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Catalan Combinatorics?
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Catalan Combinatorics? This talk is the red stuff.
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Rational Catalan Numbers

Given x € Q\ [~1,0], there exist unique coprime (a, b) € N? such that

b—a
We will always identify x < (a, b).




Rational Catalan Numbers

Given x € Q\ [~1,0], there exist unique coprime (a, b) € N? such that

b—a
We will always identify x < (a, b).

Definition

For each x € Q \ [—1, 0] we define the Catalan number:

— 1!
Cat(x) = Cat(a, b) == — (a;bb) _(a+b-1)

alb!




Special cases



Special cases

> Eugéne Charles Catalan (1814-1894)

(a,b) = (n,n+ 1) gives the good old Catalan number:

Cat(n) = Cat (

n 1 2n+1
(n+1)—n) 2n+1 n )




Special cases

> Eugéne Charles Catalan (1814-1894)

(a,b) = (n,n+ 1) gives the good old Catalan number:

Cat(n) = Cat (

1 2n+1
(n+1)—n
» Nicolaus Fuss (1755-1826)

T 2n+1\ n )

(a, b) = (n, kn+ 1) gives the Fuss-Catalan number:

Cat ((kn +n1) - n> - 55T

((k+1)n+1
(k+1)n+1

")




which implies that
1
Cat <

1) (i 5)
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By definition we have Cat(a, b) = Cat(b, a), which translates to

Cat(x) = Cat(—x — 1)
(i.e. symmetry about x = —1/2),
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By definition we have Cat(a, b) = Cat(b, a), which translates to

Cat(x) = Cat(—x — 1)

(i.e. symmetry about x = —1/2), which implies that

1 X
Cat(m) —Cat(l_x>.
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Symmetry

Definition
By definition we have Cat(a, b) = Cat(b, a), which translates to

Cat(x) = Cat(—x — 1)

(i.e. symmetry about x = —1/2), which implies that

1 X
Cat(x—l) —Cat(l_x>.

We call this the derived Catalan number:

Cat'(x) := Cat (xll) = Cat (1 i X> .




From the same symmetry we also obtain

1
"(1/x) =
Cat’(1/x) = Cat <(1/><) 1> Cat <

We call this rational duality:

Cat’(1/x) = Cat'(x).

«O0>» «F»r « >

1 = X> = Cat/(x).



From the same symmetry we also obtain

Cat/(1/x) = Cat (W) = Cat (1%) = Cat'(x).
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From the same symmetry we also obtain

/ _ ; - L - ’
Cat(l/x)—Cat<(1/X)_1) —Cat<1_ ) = Cat'(x).
We call this rational duality:

Cat/(1/x) = Cat/(x).
(Watch for it later. . .)
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Observation

The process Cat(x) — Cat’(x) — Cat”(x) —
the Euclidean algorithm.

is a categorification of

Example: x =5/3 and (a, b) = (5,8)
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Euclidean Algorithm

The process Cat(x) — Cat’(x) — Cat”(x) > - -
the Euclidean algorithm.

is a categorification of



Euclidean Algorithm

The process Cat(x) — Cat’(x) — Cat”(x) > - -
the Euclidean algorithm.

is a categorification of

Subtract the smaller from the larger:



Euclidean Algorithm

The process Cat(x) — Cat/(x) — Cat”(x) + - - - is a categorification of
the Euclidean algorithm.

Subtract the smaller from the larger:

Cat(5,8) = 99,
Cat'(5,8) = Cat(3,5) = 7,
Cat”(5,8) = Cat’(3,5) = Cat(2,3) = 2,
Cat”/(5,8) = Cat”(3,5) = Cat'(2,3) = Cat(1,2) =1 (STOP)
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How to put it in Sloane's OEIS

The Calkin-Wilf sequence is defined by g; = 1 and

1
n:

B 2|_qn—1J — Qgn—1+ 1
Theorem: (g1, Ga,...) = Q0.

Proof: See “Proofs from THE BOOK”, Chapter 17



How to put it in Sloane's OEIS

The Calkin-Wilf sequence is defined by g; = 1 and

1
B 2|_qn—1J — Qgn—1+ 1

n:

Theorem: (g1, Ga,...) = Q0.
Proof: See “Proofs from THE BOOK”, Chapter 17.

Study the function n — Cat(gp,).

N=

2 1 3 2
1 3 2 3

=W
(NIF
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5 2
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Well, that was fun.
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The Prototype: Rational Dyck Paths

» Consider the “Dyck paths” in an a x b rectangle.




The Prototype: Rational Dyck Paths

» Again let x = a/(b — a) with a, b positive and coprime.

(0,0)




The Prototype: Rational Dyck Paths

» Let D(x) = D(a, b) denote the set of Dyck paths.

(0,0)
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The number of Dyck paths is the Catalan number:

P00l = ot = 15 (%) ):
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The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

The number of Dyck paths is the Catalan number:

ID(x)| = Cat(x) = ai ; ("’:bb)

» Claimed by Grossman (1950), “Fun with lattice points, part 22" .
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The number of Dyck paths is the Catalan number:

ID(x)| = Cat(x) = ai ; ("’:bb)

» Claimed by Grossman (1950), “Fun with lattice points, part 22" .

» Proved by Bizley (1954), in Journal of the Institute of Actuaries.



The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

The number of Dyck paths is the Catalan number:
1 a+b
= Cat .
D00 = Car) = 515 (*7,))

» Claimed by Grossman (1950), “Fun with lattice points, part 22" .

» Proved by Bizley (1954), in Journal of the Institute of Actuaries.

» Proof: Break ("+b) lattice paths into cyclic orbits of size a + b.
Each orbit contains a unique Dyck path.
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The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

» The number of Dyck paths with k vertical runs equals

Nar(x; k) := i(i) (i: 1)

Call these the Narayana numbers.



The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

» The number of Dyck paths with k vertical runs equals

Nar(x; k) := i(i) (i: 1)

Call these the Narayana numbers.
» And the number with rj vertical runs of length j equals

1 b (b—1)!
K r) = — = —"
rew(x; ) b<r07r1,...7ra> rplr!---r!

Call these the Kreweras numbers.
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To create a noncrossing partition. . .

» Start with a Dyck path. Here (a, b) = (5, 8).




To create a noncrossing partition. . .

» Label the internal vertices by {1,2,...,a+ b —1}.




To create a noncrossing partition. . .

» Shoot lasers from the bottom left with slope a/b.

1 12




To create a noncrossing partition. . .

» Who can see each other?




To create a noncrossing partition. . .

» There you go!




To create a noncrossing partition. . .

> We have created Cat(x) = 1(2"2) different noncrossing partitions of

the cycle [a+ b — 1], and each of them has a blocks.

1 12




To rotate a noncrossing partition. . .

» Q: What does “rotation” of the partition correspond to?

1 12




To rotate a noncrossing partition. . .

» A: Think of the path as a maximal chain in a poset.




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Think of it as a path again.

10 1" 12
9—e—o——9
6 7 8 i
59—
4¢
3¢
2




To rotate a noncrossing partition. . .

» Again the lasers.




To rotate a noncrossing partition. . .

» And there you go!




To rotate a noncrossing partition. . .

» Drew: mention the case (a,b) = (n,(k —1)n+1).

10 1 12
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A Few Facts
Definition

For (a, b) coprime, consider the triangle poset

T(a,b) :={(x,y) €Z*:y <a, x<b, yb—xa>0}.

[T




D.White, Panyushev, Striker-Williams, A-Stump-Thomas.
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» Promotion on 7 (a, b) has order a+ b — 1.

D.White, Panyushev, Striker-Williams, A-Stump-Thomas.
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A Few Facts

Results (with Nathan Williams)

» Promotion on 7 (a, b) has order a+ b — 1.

» Conjecture: The number of chains invariant under promotion? is the
g-Catalan number evaluated at a root of unity:

1 [a+ b}
[a+b]q a7b q

27id
q=e a+b—1




A Few Facts

Results (with Nathan Williams)
» Promotion on 7 (a, b) has order a + b — 1.

» Conjecture: The number of chains invariant under promotion is the
g-Catalan number evaluated at a root of unity:

1 [a—i—b}
[a+blgl ab ],

2mid
q=e a+b—1
» T (n,n+ 1) is related to the type A root poset.




A Few Facts

Results (with Nathan Williams)
» Promotion on 7 (a, b) has order a + b — 1.

» Conjecture: The number of chains invariant under promotion is the
g-Catalan number evaluated at a root of unity:

a, b

2mid
q=e a+b—1
» T (n,n+ 1) is related to the type A root poset.

» D.White, Panyushev, Striker-Williams, A-Stump-Thomas.

o o,




Q>



Our rational NC partitions don't form a nice poset. Indeed, they each
have the same number of blocks! (i.e., a)
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Our rational NC partitions don't form a nice poset. Indeed, they each
have the same number of blocks! (i.e., a)

Can one define a nice poset of rational NC partitions?

DA



Next: Rational NC Partition Posets
Observation

Our rational NC partitions don't form a nice poset. Indeed, they each
have the same number of blocks! (i.e., a)

Can one define a nice poset of rational NC partitions?
Yes.



To de-homogenize a noncrossing partition. . .

» Recall this.




To de-homogenize a noncrossing partition. . .

» Now we label only the horizontal steps.




To de-homogenize a noncrossing partition. . .

» Now we label only the horizontal steps.




To de-homogenize a noncrossing partition. . .

» Now we shoot lasers only from the corners.




To de-homogenize a noncrossing partition. . .

» Now who can see each other?




To de-homogenize a noncrossing partition. . .

» There you go!
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Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.
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Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

» NC(n,n+ 1) = NC(n) is the good old noncrossing partitions.
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A Few Facts

Definition
Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

» NC(n,n+ 1) = NC(n) is the good old noncrossing partitions.

» NC(n, (k —1)n+ 1) is the k-divisible noncrossing partitions.
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» NC(n, (k —1)n+ 1) is the k-divisible noncrossing partitions.
» NC(a, b) is a (graded) order filter in NC(b — 1).



A Few Facts

Definition
Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

» NC(n,n+ 1) = NC(n) is the good old noncrossing partitions.
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A Few Facts

Definition
Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

v

v

v
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NC(n, n+ 1) = NC(n) is the good old noncrossing partitions.
NC(n, (k —1)n+ 1) is the k-divisible noncrossing partitions.
NC(a, b) is a (graded) order filter in NC(b — 1).
NC(
NC(x

a, b) is ranked by the Narayana numbers 1 (2) (?77).

) has Cat(x) = aib (a:[f) elements.



A Few Facts

Definition
Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

v

v

v

v

v

n,n+ 1) = NC(n) is the good old noncrossing partitions.
,(k —1)n+ 1) is the k-divisible noncrossing partitions.
a, b) is a (graded) order filter in NC(b — 1).

NC(

NC(n

NC(

NC(a, b) is ranked by the Narayana numbers 1 (2) (?77).
NC(x

NC(

) has Cat(x) = (a+b

b) elements.

+
x) has Cat = % ) elements of minimum rank.



Rational Duality

» Note that x <> 1/x is the same as (a < b) <> (b— a < b).

.
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The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.
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Next: Rational Associahedra
Observation

The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.

Can one define a rational associahedron with h-vector given by

w022

1



Next: Rational Associahedra
Observation

The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.

Can one define a rational associahedron with h-vector given by

w022

_1)°
Yes. (But it's not a polytope.)



To create a polygon dissection. . .

» Start with a Dyck path. Here (a, b) = (5, 8).




To create a polygon dissection. . .

» Label the columns by {1,2,...,b+1}.

o ~N

@ ©®




To create a polygon dissection. . .

» Shoot some lasers from the bottom left with slope a/b.




To create a polygon dissection. . .

» Lift the lasers up.




To create a polygon dissection. . .

» There you go!

N



To create a polygon dissection. . .

» We have created Cat(x) = %(a;:) different “rational dissections” of

the cycle [b+ 1], and each of them has a diagonals.

N
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Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.
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Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

> Ass(n,n+ 1) = Ass(n) is the good old associahedron.
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A Few Facts

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

Facts (with B. Rhoades and N. Williams)

» Ass(n,n+ 1) = Ass(n) is the good old associahedron.

> Ass(n,(k —1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.
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» Ass(x) has Cat(x) facets, and Euler characteristic Cat’(x).



A Few Facts

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

Facts (with B. Rhoades and N. Williams)

» Ass(n,n+ 1) = Ass(n) is the good old associahedron.
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A Few Facts

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

Facts (with B. Rhoades and N. Williams)

» Ass(n,n+ 1) = Ass(n) is the good old associahedron.

v

Ass(n, (k — 1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

v

Ass(x) has Cat(x) facets, and Euler characteristic Cat’(x).

Ass(x) is shellable with h-vector Nar(x; k) = (2) (37)-

v

v

Hence its f-vector is given by the Kirkman numbers:

e ) o % <i) <b t « | 1) .



» E.g. Ass(2/3) and Ass(3/2) are Alexander dual inside Ass(4).
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Motivation: Core Partitions

Definition
Let A = n be an integer partition of “size” n.
» Say A is a p-core if it has no cell with hook length p.
» Say A is an (a, b)-core if it has no cell with hook length a or b.

The partition (5,4,2,1,1) - 13 is a (5, 8)-core.

6|4[3]1]
2[1

|>—~|l\34>\1©
[—
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The number of (a, b)-cores (of any size) is finite if and only if (a, b) are

coprime, in which case they are counted by the Catalan number

Cat(a, b) = — <

a+b
at+b\ ab )’
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Motivation: Core Partitions

Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are
coprime, in which case they are counted by the Catalan number

1 a+b
Cat(a7b)zm(a b)

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime 3 unique largest (a, b)-core of size %, which
contains all others as subdiagrams.



Motivation: Core Partitions

Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are
coprime, in which case they are counted by the Catalan number

Cat(a, b) = — (

a+b
a+b\ a,b /)’

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime 3 unique largest (a, b)-core of size
contains all others as subdiagrams.

GO -y pick
Study Young's lattice restricted to (a, b)-cores.




Motivation: Core Partitions




For a, b coprime, the number of self-conjugate (a, b)-cores is (
Note: Beautiful bijective proof! (omitted)

«O>» «Fr «=)»

<

L3]+13]

13).13)

DA

).



Motivation: Core Partitions

Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is (
Note: Beautiful bijective proof! (omitted)

T
(L%J + L§J> 1
150513

CEE [aafbb}

qg=-1



Motivation: Core Partitions

Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is (
Note: Beautiful bijective proof! (omitted)

T
<L§J + L§J> 1
150513

CEE [a:bb}

g=—1

Conjecture (Armstrong 2011)

The average size of an (a, b)-core and the average size of a self-conjugate
(a, b)-core are both equal to

(a+b+1)(a—1)(b—1)
24 0




Anderson’s Beautiful Proof

Proof.
Bijection: (a, b)-cores <+ Dyck paths in a x b rectangle O]

40 35 30 25 20 15 10 5 O

9le|4|3]1] 32
714|121 24 T
411 16

= ,

1]
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Anderson’s Beautiful Proof

Proof.

Bijection: (a, b)-cores <+ Dyck paths in a x b rectangle O]

40 35 30 25 20 15 10 5 O

e

916(4(3 1| 32|27|22(17|12| 7 [ 2| V7
7 211 24(19(14] 9 | 4
411 16116 | 1

5 51
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Anderson’s Beautiful Proof

Proof.

Bijection: (a, b)-cores <+ Dyck paths in a x b rectangle O]

40 35 30 25 20 15 10 5 O

e

91643 1| 32|27|22(17|12| 7 [ 2| V7
7 211 24(19(14] 9 | 4
411 16116 | 1

5 51
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Anderson’s Beautiful Proof

Proof.
Bijection: (a, b)-cores < Dyck paths in a x b rectangle O

40 35 30 25 20 15 10 5 0’

9le6|4|3]1] s2]er|22[arfi2]7[2] }
7 2|1 2419149 [ 4| | T
41 16(11] 6

2 3
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Anderson’s Beautiful Proof

Proof.
Bijection: (a, b)-cores < Dyck paths in a x b rectangle O

40 35 30 25 20 15 10 5 0’

9le6|4[3[1] s2|2r|22f1rfr2[7 2] }
7 2|1 24(19(1409 (4| [
41 16(11] 6

2 3

— [ 4
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The Rational Parking Space

Definition

» Label the up-steps by {1,2,...,a}, increasing up columns.
)
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» Label the up-steps by {1,2,...,a}, increasing up columns.
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The Rational Parking Space

Definition
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The Rational Parking Space

Definition
» Label the up-steps by {1,2,...,a}, increasing up columns.
)
1
&

» Call this a parking function.
» Let PF(x) = PF(a, b) denote the set of parking functions.
» Classical form (z;,z, ..., z,) has label z; in column i.
» Example: (3,1,4,4,1)
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» By abuse, let PF(x) = PF(a, b) denote this representation of &,.




The Rational Parking Space

Definition

» The symmetric group &, acts on classical forms.
-

[

» Example: (3,1,4,4,1) versus (3,1,1,4,4)
» By abuse, let PF(x) = PF(a, b) denote this representation of &,.
» Call it the rational parking space.
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» The dimension of PF(a, b) is b®~ 1.

«O>» «Fr «=)»
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A Few Facts

Theorems (with N. Loehr and N. Williams)

» The dimension of PF(a, b) is b® .

» The complete homogeneous expansion is

1 b
PF(2,b) = Z b <ro-, rn ra> it

r-a DBk

where the sum is over r = 071" ... 3% - a with >, r; = b.



A Few Facts

Theorems (with N. Loehr and N. Williams)

» The dimension of PF(a, b) is b® .

» The complete homogeneous expansion is

1 b
PF(a, b) = g ; <r07 o ra) b,

where the sum is over r = 071" ... 3% - a with >, r; = b.

> That is: PF(a, b) is the coefficient of t* in ;H(t)", where

H(t) = hg + hyt + hot?> + - - - .



Then using the Cauchy product identity we get. ..
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A Few Facts
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Then using the Cauchy product identity we get. ..

» The power sum expansion is
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A Few Facts

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get. ..

» The power sum expansion is

Zbé lpl’

rk-a
i.e. the # of parking functions fixed by o € &, is b#<cles(o)—1

» The Schur expansion is

PF(a,b) =) %sr(lb)sr.

ra



A Few Facts

The multiplicities of the hook Schur functions s[k + 1,12=%~1] in
PF(a, b) are given by the Schréder numbers

Schro(a, b; k) :=

1
bs[k+1,1afk*1](1b)
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A Few Facts

The multiplicities of the hook Schur functions s[k + 1,12=%~1] in
PF(a, b) are given by the Schroder numbers

Schro(a, b; k) :=

1/a—1\/b+k
- 1))
Special Cases:
» Trivial character: Schré(a, b; a — 1) = Cat(a, b).

» Smallest k that occurs is k = max{0, a — b}, in which case

Schrd(a, b; k) = Cat'(a, b).

» Hence Schrd(x; k) interpolates between Cat(x) and Cat’(x).
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Rational Duality

Given a, b coprime we have an & ,-module PF(a, b) of dimension b?~!
and an Gp-module PF(b, a) of dimension a

b—1

» What is the relationship between PF(a, b) and PF(b, a)?
> Note that hook multiplicities are the same:

Schré(a, b; k) = Schro(b, a; k + b — a).

» See Eugene Gorsky, Arc spaces and DAHA representations, 2011.




Summary of Catalan Refinements

» The Kirkman/Narayana/Schréder numbers are equivalent. They
contain information about rank. (1 < k < a—1)

Kirk(x; k) = 2 () (171 f-vector
Nar(x; k) = 1 (2)(521) h-vector

Schré(x; k) = 1 (1) (°15) “dual” f-vector



Summary of Catalan Refinements

» The Kirkman/Narayana/Schréder numbers are equivalent. They
contain information about rank. (1 < k < a—1)

Kirk(x; k) = %(i) (b:ﬁl) f-vector
Nar(x; k) = 1 (2)(521) h-vector
Schré(x; k) = 1 (1) (°15) “dual” f-vector

» The Kreweras numbers are more refined. They contain parabolic
information. (r - a)

1 b
Krew(x;r) = 5 <fo n . >
) sy fa
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Finally: How about g and t?

Define a quasisymmetric function with coefficients in N[g, t] by

Pqut(a, b) o= Z qutat(P)ttStat(P)FiDes(P)'
P

» Sum over (a, b)-parking functions P.

> F is a fundamental (Gessel) quasisymmetric function.
— natural refinement of Schur functions

> We require PF; 1(a, b) = PF(a, b).

» Must define gstat, tstat, iDes for (a, b)-parking function P.




gstat is easy

Definition

> Let gstat := area := # boxes between the path and diagonal.

» Note: Maximum value of area is (a — 1)(b — 1)/2. (Frobenius)
— see Beck and Robins, Chapter 1

» This (5, 8)-parking function has area = 6.
4




iDes is reasonable

Definition
» Read labels by increasing “height” to get permutation 0 € G.,.

» iDes := the descent set of o 1.

» Remember the “height”?

40 35 30 25 20 15 10 5 0
32(27|22|17]12] 7 [ 2 |-3}<8
24(19(14] 9| 4 |-1[-6711]-16

16[11] 6 | 1 |-4179 |-14|-19]-24
3 | -2|-7-12]-17|-22]-27|-32
-51°10|-15|-20|-25/-30|-35|-40

u]
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iDes is reasonable

Definition

» Read labels by increasing “height” to get permutation 0 € G.,.
» iDes := the descent set of o~ 1.

> Look at the heights of the vertical step boxes.

40 35 30 25 20 15 10 5 O

32 12
24 4
16 1

3|

= —




iDes is reasonable

Definition

» Read labels by increasing “height” to get permutation o € &,.
» iDes := the descent set of o~ 1.

» Remember the labels we had before.

40 35 30 25 20 15 10 5 O

32 4

24 3

16 1| 17
5| |
o




iDes is reasonable

Definition

» Read labels by increasing “height” to get permutation 0 € G.,.
» iDes := the descent set of o~ 1.

> Read them by increasing height to get o = 21534 € Gs.

40 35 30 25 20 15 10 5 O

32 4
24 3
16 1

5|

Py —

> iDes = {1,4}




tstat is hard (as usual)

Definition

» “Blow up" the (a, b)-parking function.
» Compute “dinv” of the blowup.

» Recall our favorite the (5, 8)-parking function.
4




tstat is hard (as usual)

Definition

» “Blow up” the (a, b)-parking function.
» Compute “dinv” of the blowup.

» Since 2-8—3-5=1 we “blow up” by 2 horiz. and 3 vert....
4 ps




tstat is hard (as usual)

» To get this!

W W | W | ==

(o[ |ot|a| ot




tstat is hard (as usual)

» To get this! Now compute dinv = 7.

- J
4
4
3
3
3
Ve &V
// A /
20 |
5 P |
= //
5
2
2|,
2




tstat is hard (as usual)

» (There's a scaling factor depending on the path, so tstat = 3.)

- J
4
4
3
’3
’3
Ve &V
///'4 /
o4 Nl
5 P S
5 /
5
2
2|,
P4




All Together

> So our favorite (5,8)-parking function contributes ¢°t Fyy 4.



All Together

> So our favorite (5,8)-parking function contributes ¢°t Fyy 4.
> Proof of Concept: The coefficient of s[2,2,1] in PFq .(5,8) is

11
1
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Fas
PF11(a, b) = PF(a, b).
PF,.(a, b) is

— via LLT polynomials (HHLRU Lemma 6.4.1)

«O>» «Fr «=)»

<

with coeffs €

N]g, t].
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> PF11(a, b) = PF(a, b).

«O» «Fr «=>»
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» PFy1(a, b) = PF(a, b).

» PFg :(a, b) is symmetric and Schur-positive with coeffs € N[g, t].
— via LLT polynomials (HHLRU Lemma 6.4.1)

«O>» «Fr «=)»

<

it
o

DA



A Few Facts

Facts
> PFl’l(a, b) = PF(B, b)

» PFg.:(a, b) is symmetric and Schur-positive with coeffs € N[q, t].
— via LLT polynomials (HHLRU Lemma 6.4.1)

» Experimentally: PF,.(a, b) = PF; 4(a, b).
— this will be “impossible” to prove (see Loehr's Maxim)
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Definition: The coefficient of the hook s[k + 1,127%71] is the
q, t-Schréder number Schré, +(a, b; k).



A Few Facts

Facts

> PFl’l(a, b) = PF(B, b)

v

PFg,:(a, b) is symmetric and Schur-positive with coeffs € N[q, t].
— via LLT polynomials (HHLRU Lemma 6.4.1)

v

Experimentally: PF ;(a, b) = PF; 4(a, b).
— this will be “impossible” to prove (see Loehr's Maxim)

v

Definition: The coefficient of the hook s[k + 1,127%71] is the
q, t-Schréder number Schré, +(a, b; k).

v

Experimentally: Specialization t = 1/q gives

Schrd, 1 (a, by k) = [bl]q {a i{bi kL (centered)
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Epilogue: Lie Theory

» between a-cores and the root lattice of the Weyl group &,

9[6]4]3[1] <, ® 67 809
111211 012 3 (4
e —5-4-3-2-1
2
1]

506 78 9

2
(0,1,-1,1,-1) <> o 1 27314
—5—4-3-2-1




Epilogue: Lie Theory

» These are the root and weight lattices @ C A of &,.




Epilogue: Lie Theory

» Here is a fundamental parallelepiped for A/bA.
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Epilogue: Lie Theory

> It contains b° ! elements (these are the “parking functions”).

e
S

AVAVA




Epilogue: Lie Theory

simplex...

» But they look better as a

N/
N/

<>

N/

e
<P

S
Avav

AVAVA



Epilogue: Lie Theory

» ...which is congruent to a nicer simplex.




Epilogue: Lie Theory

» There are Cat(a, b) = ﬁ (a::) elements of the root lattice inside




Epilogue: Lie Theory




Other Weyl Groups?

Definition

Consider a Weyl group W with Coxeter number h and let p € N be
coprime to h. We define the Catalan number

Caty(

H [p+ mJ]q

[1+ mjlq

are the eigenvalues of a Coxeter element.
1
Caty(6,,b) =

A

where e27/m;/h
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