Rational Associahedra

Drew Armstrong
University of Miami
www.math.miami.edu/~armstrong
Enumerative Combinatorics
MFO, March 2014

Plan

1. Given any $x \in \mathbb{Q}$ define the Catalan number $\operatorname{Cat}(x) \in \mathbb{Z}$.
2. Given any $x \in \mathbb{Q}$ with $x>0$ define the associahedron Ass (x).
3. Given any $x \in \mathbb{Q}$ with $x>0$ define parking functions $\operatorname{PF}(x)$.

Plan

1. Given any $x \in \mathbb{Q}$ define the Catalan number $\operatorname{Cat}(x) \in \mathbb{Z}$.
2. Given any $x \in \mathbb{Q}$ with $x>0$ define the associahedron $\operatorname{Ass}(x)$.
3. Given any $x \in \mathbb{Q}$ with $x>0$ define parking functions $\operatorname{PF}(x)$ 4. Have lunch!

Plan

1. Given any $x \in \mathbb{Q}$ define the Catalan number $\operatorname{Cat}(x) \in \mathbb{Z}$.
2. Given any $x \in \mathbb{Q}$ with $x>0$ define the associahedron $\operatorname{Ass}(x)$.
3. Given any $x \in \mathbb{Q}$ with $x>0$ define parking functions $\operatorname{PF}(x)$.

Plan

1. Given any $x \in \mathbb{Q}$ define the Catalan number $\operatorname{Cat}(x) \in \mathbb{Z}$.
2. Given any $x \in \mathbb{Q}$ with $x>0$ define the associahedron $\operatorname{Ass}(x)$.
3. Given any $x \in \mathbb{Q}$ with $x>0$ define parking functions $\operatorname{PF}(x)$.
4. Have lunch!

What is a Catalan Number?

What is a Catalan Number?

Seemingly Bizarre Convention (It's Not)

Given $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ there exist unique coprime integers $a, b \in \mathbb{Z}$ with $0<a<|b|$ or $0<b<|a|$ such that

$$
x=\frac{a}{b-a} .
$$

(Note that $0<x \Longleftrightarrow 0<a<b$.) We will always identify $x \leftrightarrow(a, b)$.
Examples: Given $1 \leq n \in \mathbb{N}$ we have

What is a Catalan Number?

Seemingly Bizarre Convention (It's Not)

Given $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ there exist unique coprime integers $a, b \in \mathbb{Z}$ with $0<a<|b|$ or $0<b<|a|$ such that

$$
x=\frac{a}{b-a} .
$$

(Note that $0<x \Longleftrightarrow 0<a<b$.) We will always identify $x \leftrightarrow(a, b)$.
Examples: Given $1 \leq n \in \mathbb{N}$ we have

What is a Catalan Number?

Seemingly Bizarre Convention (It's Not)

Given $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ there exist unique coprime integers $a, b \in \mathbb{Z}$ with $0<a<|b|$ or $0<b<|a|$ such that

$$
x=\frac{a}{b-a} .
$$

(Note that $0<x \Longleftrightarrow 0<a<b$.) We will always identify $x \leftrightarrow(a, b)$.
Examples: Given $1 \leq n \in \mathbb{N}$ we have

$$
x=n \leftrightarrow(n, n+1)
$$

What is a Catalan Number?

Seemingly Bizarre Convention (It's Not)

Given $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ there exist unique coprime integers $a, b \in \mathbb{Z}$ with $0<a<|b|$ or $0<b<|a|$ such that

$$
x=\frac{a}{b-a} .
$$

(Note that $0<x \Longleftrightarrow 0<a<b$.) We will always identify $x \leftrightarrow(a, b)$.
Examples: Given $1 \leq n \in \mathbb{N}$ we have

$$
x=\frac{1}{n} \leftrightarrow(1, n+1)
$$

What is a Catalan Number?

Seemingly Bizarre Convention (It's Not)

Given $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ there exist unique coprime integers $a, b \in \mathbb{Z}$ with $0<a<|b|$ or $0<b<|a|$ such that

$$
x=\frac{a}{b-a} .
$$

(Note that $0<x \Longleftrightarrow 0<a<b$.) We will always identify $x \leftrightarrow(a, b)$.
Examples: Given $1 \leq n \in \mathbb{N}$ we have

$$
x=-n \leftrightarrow(n, n-1) \quad(\text { need } n \geq 2)
$$

What is a Catalan Number?

Seemingly Bizarre Convention (It's Not)

Given $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ there exist unique coprime integers $a, b \in \mathbb{Z}$ with $0<a<|b|$ or $0<b<|a|$ such that

$$
x=\frac{a}{b-a} .
$$

(Note that $0<x \Longleftrightarrow 0<a<b$.) We will always identify $x \leftrightarrow(a, b)$.
Examples: Given $1 \leq n \in \mathbb{N}$ we have

$$
x=-\frac{1}{n} \leftrightarrow(1,-n+1) \quad(\text { need } n \geq 3)
$$

What is a Catalan Number?

Definition

For each $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ we define the Catalan number:

$$
\operatorname{Cat}(x)=\operatorname{Cat}(a, b):=\frac{1}{a+b}\binom{a+b}{a, b} .
$$

Claim: This is an integer. (Proof postponed.)

Exampie:

What is a Catalan Number?

Definition

For each $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ we define the Catalan number:

$$
\operatorname{Cat}(x)=\operatorname{Cat}(a, b):=\frac{1}{a+b}\binom{a+b}{a, b} .
$$

Claim: This is an integer. (Proof postponed.)

Example:

What is a Catalan Number?

Definition

For each $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ we define the Catalan number:

$$
\operatorname{Cat}(x)=\operatorname{Cat}(a, b):=\frac{1}{a+b}\binom{a+b}{a, b} .
$$

Claim: This is an integer. (Proof postponed.)

Example:

$$
\operatorname{Cat}\left(\frac{5}{3}\right)=\operatorname{Cat}\left(\frac{5}{8-5}\right)=\operatorname{Cat}(5,8)=\frac{1}{13}\binom{13}{5,8}=99 .
$$

Classical Cases

When $b=1 \bmod a$ we have \ldots

- Eugène Charles Catalan (1814-1894)
$(a, b)=(n, n+1)$ gives the good old Catalan number:

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{(n+1)-n}\right)=\frac{1}{2 n+1}(2 n+1)
$$

Nicolaus Fuss (1755-1826)
$(a, b)=(n, k n+1)$ gives the \mathbf{F} uss-Catalan number:

$$
\operatorname{Cat}\left(\frac{n}{(k n+1)-n}\right)=\frac{1}{(k+1) n+1}\binom{(k+1) n+1}{n} .
$$

Classical Cases

When $b=1 \bmod a$ we have

- Eugène Charles Catalan (1814-1894) $(a, b)=(n, n+1)$ gives the good old Catalan number:

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{(n+1)-n}\right)=\frac{1}{2 n+1}\binom{2 n+1}{n} .
$$

- Nicolaus Fuss (1755-1826)

Classical Cases

When $b=1 \bmod a$ we have

- Eugène Charles Catalan (1814-1894) $(a, b)=(n, n+1)$ gives the good old Catalan number:

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{(n+1)-n}\right)=\frac{1}{2 n+1}\binom{2 n+1}{n} .
$$

- Nicolaus Fuss (1755-1826)
$(a, b)=(n, k n+1)$ gives the Fuss-Catalan number:

$$
\operatorname{Cat}\left(\frac{n}{(k n+1)-n}\right)=\frac{1}{(k+1) n+1}\binom{(k+1) n+1}{n} .
$$

Symmetry about $x=-1 / 2$

Symmetry about $x=-1 / 2$

Definition

By definition we have $\operatorname{Cat}(a, b)=\operatorname{Cat}(b, a)$, which implies that

$$
\operatorname{Cat}(x)=\operatorname{Cat}(a, b)=\operatorname{Cat}(b, a)=\operatorname{Cat}(-x-1) .
$$

Symmetry about $x=-1 / 2$

Definition

By definition we have $\operatorname{Cat}(a, b)=\operatorname{Cat}(b, a)$, which implies that

$$
\operatorname{Cat}(x)=\operatorname{Cat}(a, b)=\operatorname{Cat}(b, a)=\operatorname{Cat}(-x-1) .
$$

This implies that for $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ we have

$$
\operatorname{Cat}\left(\frac{1}{x-1}\right)=\operatorname{Cat}\left(\frac{x}{1-x}\right) .
$$

Symmetry about $x=-1 / 2$

Definition

By definition we have $\operatorname{Cat}(a, b)=\operatorname{Cat}(b, a)$, which implies that

$$
\operatorname{Cat}(x)=\operatorname{Cat}(a, b)=\operatorname{Cat}(b, a)=\operatorname{Cat}(-x-1) .
$$

This implies that for $x \in \mathbb{Q} \backslash\left\{-1,-\frac{1}{2}, 0\right\}$ we have

$$
\operatorname{Cat}\left(\frac{1}{x-1}\right)=\operatorname{Cat}\left(\frac{x}{1-x}\right) .
$$

We will call this the derived Catalan number:

$$
\operatorname{Cat}^{\prime}(x):=\operatorname{Cat}\left(\frac{1}{x-1}\right)=\operatorname{Cat}\left(\frac{x}{1-x}\right) .
$$

Symmetry about $x=-1 / 2$

Definition

Given $0<x$ (i.e. $0<a<b$) note that we have

We call this rational duality:
$\operatorname{Cat}^{\prime \prime}(x)=\operatorname{Cat}^{\prime}(1 / x)$.

Symmetry about $x=-1 / 2$

Definition

Given $0<x$ (i.e. $0<a<b$) note that we have

$$
\operatorname{Cat}^{\prime}(1 / x)=\operatorname{Cat}\left(\frac{1}{(1 / x)-1}\right)=\operatorname{Cat}\left(\frac{x}{1-x}\right)=\operatorname{Cat}^{\prime}(x)
$$

Symmetry about $x=-1 / 2$

Definition

Given $0<x$ (i.e. $0<a<b$) note that we have

$$
\operatorname{Cat}^{\prime}(1 / x)=\operatorname{Cat}\left(\frac{1}{(1 / x)-1}\right)=\operatorname{Cat}\left(\frac{x}{1-x}\right)=\operatorname{Cat}^{\prime}(x)
$$

We call this rational duality:

$$
\operatorname{Cat}^{\prime}(x)=\operatorname{Cat}^{\prime}(1 / x)
$$

Symmetry about $x=-1 / 2$

Definition

Given $0<x$ (i.e. $0<a<b$) note that we have

$$
\operatorname{Cat}^{\prime}(1 / x)=\operatorname{Cat}\left(\frac{1}{(1 / x)-1}\right)=\operatorname{Cat}\left(\frac{x}{1-x}\right)=\operatorname{Cat}^{\prime}(x)
$$

We call this rational duality:

$$
\operatorname{Cat}^{\prime}(x)=\operatorname{Cat}^{\prime}(1 / x)
$$

In terms of coprime $0<a<b$ this translates to

$$
\operatorname{Cat}^{\prime}(a, b)=\operatorname{Cat}^{\prime}(b-a, b) .
$$

This will appear later as Alexander duality of rational associahedra.

Euclidean Algorithm

This allows us to define a sequence

$$
\operatorname{Cat}^{(x)} \mapsto \operatorname{Cat}^{\prime}(x) \longmapsto \operatorname{Cat}^{\prime \prime}(x) \mapsto
$$

which is a Categorification of the Euclidean algorithm.

Euclidean Algorithm

Observation

Given $0<a<b$ coprime, we observe that

$$
\operatorname{Cat}^{\prime}(a, b)=\frac{1}{b}\binom{b}{a}= \begin{cases}\operatorname{Cat}(a, b-a) & \text { for } a<(b-a) \\ \operatorname{Cat}(b-a, a) & \text { for }(b-a)<a\end{cases}
$$

This allows us to define a sequence

Euclidean Algorithm

Observation

Given $0<a<b$ coprime, we observe that

$$
\operatorname{Cat}^{\prime}(a, b)=\frac{1}{b}\binom{b}{a}= \begin{cases}\operatorname{Cat}(a, b-a) & \text { for } a<(b-a) \\ \operatorname{Cat}(b-a, a) & \text { for }(b-a)<a\end{cases}
$$

This allows us to define a sequence

$$
\operatorname{Cat}(x) \mapsto \operatorname{Cat}^{\prime}(x) \mapsto \operatorname{Cat}^{\prime \prime}(x) \mapsto \cdots
$$

which is a Categorification of the Euclidean algorithm.

Euclidean Algorithm

Example: $x=5 / 3$ and $(a, b)=(5,8)$

Subtract the smaller from the larger:

Euclidean Algorithm

Example: $x=5 / 3$ and $(a, b)=(5,8)$

Subtract the smaller from the larger:

$$
\begin{aligned}
\operatorname{Cat}(5,8) & =99, \\
\operatorname{Cat}^{\prime}(5,8) & =\operatorname{Cat}(3,5)=7, \\
\operatorname{Cat}^{\prime \prime}(5,8) & =\operatorname{Cat}^{\prime}(3,5)=\operatorname{Cat}(2,3)=2, \\
\operatorname{Cat}^{\prime \prime \prime}(5,8) & =\operatorname{Cat}^{\prime \prime}(3,5)=\operatorname{Cat}^{\prime}(2,3)=\operatorname{Cat}(1,2)=1 \quad(\text { STOP })
\end{aligned}
$$

My Dream / Crazy Idea

My Dream / Crazy Idea

Suggestion

Extend the function Cat : $\mathbb{Q} \rightarrow \mathbb{N}$ analytically to the upper half plane.

Pause

Well, that was fun.

The Prototype: Rational Dyck Paths

The Prototype: Rational Dyck Paths

- Consider the "Dyck paths" in an $a \times b$ rectangle.

Example $(a, b)=(5,8)$

The Prototype: Rational Dyck Paths

- Again let $0<x=a /(b-a)$ with $0<a<b$ coprime.

Example $(a, b)=(5,8)$

The Prototype: Rational Dyck Paths

- Let $\mathcal{D}(x)=\mathcal{D}(a, b)$ denote the set of Dyck paths.

Example $(a, b)=(5,8)$

The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)
For a, b coprime, the number of Dyck paths is the Catalan number:

The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)
For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

- Claimed by Grossman (1950), "Fun with lattice points, part 22".

The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

- Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.

The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

- Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break $\binom{a+b}{a, b}$ lattice paths into cyclic orbits of size $a+b$. Each orbit contains a unique Dyck path.

The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

Call these the Narayana numbers.

Call these the Kreweras numbers.

The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

- The number of Dyck paths with k vertical runs equals

$$
\operatorname{Nar}(x ; k):=\frac{1}{a}\binom{a}{k}\binom{b-1}{k-1} .
$$

Call these the Narayana numbers.

Call these the Kreweras numbers.

The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

- The number of Dyck paths with k vertical runs equals

$$
\operatorname{Nar}(x ; k):=\frac{1}{a}\binom{a}{k}\binom{b-1}{k-1} .
$$

Call these the Narayana numbers.

- And the number with r_{j} vertical runs of length j equals

$$
\operatorname{Krew}(x ; \mathbf{r}):=\frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}}=\frac{(b-1)!}{r_{0}!r_{1}!\cdots r_{a}!}
$$

Call these the Kreweras numbers.

The Classical Associahedron

The Classical Associahedron

Definition

Let $n \geq 0$ and consider a convex ($n+2$)-gon C. Let Ass(n) be the abstract simplicial complex with

The Classical Associahedron

Definition

Let $n \geq 0$ and consider a convex ($n+2$)-gon C. Let Ass(n) be the abstract simplicial complex with

- vertices $=$ chords of C

The Classical Associahedron

Definition

Let $n \geq 0$ and consider a convex ($n+2$)-gon C. Let Ass(n) be the abstract simplicial complex with

- vertices $=$ chords of C
- faces $=$ noncrossing sets of chords of C

The Classical Associahedron

Definition

Let $n \geq 0$ and consider a convex ($n+2$)-gon C. Let Ass(n) be the abstract simplicial complex with

- vertices $=$ chords of C
- faces $=$ noncrossing sets of chords of C
- maximal faces $=$ triangulations of C

The Classical Associahedron

Definition

Let $n \geq 0$ and consider a convex ($n+2$)-gon C. Let Ass (n) be the abstract simplicial complex with

- vertices $=$ chords of C
- faces $=$ noncrossing sets of chords of C
- maximal faces $=$ triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)
$\operatorname{Ass}(n)$ is a polytope.

The Classical Associahedron

- Example: Here is Ass(4).

The Classical Associahedron

Theorem (Euler, 1751)

The f-vector and h-vector of Ass(n) are given by the Kirkman numbers

$$
\operatorname{Kirk}(n ; k)=\frac{1}{n}\binom{n}{k}\binom{n+k}{k-1}
$$

and the Narayana numbers

$$
\operatorname{Nar}(n ; k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

The Classical Associahedron

- Example: Here are the f-vector and h-vector of $\operatorname{Ass}(4)$.

The Rational Associahedron

Given $0<x=a /(b-a)$ with $0<a<b$ coprime, we will define a
simplicial complex

whose maximal faces correspond to certain special dissections ("rational triangulations") of a convex $(b+1)$-gon.

The Rational Associahedron

Idea

Given $0<x=a /(b-a)$ with $0<a<b$ coprime, we will define a simplicial complex

$$
\operatorname{Ass}(x)=\operatorname{Ass}(a, b)
$$

whose maximal faces correspond to certain special dissections ("rational triangulations") of a convex $(b+1)$-gon.

To define a "rational triangulation"

- Start with a Dyck path. Here $(a, b)=(5,8)$.

To define a "rational triangulation"

- Label the columns by $\{1,2, \ldots, b+1\}$.

To define a "rational triangulation"

- Shoot lasers from the bottom left with slope a / b.

To define a "rational triangulation"

- Lift the lasers up.

To define a "rational triangulation"

- There you go!

To define a "rational triangulation"

- We have constructed Cat (a, b) many "rational triangulations" of a convex $(b+1)$-gon, and each of them has $a-1$ chords.

The Rational Associahedron

Definition

Given $0<x=a /(b-a)$, let $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$ be the abstract simplicial complex whose maximal faces are the "rational triangulations".

The Rational Associahedron

Definition

Given $0<x=a /(b-a)$, let $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$ be the abstract simplicial complex whose maximal faces are the "rational triangulations".

Geometric Realization

Note that $\operatorname{Ass}(a, b)$ is a pure $(a-1)$-dimensional subcomplex of the ($b-1$)-dimensional polytope $\operatorname{Ass}(b-1)$.

The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

$$
\begin{aligned}
& \text { Ass }(n, n+1) \text { is the classical associahedron } \operatorname{Ass}(n) \text {. } \\
& \text { Ass }(n,(k-1) n+1) \text { is the generalized cluster complex of } \\
& \text { Athanasiadis-Tzanaki and Fomin-Reading. }
\end{aligned}
$$

The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)$ is the classical associahedron $\operatorname{Ass}(n)$.

The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)$ is the classical associahedron $\operatorname{Ass}(n)$.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.

The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)$ is the classical associahedron $\operatorname{Ass}(n)$.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass (x) has Cat (x) maximal faces and Euler characteristic $\mathrm{Cat}^{\prime}(x)$.

The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)$ is the classical associahedron $\operatorname{Ass}(n)$.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass (x) has Cat (x) maximal faces and Euler characteristic Cat $^{\prime}(x)$.
- Ass (x) is shellable and hence homotopy equivalent to a wedge of $\mathrm{Cat}^{\prime}(x)$ many ($a-1$)-dimensional spheres.

The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)$ is the classical associahedron $\operatorname{Ass}(n)$.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass (x) has $\operatorname{Cat}(x)$ maximal faces and Euler characteristic $\operatorname{Cat}^{\prime}(x)$.
- Ass (x) is shellable and hence homotopy equivalent to a wedge of $\mathrm{Cat}^{\prime}(x)$ many ($a-1$)-dimensional spheres.
- $\operatorname{Ass}(x)$ has h-vector $\operatorname{Nar}(x ; k)=\frac{1}{a}\binom{a}{k}\binom{b-1}{k-1}$.

The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)$ is the classical associahedron $\operatorname{Ass}(n)$.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass (x) has $\operatorname{Cat}(x)$ maximal faces and Euler characteristic $\operatorname{Cat}^{\prime}(x)$.
- Ass (x) is shellable and hence homotopy equivalent to a wedge of $\mathrm{Cat}^{\prime}(x)$ many $(a-1)$-dimensional spheres.
- $\operatorname{Ass}(x)$ has h-vector $\operatorname{Nar}(x ; k)=\frac{1}{a}\binom{a}{k}\binom{b-1}{k-1}$.
- Hence its f-vector is given by the rational Kirkman numbers:

$$
\operatorname{Kirk}(x ; k):=\frac{1}{a}\binom{a}{k}\binom{b+k-1}{k-1} .
$$

The Rational Associahedron

Observation

Given $0<x=a /(b-a)$ with $0<a<b$ coprime, note that $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(1 / x)=\operatorname{Ass}(b-a, b)$ are both subcomplexes of the polytope $\operatorname{Ass}(b-1)=\operatorname{Ass}(b-1, b)$.

The Rational Associahedron

Observation

Given $0<x=a /(b-a)$ with $0<a<b$ coprime, note that $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(1 / x)=\operatorname{Ass}(b-a, b)$ are both subcomplexes of the polytope $\operatorname{Ass}(b-1)=\operatorname{Ass}(b-1, b)$.

Question

How do $\operatorname{Ass}(x)$ and $\operatorname{Ass}(1 / x)$ fit together?

The Rational Associahedron

- Example: Here are subcomplexes $\operatorname{Ass}(2,5)$ and $\operatorname{Ass}(3,5)$ in $\operatorname{Ass}(4)$.

Rational Duality?

Observation

Note that Ass $(b-1)$ has this many vertices:

$$
\binom{b+1}{2}-(b+1)=\frac{(b+1) b}{2}-\frac{2(b+1)}{2}=\frac{(b-2)(b+1)}{2}
$$

The subcomplexes $\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(b-a, b)$ bipartition the vertices:

$$
\frac{(a-1)(b+1)}{2}+\frac{(b-a-1)(b+1)}{2}=\frac{(b-2)(b+1)}{2} .
$$

Rational Duality $=$ Alexander Duality

Conjecture (with B. Rhoades and N. Williams)
We know that $\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(b-a, b)$ have the same number of homotopy spheres (of complementary dimensions) because

$$
\operatorname{Cat}^{\prime}(a, b)=\operatorname{Cat}^{\prime}(b-a, b)
$$

We conjecture that the homotopy spheres are "intertwined" in a nice way. Formally, we conjecture that $\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(b-a, b)$ are Alexander dual as subcomplexes of $\operatorname{Ass}(b-1)$

Theorem (B. Rhoades)
The conjecture is true.

Rational Duality $=$ Alexander Duality

Conjecture (with B. Rhoades and N. Williams)

We know that $\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(b-a, b)$ have the same number of homotopy spheres (of complementary dimensions) because

$$
\operatorname{Cat}^{\prime}(a, b)=\operatorname{Cat}^{\prime}(b-a, b)
$$

We conjecture that the homotopy spheres are "intertwined" in a nice way. Formally, we conjecture that $\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(b-a, b)$ are Alexander dual as subcomplexes of $\operatorname{Ass}(b-1)$.

Rational Duality $=$ Alexander Duality

Conjecture (with B. Rhoades and N. Williams)

We know that $\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(b-a, b)$ have the same number of homotopy spheres (of complementary dimensions) because

$$
\operatorname{Cat}^{\prime}(a, b)=\operatorname{Cat}^{\prime}(b-a, b) .
$$

We conjecture that the homotopy spheres are "intertwined" in a nice way. Formally, we conjecture that $\operatorname{Ass}(a, b)$ and $\operatorname{Ass}(b-a, b)$ are Alexander dual as subcomplexes of $\operatorname{Ass}(b-1)$.

Theorem (B. Rhoades)

The conjecture is true.

Euclidean Algorithm =?

Definition
Given $0<a<b$ coprime, if we define

$$
\operatorname{Ass}^{\prime}(a, b):= \begin{cases}\operatorname{Ass}(a, b-a) & \text { for } a<(b-a) \\ \operatorname{Ass}(b-a, a) & \text { for }(b-a)<a\end{cases}
$$

then
\# homotopy spheres $\operatorname{Ass}(a, b)=\#$ maximal faces $\operatorname{Ass}^{\prime}(a, b)$.

What does the following mean?

$$
\operatorname{Ass}(a, b) \mapsto \operatorname{Ass}^{\prime}(a, b) \mapsto \operatorname{Ass}^{\prime \prime}(a, b) \mapsto
$$

Euclidean Algorithm =?

Definition

Given $0<a<b$ coprime, if we define

$$
\operatorname{Ass}^{\prime}(a, b):= \begin{cases}\operatorname{Ass}(a, b-a) & \text { for } a<(b-a) \\ \operatorname{Ass}(b-a, a) & \text { for }(b-a)<a\end{cases}
$$

then
\# homotopy spheres $\operatorname{Ass}(a, b)=$ \# maximal faces $\operatorname{Ass}^{\prime}(a, b)$.

Euclidean Algorithm =?

Definition

Given $0<a<b$ coprime, if we define

$$
\operatorname{Ass}^{\prime}(a, b):= \begin{cases}\operatorname{Ass}(a, b-a) & \text { for } a<(b-a) \\ \operatorname{Ass}(b-a, a) & \text { for }(b-a)<a\end{cases}
$$

then
\# homotopy spheres $\operatorname{Ass}(a, b)=\#$ maximal faces $\operatorname{Ass}^{\prime}(a, b)$.

Question

What does the following mean?

$$
\operatorname{Ass}(a, b) \mapsto \operatorname{Ass}^{\prime}(a, b) \mapsto \operatorname{Ass}^{\prime \prime}(a, b) \mapsto \cdots \mapsto \text { a point }
$$

What is a Parking Function?

The Rational Parking Space

Definition

- Label the up-steps by $\{1,2, \ldots, a\}$, increasing up columns.

The Rational Parking Space

Definition

- Label the up-steps by $\{1,2, \ldots, a\}$, increasing up columns.

- Call this a parking function.

The Rational Parking Space

Definition

- Label the up-steps by $\{1,2, \ldots, a\}$, increasing up columns.

- Call this a parking function.
- Let $\operatorname{PF}(x)=\operatorname{PF}(a, b)$ denote the set of parking functions.

The Rational Parking Space

Definition

- Label the up-steps by $\{1,2, \ldots, a\}$, increasing up columns.

- Call this a parking function.
- Let $\operatorname{PF}(x)=\operatorname{PF}(a, b)$ denote the set of parking functions.
- Classical form $\left(z_{1}, z_{2}, \ldots, z_{a}\right)$ has label z_{i} in column i.
- Example: $(3,1,4,4,1)$

The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_{a} acts on classical forms.

The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_{a} acts on classical forms.

- Example: $(3,1,4,4,1)$ versus $(3,1,1,4,4)$

The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_{a} acts on classical forms.

- Example: $(3,1,4,4,1)$ versus $(3,1,1,4,4)$

The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_{a} acts on classical forms.

- Example: $(3,1,4,4,1)$ versus $(3,1,1,4,4)$
- By abuse, let $\operatorname{PF}(x)=\operatorname{PF}(a, b)$ denote this representation of \mathfrak{S}_{a}.

The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_{a} acts on classical forms.

- Example: $(3,1,4,4,1)$ versus $(3,1,1,4,4)$
- By abuse, let $\operatorname{PF}(x)=\operatorname{PF}(a, b)$ denote this representation of \mathfrak{S}_{a}.
- Call it the rational parking space.

The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

- The dimension of $\operatorname{PF}(a, b)$ is b
- The complete homogeneous expansion is
where the sum is over $\mathbf{r}=0^{r_{0}} 1^{r_{1}} \cdots a^{r_{2}} \vdash a$ with $\sum_{i} r_{i}=b$.

The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

- The dimension of $\operatorname{PF}(a, b)$ is b^{a-1}.
\Rightarrow The complete homogeneous expansion is

The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

- The dimension of $\operatorname{PF}(a, b)$ is b^{a-1}.
- The complete homogeneous expansion is

$$
\operatorname{PF}(a, b)=\sum_{\mathbf{r} \vdash a} \frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}} h_{\mathbf{r}},
$$

where the sum is over $\mathbf{r}=0^{r_{0}} 1^{r_{1}} \cdots a^{r_{a}} \vdash a$ with $\sum_{i} r_{i}=b$.

The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

- The dimension of $\operatorname{PF}(a, b)$ is b^{a-1}.
- The complete homogeneous expansion is

$$
\operatorname{PF}(a, b)=\sum_{\mathbf{r} \vdash a} \frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}} h_{\mathbf{r}},
$$

where the sum is over $\mathbf{r}=0^{r_{0}} 1^{r_{1}} \cdots a^{r_{a}} \vdash a$ with $\sum_{i} r_{i}=b$.

- Note that this is the same as

$$
\operatorname{PF}(a, b)=\sum_{\mathbf{r} \vdash a} \frac{1}{b} m_{\mathbf{r}}\left(1^{b}\right) h_{\mathbf{r}} .
$$

A Few Facts

Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get. . .

- The power sum expansion is

A Few Facts

Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get. . .

- The power sum expansion is

$$
\operatorname{PF}(a, b)=\sum_{\mathbf{r} \vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}
$$

i.e. the \# of parking functions fixed by $\sigma \in \mathfrak{S}_{a}$ is $b^{\# \operatorname{cycles}(\sigma)-1}$.

- The Schur expansion is

A Few Facts

Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get. . .

- The power sum expansion is

$$
\operatorname{PF}(a, b)=\sum_{\mathbf{r} \vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}
$$

i.e. the $\#$ of parking functions fixed by $\sigma \in \mathfrak{S}_{a}$ is $b^{\# \operatorname{cycles}(\sigma)-1}$.

- The Schur expansion is

$$
\operatorname{PF}(a, b)=\sum_{r \vdash a} \frac{1}{b} s_{r}\left(1^{b}\right) s_{r} .
$$

A Few Facts

Observation/Definition

The multiplicities of the hook Schur functions $s\left[k+1,1^{a-k-1}\right]$ in $\operatorname{PF}(a, b)$ are given by the rational Schröder numbers:

$$
\operatorname{Schrö}(a, b ; k):=\frac{1}{b} s_{\left[k+1,1^{1-k-1]}\right.}\left(1^{b}\right)=\frac{1}{b}\binom{a-1}{k}\binom{b+k}{a} .
$$

A Few Facts

Observation/Definition

The multiplicities of the hook Schur functions $s\left[k+1,1^{a-k-1}\right]$ in $\operatorname{PF}(a, b)$ are given by the rational Schröder numbers:

$$
\text { Schrö }(a, b ; k):=\frac{1}{b} s_{\left[k+1,1^{a-k-1}\right]}\left(1^{b}\right)=\frac{1}{b}\binom{a-1}{k}\binom{b+k}{a}
$$

Special Cases:
Trivial character: $\operatorname{Schrö}(a, b ; a-1)=\operatorname{Cat}(a, b)$.

- Smallest k that occurs is $k=\max \{0, a-b\}$, in which case

A Few Facts

Observation/Definition

The multiplicities of the hook Schur functions $s\left[k+1,1^{a-k-1}\right]$ in $\operatorname{PF}(a, b)$ are given by the rational Schröder numbers:

$$
\operatorname{Schrö}(a, b ; k):=\frac{1}{b} s_{\left[k+1,1^{a-k-1}\right]}\left(1^{b}\right)=\frac{1}{b}\binom{a-1}{k}\binom{b+k}{a} .
$$

Special Cases:

- Trivial character: $\operatorname{Schrö}(a, b ; a-1)=\operatorname{Cat}(a, b)$.
- Smallest k that occurs is $k=\max \{0, a-b\}$, in which case

A Few Facts

Observation/Definition

The multiplicities of the hook Schur functions $s\left[k+1,1^{a-k-1}\right]$ in $\operatorname{PF}(a, b)$ are given by the rational Schröder numbers:

$$
\operatorname{Schrö}(a, b ; k):=\frac{1}{b} S_{\left[k+1,1^{a-k-1}\right]}\left(1^{b}\right)=\frac{1}{b}\binom{a-1}{k}\binom{b+k}{a}
$$

Special Cases:

- Trivial character: $\operatorname{Schrö}(a, b ; a-1)=\operatorname{Cat}(a, b)$.
- Smallest k that occurs is $k=\max \{0, a-b\}$, in which case

$$
\operatorname{Schrö}(a, b ; k)=\operatorname{Cat}^{\prime}(a, b) .
$$

A Few Facts

Observation/Definition

The multiplicities of the hook Schur functions $s\left[k+1,1^{a-k-1}\right]$ in $\operatorname{PF}(a, b)$ are given by the rational Schröder numbers:

$$
\operatorname{Schrö}(a, b ; k):=\frac{1}{b} s_{\left[k+1,1^{a-k-1]}\right.}\left(1^{b}\right)=\frac{1}{b}\binom{a-1}{k}\binom{b+k}{a} .
$$

Special Cases:

- Trivial character: $\operatorname{Schrö}(a, b ; a-1)=\operatorname{Cat}(a, b)$.
- Smallest k that occurs is $k=\max \{0, a-b\}$, in which case

$$
\operatorname{Schrö}(a, b ; k)=\operatorname{Cat}^{\prime}(a, b) .
$$

- Hence Schrö $(x ; k)$ interpolates between $\operatorname{Cat}(x)$ and $\operatorname{Cat}^{\prime}(x)$.

What does switching $a \leftrightarrow b$ mean?

Problem

Given a, b coprime we have an $\mathfrak{S}_{\mathrm{a}}$-module $\operatorname{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_{b}-module $\operatorname{PF}(b, a)$ of dimension a^{b-1}.

- What is the relationship between $\operatorname{PF}(a, b)$ and $\operatorname{PF}(b, a)$?
- Note that hook multiplicities are the same:

What does switching $a \leftrightarrow b$ mean?

Problem

Given a, b coprime we have an $\mathfrak{S}_{\mathrm{a}}$-module $\operatorname{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_{b}-module $\operatorname{PF}(b, a)$ of dimension a^{b-1}.
-What is the relationship between $\operatorname{PF}(a, b)$ and $\operatorname{PF}(b, a)$?

- Note that hook multiplicities are the same:

$$
\operatorname{Schrö}(a, b ; k)=\operatorname{Schrö}(b, a ; k+b-a) .
$$

- See: E. Gorsky, "Arc spaces and DAHA representations", (2011)

What does switching $a \leftrightarrow b$ mean?

Problem

Given a, b coprime we have an $\mathfrak{S}_{\mathrm{a}}$-module $\operatorname{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_{b}-module $\operatorname{PF}(b, a)$ of dimension a^{b-1}.
-What is the relationship between $\operatorname{PF}(a, b)$ and $\operatorname{PF}(b, a)$?

- Note that hook multiplicities are the same:

$$
\operatorname{Schrö}(a, b ; k)=\operatorname{Schrö}(b, a ; k+b-a) .
$$

- See: E. Gorsky, "Arc spaces and DAHA representations", (2011)

What does switching $a \leftrightarrow b$ mean?

Problem

Given a, b coprime we have an $\mathfrak{S}_{\mathrm{a}}$-module $\operatorname{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_{b}-module $\operatorname{PF}(b, a)$ of dimension a^{b-1}.
-What is the relationship between $\operatorname{PF}(a, b)$ and $\operatorname{PF}(b, a)$?

- Note that hook multiplicities are the same:

$$
\operatorname{Schrö}(a, b ; k)=\operatorname{Schrö}(b, a ; k+b-a) .
$$

- See: E. Gorsky, "Arc spaces and DAHA representations", (2011)

Summary of Catalan Numerology

- The Kirkman/Narayana/Schröder numbers are equivalent. They contain information about rank. $(1<k<a-1)$

$$
\left.\begin{array}{c}
\operatorname{Kirk}(x ; k)=\frac{1}{a}\binom{a}{k}\binom{b+k-1}{k-1} \\
\operatorname{Nar}(x ; k)=\frac{1}{a}\binom{a}{k}\binom{b-1}{k-1} \\
\operatorname{Schrö}(x ; k)=\frac{1}{b}\binom{a-1}{k}\binom{b+k}{a}
\end{array}\right\} \quad \text {-vector } \quad h \text {-vector }
$$

Summary of Catalan Numerology

- The Kirkman/Narayana/Schröder numbers are equivalent. They contain information about rank. $(1<k<a-1)$

$$
\left.\begin{array}{c}
\operatorname{Kirk}(x ; k)=\frac{1}{a}\binom{a}{k}\binom{b+k-1}{k-1} \\
\operatorname{Nar}(x ; k)=\frac{1}{a}\binom{a}{k}\binom{b-1}{k-1} \\
\operatorname{Schrö}(x ; k)=\frac{1}{b}\binom{a-1}{k}\binom{b+k}{a}
\end{array}\right\} \quad \text {-vector } \quad \text { "dual" } f \text {-vector }
$$

- The Kreweras numbers are more refined. They contain parabolic information. $(\mathbf{r} \vdash a)$

$$
\operatorname{Krew}(x ; \mathbf{r})=\frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{\mathrm{a}}}
$$

But what about q and t ?

Tease
 There exi ts a bigraded version PF g,t (a, b). Here is the coefficient of the (non-hook) Schur function $s[2,2,1]$ in $\mathrm{PF}_{q, t}(5,8)$:

But what about q and t ?

Tease

There exists a bigraded version $\mathrm{PF}_{q, t}(a, b)$. Here is the coefficient of the (non-hook) Schur function s[2, 2, 1] in $\mathrm{PF}_{q, t}(5,8)$:

Vielen Dank!

