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What is a Catalan Number?

Given x € Q \ {—1, —%,0} there exist unique coprime integers a, b € Z
with 0 < a < |b| or 0 < b < |a| such that

a
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(Note that 0 < x <= 0 < a < b.) We will always identify x <> (a, b).
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What is a Catalan Number?

Given x € Q\ {—1,—3,0} there exist unique coprime integers a, b € Z
with 0 < a < |b| or 0 < b < |a| such that
a
 b—a

(Note that 0 < x <=0 < a < b.) We will always identify x <> (a, b).

Examples: Given 1 < n € N we have

1
x:—;<—>(1,—n+1) (need n > 3)



For each x € Q\ {—1,—3,0} we define the Catalan number:
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What is a Catalan Number?

Definition
For each x € Q\ {—1, —%, O} we define the Catalan number:

1
Cat(x) = Cat(a, b) == — ("’;bb).

Claim: This is an integer. (Proof postponed.)

Example:

5 5 1 /13
Cat (3) = Cat (85) = Cat(5,8) = e (5,8) = 99.
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> Eugéne Charles Catalan (1814-1894)
(a,b) = (n,n+ 1) gives the good old Catalan number:

cale) = (i) = et )




Classical Cases

> Eugéne Charles Catalan (1814-1894)
(a,b) = (n,n+ 1) gives the good old Catalan number:

et -cx (grz3y2) - ()

» Nicolaus Fuss (1755-1826)

(a, b) = (n, kn+ 1) gives the Fuss-Catalan number:

Cat((kn—l—nl)—n) - (k+11)n+1<(k+1n)n+1>'







By definition we have Cat(a, b) = Cat(b, a), which implies that

Cat(x) = Cat(a, b) = Cat(b, a) = Cat(—x — 1).



By definition we have Cat(a, b) = Cat(b, a), which implies that

Cat(x) = Cat(a, b) = Cat(b, a) = Cat(—x — 1).
This implies that for x € Q\ {—1,-3,0} we have

1 X
Cat(m) —Cat(l_x>.




Symmetry about x = —1/2

Definition
By definition we have Cat(a, b) = Cat(b, a), which implies that

Cat(x) = Cat(a, b) = Cat(b, a) = Cat(—x — 1).

This implies that for x € Q \ {71, ,%’0} we have

1 X

We will call this the derived Catalan number:

Cat'(x) := Cat (Xi 1> = Cat <lix> .




Given (i.e. 0 < a < b) note that we have

Cat'( )Cat<(lx1)1> fCat<&> = Cat'(x).

We call this

Cat'(x) = Cat'(1/x).



Given 0 < x (i.e. 0 < a < b) note that we have

Cat'(1/x) = Cat (W) — @ <ﬁ) — Cat'(x).



Given 0 < x (i.e. 0 < a < b) note that we have

Cat'(1/x) = Cat (W) — @ (ﬁ) — Cat'(x).

We call this rational duality:

Cat'(x) = Cat/(1/x).



Symmetry about x = —1/2

Definition
Given 0 < x (i.e. 0 < a < b) note that we have

Cat’(1/x) = Cat ((1/)31) = Cat (1XX> = Cat/(x).
We call this rational duality:
Cat'(x) = Cat/(1/x).
In terms of coprime 0 < a < b this translates to
Cat'(a, b) = Cat'(b — a, b).

This will appear later as Alexander duality of rational associahedra.



Observation




Euclidean Algorithm

Given 0 < a < b coprime, we observe that

Cat'(a, b) = 1 (b) _ Cat(a,b—a) fora< (b—a)
b\a Cat(b—a,a) for (b—a)<a



Euclidean Algorithm

Given 0 < a < b coprime, we observe that

Cat'(a, b) = 1 (b) _ Cat(a,b—a) fora< (b—a)
b\a Cat(b—a,a) for (b—a)<a

This allows us to define a sequence
Cat(x) + Cat'(x) > Cat”(x) > - -

which is a Categorification of the Euclidean algorithm.



Euclidean Algorithm

Subtract the smaller from the larger:



Euclidean Algorithm

Subtract the smaller from the larger:

Cat(5,8) = 99,

Cat/(5,8) = Cat(3,5) = 7,

Cat”(5,8) = Cat'(3,5) = Cat(2,3) = 2,

Cat”’(5,8) = Cat”(3,5) = Cat'(2,3) = Cat(1,2) =1 (STOP)






Extend the function Cat : Q@ — N analytically to the upper half plane.




Well, that was fun.






The Prototype: Rational Dyck Paths

» Consider the “Dyck paths” in an a x b rectangle.

(0,0)



The Prototype: Rational Dyck Paths

» Again let 0 < x = a/(b — a) with 0 < a < b coprime.




The Prototype: Rational Dyck Paths

» Let D(x) = D(a, b) denote the set of Dyck paths.







For a, b coprime, the number of Dyck paths is the Catalan number:

ID(x)| = Cat(x) = ﬁ (a:bb).
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The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

ID(x)| = Cat(x) = ﬁ ("’:bb)

» Claimed by Grossman (1950), “Fun with lattice points, part 22”.
» Proved by Bizley (1954), in Journal of the Institute of Actuaries.

» Proof: Break ("+b) lattice paths into cyclic orbits of size a + b.
Each orbit contains a unique Dyck path.






The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

» The number of Dyck paths with k vertical runs equals

Nar(x; k) := i(i) (i: 1)

Call these the Narayana numbers.



The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

» The number of Dyck paths with k vertical runs equals

Nar(x; k) := i(i) (i: 1)

Call these the Narayana numbers.
» And the number with r; vertical runs of length j equals

1 b (b—1)!
K r) = — = —"
rew(x; ) b<r07r1,...7ra> rplr!---r!

Call these the Kreweras numbers.



» vertices = chords of C
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The Classical Associahedron

Definition
Let n > 0 and consider a convex (n+ 2)-gon C. Let Ass(n) be the
abstract simplicial complex with

» vertices = chords of C

» faces = noncrossing sets of chords of C

» maximal faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.



The Classical Associahedron

» Example: Here is Ass(4).



The f-vector and h-vector of Ass(n) are given by the Kirkman numbers

w357

and the Narayana numbers

o -30)()



» Example: Here are the f-vector and h-vector of Ass(4) .






The Rational Associahedron

Given 0 < x = a/(b — a) with 0 < a < b coprime, we will define a
simplicial complex
Ass(x) = Ass(a, b)

whose maximal faces correspond to certain special dissections ( “rational
triangulations”) of a convex (b + 1)-gon.



To define a “rational triangulation” ...

» Start with a Dyck path. Here (a, b) = (5, 8).




To define a “rational triangulation” ...

» Label the columns by {1,2,...,b+1}.

o ~N

@ ©®




To define a “rational triangulation” ...

» Shoot lasers from the bottom left with slope a/b.




To define a “rational triangulation” ...

» Lift the lasers up.




To define a “rational triangulation” ...

» There you go!

N



To define a “rational triangulation” ...

» We have constructed Cat(a, b) many “rational triangulations” of a
convex (b + 1)-gon, and each of them has a — 1 chords.

>




Given 0 < x = a/(b — a), let Ass(x) = Ass(a, b) be the abstract
simplicial complex whose maximal faces are the “rational triangulations”.



The Rational Associahedron

Definition
Given 0 < x = a/(b — a), let Ass(x) = Ass(a, b) be the abstract
simplicial complex whose maximal faces are the “rational triangulations”.

Note that Ass(a, b) is a pure (a — 1)-dimensional subcomplex of the
(b — 1)-dimensional polytope Ass(b — 1).






» Ass(n,n+ 1) is the classical associahedron Ass(n).



The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

» Ass(n, n+ 1) is the classical associahedron Ass(n).

» Ass(n,(k —1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.
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The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

» Ass(n, n+ 1) is the classical associahedron Ass(n).

» Ass(n,(k —1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

» Ass(x) has Cat(x) maximal faces and Euler characteristic Cat’(x).

» Ass(x) is shellable and hence homotopy equivalent to a wedge of
Cat’(x) many (a — 1)-dimensional spheres.
> Ass(x) has h-vector Nar(x; k) = 1(7) (f:})

» Hence its f-vector is given by the rational Kirkman numbers:

Kirk(x; k) := é (i) (b : f; 1) :



Given 0 < x = a/(b — a) with 0 < a < b coprime, note that
Ass(x) = Ass(a, b) and Ass(1/x) = Ass(b — a, b) are both subcomplexes
of the polytope Ass(b — 1) = Ass(b — 1, b).



Given 0 < x = a/(b — a) with 0 < a < b coprime, note that

Ass(x) = Ass(a, b) and Ass(1/x) = Ass(b — a, b) are both subcomplexes
of the polytope Ass(b — 1) = Ass(b — 1, b).

How do Ass(x) and Ass(1/x) fit together?



» Example: Here are subcomplexes Ass(2,5) and Ass(3,5) in Ass(4).




Note that Ass(b — 1) has this many vertices:

(b+ 1) _(b+1)= (b+1)b 2(b+1) (b—2)(b+1)

2 2 2 2
The subcomplexes Ass(a, b) and Ass(b — a, b) bipartition the vertices:

(a—1)(b+1) " (b—a—-1)(b+1) (b—-2)(b+1)
2 2 N 2 ’







Rational Duality = Alexander Duality

Conjecture (with B. Rhoades and N. Williams)

We know that Ass(a, b) and Ass(b — a, b) have the same number of
homotopy spheres (of complementary dimensions) because

Cat'(a, b) = Cat'(b — a, b).

We conjecture that the homotopy spheres are “intertwined” in a nice
way. Formally, we conjecture that Ass(a, b) and Ass(b — a, b) are
Alexander dual as subcomplexes of Ass(b — 1).



Rational Duality = Alexander Duality

Conjecture (with B. Rhoades and N. Williams)

We know that Ass(a, b) and Ass(b — a, b) have the same number of
homotopy spheres (of complementary dimensions) because

Cat'(a, b) = Cat'(b — a, b).

We conjecture that the homotopy spheres are “intertwined” in a nice
way. Formally, we conjecture that Ass(a, b) and Ass(b — a, b) are
Alexander dual as subcomplexes of Ass(b — 1).

Theorem (B. Rhoades)

The conjecture is true.






Euclidean Algorithm = 7

Definition

Given 0 < a < b coprime, if we define

Ass(a,b—a) fora< (b—a)

Ass'(a, b) :=
=(a,) {Ass(b—a,a) for(b—a)<a

then

# homotopy spheres Ass(a, b) = # maximal faces Ass'(a, b).



Euclidean Algorithm = 7

Definition

Given 0 < a < b coprime, if we define

Ass/(a, b) = Ass(a,b—a) fora< (b—a)
Ass(b —a,a) for(b—a) < a

then

# homotopy spheres Ass(a, b) = # maximal faces Ass'(a, b).

What does the following mean?

Ass(a, b) — Ass'(a, b) — Ass”(a, b) + -+ a point
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Definition

» Label the up-steps by {1,2,...,a}, increasing up columns.
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The Rational Parking Space

Definition
» Label the up-steps by {1,2,...,a}, increasing up columns.
)
1
&

» Call this a parking function.
» Let PF(x) = PF(a, b) denote the set of parking functions.
» Classical form (z;,z, ..., z,) has label z; in column i.
» Example: (3,1,4,4,1)
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The Rational Parking Space

Definition

» The symmetric group &, acts on classical forms.
-

[

» Example: (3,1,4,4,1) versus (3,1,1,4,4)
» By abuse, let PF(x) = PF(a, b) denote this representation of &,.
» Call it the rational parking space.







» The dimension of PF(a, b) is b®~ 1.



The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

» The dimension of PF(a, b) is b .

» The complete homogeneous expansion is

1 b
PF(a, b) = Z ; (ro? ; ra) hy,

ra AR

where the sum is over r = 01" ... a"% - a with >, r; = b.



The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

» The dimension of PF(a, b) is b? *.
» The complete homogeneous expansion is
1 b
PF(a, b) = — h
(a, ) Z b(ro,rl,...,ra> ”
ra
where the sum is over r = 01" ... a"% - a with >, r; = b.

» Note that this is the same as



Then using the Cauchy product identity we get. . .




A Few Facts

Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get. ..

» The power sum expansion is

Zbé lpl’
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i.e. the # of parking functions fixed by o € &, is b#<vcles(o)—1



A Few Facts

Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get. ..

» The power sum expansion is

Zbé lpl’

rk-a
i.e. the # of parking functions fixed by o € &, is b#<vcles(o)—1

» The Schur expansion is

PF(a,b) =) %sr(lb)sr.

ra



A Few Facts

The multiplicities of the hook Schur functions s[k + 1,12=%~1] in
PF(a, b) are given by the rational Schréder numbers:

. 1 1/a—1\/b+k
Schro(a, b, k) = Es[k+1,1a*k*1](1b) = b( K ) ( 5 )
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Special Cases:
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A Few Facts

The multiplicities of the hook Schur functions s[k + 1,12=%~1] in
PF(a, b) are given by the rational Schréder numbers:

. 1 1/a—1\/b+k
Schro(a, b, k) = 55[k+1,1a*k*1](1b) = b( K ) ( 5 >

Special Cases:
» Trivial character: Schré(a, b; a — 1) = Cat(a, b).
» Smallest k that occurs is k = max{0, a — b}, in which case

Schrd(a, b; k) = Cat'(a, b).

» Hence Schrd(x; k) interpolates between Cat(x) and Cat’(x).



What does switching a <> b mean?

Given a, b coprime we have an &,-module PF(a, b) of dimension b1
and an &,-module PF(b, a) of dimension a®~!.
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What does switching a <> b mean?

Given a, b coprime we have an &,-module PF(a, b) of dimension b1
and an &,-module PF(b, a) of dimension a®~1.

» What is the relationship between PF(a, b) and PF(b, a)?
» Note that hook multiplicities are the same:

Schré(a, b; k) = Schro(b, a; k + b — a).



What does switching a <> b mean?

Given a, b coprime we have an &,-module PF(a, b) of dimension b1
and an &,-module PF(b, a) of dimension a®~1.

» What is the relationship between PF(a, b) and PF(b, a)?
» Note that hook multiplicities are the same:

Schré(a, b; k) = Schro(b, a; k + b — a).

» See: E. Gorsky, “Arc spaces and DAHA representations”, (2011)



» The Kirkman/Narayana/Schroder numbers are equivalent. They
contain information about rank. (1< k <a—1)

Kirk(x; k) = ( )(b}:kll) f-vector
Nar(x; k) = 2(2)(271) h-vector

Schro(x; k) = £ (*.1) (°15) “dual” f-vector



Summary of Catalan Numerology

» The Kirkman/Narayana/Schréder numbers are equivalent. They
contain information about rank. (1 < k < a—1)

Kirk(x; k) = %(i) (b:ﬁl) f-vector
Nar(x; k) = i(i) (fj) h-vector
Schré(x; k) = 1 (%) (°15) “dual” f-vector

» The Kreweras numbers are more refined. They contain parabolic
information. (r F a)

1 b
Krew(x;r) = 5 <fo n . >
) sy fa






But what about g and t?

Tease

There exists a bigraded version PF, ;(a, b). Here is the coefficient of the
(non-hook) Schur function s[2,2,1] in PF, (5, 8):

H N WP W
=N P OO DN
_= NS NN

RN~ -
=N PO W

=N D=

=N W=

=N -

= = s



Vielen Dank!

NOT SURE IF THEY
ARE GLAPPING FOR ME

OR FOR,LUNCH



