---|---|---|---|---|
| 7 | 4 | 2 | 1 |   |
| 4 | 1 |   |   |   |
| 2 |   |   |   |   |
| 1 |   |   |   |   |



・ロト・日本・日本・日本・日本・日本

#### Proof.

Bijection: (a, b)-cores  $\leftrightarrow$  Dyck paths in  $a \times b$  rectangle

### Example (Observe: Conjugation is a bit strange.)





◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

### Definition

• Label the up-steps by  $\{1, 2, \ldots, a\}$ , increasing up columns.



► Call this a parking function.

- Let PF(x) = PF(a, b) denote the set of parking functions.
- Classical form  $(z_1, z_2, \ldots, z_a)$  has label  $z_i$  in column *i*.
- ► Example: (3,1,4,4,1)

### Definition

• Label the up-steps by  $\{1, 2, \ldots, a\}$ , increasing up columns.



Call this a parking function.

- Let PF(x) = PF(a, b) denote the set of parking functions.
- ► Classical form (z<sub>1</sub>, z<sub>2</sub>,..., z<sub>a</sub>) has label z<sub>i</sub> in column i.
- ► Example: (3,1,4,4,1)

### Definition

• Label the up-steps by  $\{1, 2, \ldots, a\}$ , increasing up columns.



- Call this a **parking function**.
- Let PF(x) = PF(a, b) denote the set of parking functions.
- ▶ Classical form  $(z_1, z_2, ..., z_a)$  has label  $z_i$  in column *i*.
- ► Example: (3,1,4,4,1)

### Definition

• Label the up-steps by  $\{1, 2, \ldots, a\}$ , increasing up columns.



- Call this a **parking function**.
- Let PF(x) = PF(a, b) denote the set of parking functions.
- ► Classical form (z<sub>1</sub>, z<sub>2</sub>,..., z<sub>a</sub>) has label z<sub>i</sub> in column i.
- ► Example: (3,1,4,4,1)

### Definition

• Label the up-steps by  $\{1, 2, \ldots, a\}$ , increasing up columns.



・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Call this a **parking function**.
- Let PF(x) = PF(a, b) denote the set of parking functions.
- ▶ Classical form (*z*<sub>1</sub>, *z*<sub>2</sub>, ..., *z*<sub>a</sub>) has label *z*<sub>i</sub> in column *i*.
- ▶ Example: (3, 1, 4, 4, 1)

### Definition

• The symmetric group  $\mathfrak{S}_a$  acts on classical forms.



- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of  $\mathfrak{S}_a$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### Definition

• The symmetric group  $\mathfrak{S}_a$  acts on classical forms.



- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of  $\mathfrak{S}_a$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### Definition

• The symmetric group  $\mathfrak{S}_a$  acts on classical forms.



- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of  $\mathfrak{S}_a$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### Definition

• The symmetric group  $\mathfrak{S}_a$  acts on classical forms.



- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of  $\mathfrak{S}_a$ .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

### Definition

• The symmetric group  $\mathfrak{S}_a$  acts on classical forms.



- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of  $\mathfrak{S}_a$ .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

#### Theorems (with N. Loehr and N. Williams)

- The dimension of PF(a, b) is  $b^{a-1}$ .
- ► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathsf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathsf{r}},$$

where the sum is over  $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$  with  $\sum_i r_i = b$ .

▶ That is: PF(a, b) is the coefficient of  $t^a$  in  $\frac{1}{b}H(t)^b$ , where

 $H(t)=h_0+h_1t+h_2t^2+\cdots$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

#### Theorems (with N. Loehr and N. Williams)

- The dimension of PF(a, b) is  $b^{a-1}$ .
- ► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over  $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$  with  $\sum_i r_i = b$ .

• That is: PF(a, b) is the coefficient of  $t^a$  in  $\frac{1}{b}H(t)^b$ , where

 $H(t)=h_0+h_1t+h_2t^2+\cdots.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### Theorems (with N. Loehr and N. Williams)

• The dimension of PF(a, b) is  $b^{a-1}$ .

► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over  $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$  with  $\sum_i r_i = b$ .

• That is: PF(a, b) is the coefficient of  $t^a$  in  $\frac{1}{b}H(t)^b$ , where

 $H(t)=h_0+h_1t+h_2t^2+\cdots.$ 

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへつ

#### Theorems (with N. Loehr and N. Williams)

- The dimension of PF(a, b) is  $b^{a-1}$ .
- ► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over  $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$  with  $\sum_i r_i = b$ .

• That is: PF(a, b) is the coefficient of  $t^a$  in  $\frac{1}{b}H(t)^b$ , where

$$H(t) = h_0 + h_1 t + h_2 t^2 + \cdots$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get...

► The power sum expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathsf{r}\vdash a} b^{\ell(\mathsf{r})-1} \frac{p_\mathsf{r}}{z_\mathsf{r}}$$

i.e. the # of parking functions fixed by  $\sigma \in \mathfrak{S}_a$  is  $b^{\# \operatorname{cycles}(\sigma)-1}$ 

► The Schur expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathsf{r}\vdash a} \frac{1}{b} s_{\mathsf{r}}(1^b) s_{\mathsf{r}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get...

The power sum expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}$$

i.e. the # of parking functions fixed by  $\sigma \in \mathfrak{S}_a$  is  $b^{\# \operatorname{cycles}(\sigma)-1}$ .

► The Schur expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} s_{\mathbf{r}}(1^b) s_{\mathbf{r}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get...

The power sum expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}$$

i.e. the # of parking functions fixed by  $\sigma \in \mathfrak{S}_a$  is  $b^{\# cycles(\sigma)-1}$ .

► The Schur expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathsf{r}\vdash a} \frac{1}{b} s_{\mathsf{r}}(1^b) s_{\mathsf{r}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

### Observation/Definition

The multiplicities of the **hook Schur functions**  $s[k+1, 1^{a-k-1}]$  in PF(*a*, *b*) are given by the **Schröder numbers** 

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- ▶ Trivial character: Schrö(a, b; a 1) = Cat(a, b).
- Smallest k that occurs is  $k = \max\{0, a b\}$ , in which case

 $\operatorname{Schr\"o}(a,b;k) = \operatorname{Cat}'(a,b).$ 

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

#### Observation/Definition

The multiplicities of the **hook Schur functions**  $s[k+1, 1^{a-k-1}]$  in PF(*a*, *b*) are given by the **Schröder numbers** 

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

► Trivial character: Schrö(a, b; a - 1) = Cat(a, b).

Smallest k that occurs is  $k = \max\{0, a - b\}$ , in which case

 $\operatorname{Schr\"o}(a,b;k) = \operatorname{Cat}'(a,b).$ 

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

### Observation/Definition

The multiplicities of the **hook Schur functions**  $s[k+1, 1^{a-k-1}]$  in PF(*a*, *b*) are given by the **Schröder numbers** 

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

• Trivial character: Schrö(a, b; a - 1) = Cat(a, b).

Smallest k that occurs is  $k = \max\{0, a - b\}$ , in which case

 $\operatorname{Schr\"o}(a, b; \mathbf{k}) = \operatorname{Cat}'(a, b).$ 

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

#### Observation/Definition

The multiplicities of the **hook Schur functions**  $s[k+1, 1^{a-k-1}]$  in PF(*a*, *b*) are given by the **Schröder numbers** 

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- Trivial character: Schrö(a, b; a 1) = Cat(a, b).
- Smallest k that occurs is  $k = \max\{0, a b\}$ , in which case

 $\operatorname{Schr}(a, b; \mathbf{k}) = \operatorname{Cat}'(a, b).$ 

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

#### Observation/Definition

The multiplicities of the **hook Schur functions**  $s[k+1, 1^{a-k-1}]$  in PF(*a*, *b*) are given by the **Schröder numbers** 

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- Trivial character: Schrö(a, b; a 1) = Cat(a, b).
- Smallest k that occurs is  $k = \max\{0, a b\}$ , in which case

$$\mathsf{Schr}\ddot{o}(a,b;\mathbf{k}) = \mathsf{Cat}'(a,b).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Given a, b coprime we have an  $\mathfrak{S}_a$ -module  $\mathsf{PF}(a, b)$  of dimension  $b^{a-1}$  and an  $\mathfrak{S}_b$ -module  $\mathsf{PF}(b, a)$  of dimension  $a^{b-1}$ .

What is the relationship between PF(a, b) and PF(b, a)?

Note that hook multiplicities are the same:

 $\operatorname{Schr\"o}(a, b; k) = \operatorname{Schr\"o}(b, a; k + b - a).$ 

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

SQA

Given a, b coprime we have an  $\mathfrak{S}_a$ -module  $\mathsf{PF}(a, b)$  of dimension  $b^{a-1}$  and an  $\mathfrak{S}_b$ -module  $\mathsf{PF}(b, a)$  of dimension  $a^{b-1}$ .

• What is the relationship between PF(a, b) and PF(b, a)?

Note that hook multiplicities are the same:

Schrö(a, b; k) = Schrö(b, a; k + b - a).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Given a, b coprime we have an  $\mathfrak{S}_a$ -module  $\mathsf{PF}(a, b)$  of dimension  $b^{a-1}$  and an  $\mathfrak{S}_b$ -module  $\mathsf{PF}(b, a)$  of dimension  $a^{b-1}$ .

• What is the relationship between PF(a, b) and PF(b, a)?

Note that hook multiplicities are the same:

 $\operatorname{Schr}(a, b; k) = \operatorname{Schr}(b, a; k + b - a).$ 

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Given a, b coprime we have an  $\mathfrak{S}_a$ -module  $\mathsf{PF}(a, b)$  of dimension  $b^{a-1}$  and an  $\mathfrak{S}_b$ -module  $\mathsf{PF}(b, a)$  of dimension  $a^{b-1}$ .

▶ What is the relationship between PF(*a*, *b*) and PF(*b*, *a*)?

Note that hook multiplicities are the same:

Schrö(a, b; k) = Schrö(b, a; k + b - a).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

### How about *q* and *t*?

#### We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in  $\mathbb{N}[q, t]$  by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{\mathsf{P}} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

F is a fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

• We require  $PF_{1,1}(a, b) = PF(a, b)$ .

Must define qstat, tstat, iDes for (a, b)-parking function P.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

### How about *q* and *t*?

#### We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in  $\mathbb{N}[q, t]$  by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

F is a fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

• We require  $PF_{1,1}(a, b) = PF(a, b)$ .

Must define qstat, tstat, iDes for (a, b)-parking function P.

SQA

### How about *q* and *t*?

#### We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in  $\mathbb{N}[q, t]$  by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (*a*, *b*)-parking functions *P*.

F is a fundamental (Gessel) quasisymmetric function.
 *— natural refinement of Schur functions*

• We require  $PF_{1,1}(a, b) = PF(a, b)$ .

Must define qstat, tstat, iDes for (a, b)-parking function P.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

### How about *q* and *t*?

#### We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in  $\mathbb{N}[q, t]$  by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (*a*, *b*)-parking functions *P*.

- F is a fundamental (Gessel) quasisymmetric function.
   natural refinement of Schur functions
- We require  $PF_{1,1}(a, b) = PF(a, b)$ .
- Must define qstat, tstat, iDes for (a, b)-parking function P.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

### How about *q* and *t*?

#### We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in  $\mathbb{N}[q, t]$  by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (*a*, *b*)-parking functions *P*.

- F is a fundamental (Gessel) quasisymmetric function.
   natural refinement of Schur functions
- We require  $PF_{1,1}(a, b) = PF(a, b)$ .

Must define qstat, tstat, iDes for (a, b)-parking function P.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

### How about *q* and *t*?

#### We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in  $\mathbb{N}[q, t]$  by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

- F is a fundamental (Gessel) quasisymmetric function.
   natural refinement of Schur functions
- We require  $PF_{1,1}(a, b) = PF(a, b)$ .
- Must define qstat, tstat, iDes for (a, b)-parking function P.

# qstat is easy

#### Definition

- ▶ Let qstat := area := # boxes between the path and diagonal.
- ► Note: Maximum value of area is (a 1)(b 1)/2. (Frobenius) — see Beck and Robins, Chapter 1

#### Example

• This (5, 8)-parking function has area = 6.



▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

### Definition

- ▶ Read labels by increasing "height" to get permutation  $\sigma \in \mathfrak{S}_a$ .
- iDes := the descent set of  $\sigma^{-1}$ .

### Example

Remember the "height"?

|    |     |     |     |     | 15  |     |     |     |
|----|-----|-----|-----|-----|-----|-----|-----|-----|
| 32 | 27  | 22  | 17  | 12  | 7   | 2   | -3  | -8  |
| 24 | 19  | 14  | 9   | 4   | -1  | -6  | -11 | -16 |
| 16 | 11  | 6   | 1   | -4  | -9  | -14 | -19 | -24 |
| 8  | 3   | -2  | 7مر | -12 | -17 | -22 | -27 | -32 |
| 0  | -5- | -10 | -15 | -20 | -25 | -30 | -35 | -40 |

### Definition

- ▶ Read labels by increasing "height" to get permutation  $\sigma \in \mathfrak{S}_a$ .
- iDes := the descent set of  $\sigma^{-1}$ .

### Example

Look at the heights of the vertical step boxes.



### Definition

- ▶ Read labels by increasing "height" to get permutation  $\sigma \in \mathfrak{S}_a$ .
- iDes := the descent set of  $\sigma^{-1}$ .

### Example

Remember the labels we had before.



### Definition

- ▶ Read labels by increasing "height" to get permutation  $\sigma \in \mathfrak{S}_a$ .
- iDes := the descent set of  $\sigma^{-1}$ .

### Example

• Read them by increasing height to get  $\sigma = 2\overline{1}53\overline{4} \in \mathfrak{S}_5$ .



### Definition

- ▶ "Blow up" the (*a*, *b*)-parking function.
- ► Compute "dinv" of the blowup.

### Example

▶ Recall our favorite the (5,8)-parking function.



### Definition

- ▶ "Blow up" the (*a*, *b*)-parking function.
- Compute "dinv" of the blowup.

#### Example

Since  $2 \cdot 8 - 3 \cdot 5 = 1$  we "blow up" by 2 horiz. and 3 vert....



▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

### Example

► To get this!



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### Example

• To get this! Now compute dinv = 7.



### Example

▶ (There's a scaling factor *depending on the path*, so tstat = 3.)



# All Together

### Example

- So our favorite (5,8)-parking function contributes  $q^6 t^3 F_{\{1,4\}}$ .
- ▶ Proof of Concept: The coefficient of s[2,2,1] in  $PF_{q,t}(5,8)$  is



# All Together

#### Example

- So our favorite (5,8)-parking function contributes  $q^6 t^3 F_{\{1,4\}}$ .
- ▶ Proof of Concept: The coefficient of s[2, 2, 1] in  $PF_{q,t}(5, 8)$  is



#### Facts

#### $\blacktriangleright \mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$

- PF<sub>q,t</sub>(a, b) is symmetric and Schur-positive with coeffs ∈ N[q, t].
   via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF<sub>q,t</sub>(a, b) = PF<sub>t,q</sub>(a, b).
   this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1<sup>a-k-1</sup>] is the q, t-Schröder number Schrö<sub>g,t</sub>(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö<sub> $q,\frac{1}{q}$ </sub> $(a,b;k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$  (centered)

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 = のへの

#### Facts

### ▶ $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$

- PF<sub>q,t</sub>(a, b) is symmetric and Schur-positive with coeffs ∈ N[q, t].
   via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF<sub>q,t</sub>(a, b) = PF<sub>t,q</sub>(a, b).
   this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1<sup>a-k-1</sup>] is the q, t-Schröder number Schrö<sub>g,t</sub>(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö<sub> $q,\frac{1}{q}$ </sub> $(a,b;k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$  (centered)

#### Facts

- ▶  $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$
- ▶  $\mathsf{PF}_{q,t}(a, b)$  is symmetric and Schur-positive with coeffs  $\in \mathbb{N}[q, t]$ . — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF<sub>q,t</sub>(a, b) = PF<sub>t,q</sub>(a, b).
   this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k+1,1<sup>a-k-1</sup>] is the q, t-Schröder number Schrö<sub>q,t</sub>(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö<sub>q,  $\frac{1}{q}$ </sub> $(a, b; k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$  (centere

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 = のへの

#### Facts

- ▶  $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$
- ▶  $\mathsf{PF}_{q,t}(a, b)$  is symmetric and Schur-positive with coeffs  $\in \mathbb{N}[q, t]$ . — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF<sub>q,t</sub>(a, b) = PF<sub>t,q</sub>(a, b).
   this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k+1,1<sup>a-k-1</sup>] is the q, t-Schröder number Schrö<sub>q,t</sub>(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö<sub>q, 
$$\frac{1}{q}$$</sub> $(a, b; k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$  (centered)

#### Facts

- ▶  $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$
- ▶  $\mathsf{PF}_{q,t}(a, b)$  is symmetric and Schur-positive with coeffs  $\in \mathbb{N}[q, t]$ . — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF<sub>q,t</sub>(a, b) = PF<sub>t,q</sub>(a, b).
   this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1<sup>a-k-1</sup>] is the q, t-Schröder number Schrö<sub>q,t</sub>(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö<sub>q,  $\frac{1}{q}$ </sub> $(a, b; k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$  (centered)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

#### Facts

- ▶  $\mathsf{PF}_{1,1}(a, b) = \mathsf{PF}(a, b).$
- ▶  $\mathsf{PF}_{q,t}(a, b)$  is symmetric and Schur-positive with coeffs  $\in \mathbb{N}[q, t]$ . — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF<sub>q,t</sub>(a, b) = PF<sub>t,q</sub>(a, b).
   this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1<sup>a-k-1</sup>] is the q, t-Schröder number Schrö<sub>q,t</sub>(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

$$\operatorname{Schr}\ddot{o}_{q,\frac{1}{q}}(a,b;k) = \frac{1}{[b]_{q}} \begin{bmatrix} a-1\\k \end{bmatrix}_{q} \begin{bmatrix} b+k\\a \end{bmatrix}_{q} \quad (\operatorname{centered})$$

# Motivation: Lie Theory



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

• These are the root and weight lattices  $Q \subseteq \Lambda$  of  $\mathfrak{S}_a$ .



• Here is a fundamental parallelepiped for  $\Lambda/b\Lambda$ .



• It contains  $b^{a-1}$  elements (these are the "parking functions").



▶ But they look better as a simplex...



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• ...which is congruent to a nicer simplex.



• There are  $Cat(a, b) = \frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$  elements of the root lattice inside.



► These are the (*a*, *b*)-Dyck paths (via Anderson, James-Kerber).



# Other Weyl Groups?

#### Definition

Consider a Weyl group W with Coxeter number h and let  $p \in \mathbb{N}$  be coprime to h. We define the **Catalan number** 

$$\mathsf{Cat}_q(W, p) := \prod_j rac{[p+m_j]_q}{[1+m_j]_q}$$

where  $e^{2\pi i m_j/h}$  are the eigenvalues of a Coxeter element.

#### Observation

$$\operatorname{Cat}_q(\mathfrak{S}_a, b) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q$$

# Thank You

