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Rational Catalan Numbers

CONVENTION

Given x ∈ Q \ [−1, 0], there exist unique coprime (a, b) ∈ N2 such that

x =
a

b − a
.

We will always identify x ↔ (a, b).

Definition

For each x ∈ Q \ [−1, 0] we define the Catalan number:

Cat(x) = Cat(a, b) :=
1

a + b

(
a + b

a, b

)
=

(a + b − 1)!

a!b!
.
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Special cases

When b = 1 mod a . . .

I Eugène Charles Catalan (1814-1894)

(a, b) = (n, n + 1) gives the good old Catalan number:

Cat(n) = Cat

(
n

(n + 1)− n

)
=

1

2n + 1

(
2n + 1

n

)
.

I Nicolaus Fuss (1755-1826)

(a, b) = (n, kn + 1) gives the Fuss-Catalan number:

Cat

(
n

(kn + 1)− n

)
=

1

(k + 1)n + 1

(
(k + 1)n + 1

n

)
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Symmetry

Definition

By definition we have Cat(a, b) = Cat(b, a), which translates to

Cat(x) = Cat(−x − 1)

(i.e. symmetry about x = −1/2), which implies that

Cat

(
1

x − 1

)
= Cat

(
x

1− x

)
.

We call this the derived Catalan number:

Cat′(x) := Cat

(
1

x − 1

)
= Cat

(
x

1− x

)
.
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Symmetry

Definition

From the same symmetry we also obtain

Cat′(1/x) = Cat

(
1

(1/x)− 1

)
= Cat

(
x

1− x

)
= Cat′(x).

We call this rational duality:

Cat′(1/x) = Cat′(x).

(Watch for it later. . . )



Symmetry

Definition

From the same symmetry we also obtain

Cat′(1/x) = Cat

(
1

(1/x)− 1

)
= Cat

(
x

1− x

)
= Cat′(x).

We call this rational duality:

Cat′(1/x) = Cat′(x).

(Watch for it later. . . )



Symmetry

Definition

From the same symmetry we also obtain

Cat′(1/x) = Cat

(
1

(1/x)− 1

)
= Cat

(
x

1− x

)
= Cat′(x).

We call this rational duality:

Cat′(1/x) = Cat′(x).

(Watch for it later. . . )



Euclidean Algorithm

Observation

The process Cat(x) 7→ Cat′(x) 7→ Cat′′(x) 7→ · · · is a categorification of
the Euclidean algorithm.

Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

Cat(5, 8) = 99,

Cat′(5, 8) = Cat(3, 5) = 7,

Cat′′(5, 8) = Cat′(3, 5) = Cat(2, 3) = 2,

Cat′′′(5, 8) = Cat′′(3, 5) = Cat′(2, 3) = Cat(1, 2) = 1 (STOP)
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How to put it in Sloane’s OEIS

Suggestion

The Calkin-Wilf sequence is defined by q1 = 1 and

qn :=
1

2bqn−1c − qn−1 + 1
.

Theorem: (q1, q2, . . .) = Q>0.
Proof: See “Proofs from THE BOOK”, Chapter 17.

Study the function n 7→ Cat(qn).

q 1
1

1
2

2
1

1
3

3
2

2
3

3
1

1
4

4
3

3
5

5
2

2
5

5
3 · · ·

Cat(q) 1 1 2 1 7 3 5 1 30 15 66 4 99 · · ·
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Pause

Well, that was fun.



The Prototype: Rational Dyck Paths



The Prototype: Rational Dyck Paths

I Consider the “Dyck paths” in an a× b rectangle.

Example (a, b) = (5, 8)



The Prototype: Rational Dyck Paths

I Again let x = a/(b − a) with a, b positive and coprime.

Example (a, b) = (5, 8)



The Prototype: Rational Dyck Paths

I Let D(x) = D(a, b) denote the set of Dyck paths.

Example (a, b) = (5, 8)



The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

The number of Dyck paths is the Catalan number:

|D(x)| = Cat(x) =
1

a + b

(
a + b

a, b

)
.

I Claimed by Grossman (1950), “Fun with lattice points, part 22”.

I Proved by Bizley (1954), in Journal of the Institute of Actuaries.

I Proof: Break
(
a+b
a,b

)
lattice paths into cyclic orbits of size a + b.

Each orbit contains a unique Dyck path.
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The Prototype: Rational Dyck Paths

Theorem (Armstrong 2010, Loehr 2010)

I The number of Dyck paths with k vertical runs equals

Nar(x ; k) :=
1

a

(
a

k

)(
b − 1

k − 1

)
.

Call these the Narayana numbers.

I And the number with rj vertical runs of length j equals

Krew(x ; r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

(b − 1)!

r0!r1! · · · ra!
.

Call these the Kreweras numbers.
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Next: Rational NC Partitions



To create a noncrossing partition. . .

I Start with a Dyck path. Here (a, b) = (5, 8).



To create a noncrossing partition. . .

I Label the internal vertices by {1, 2, . . . , a + b − 1}.



To create a noncrossing partition. . .

I Shoot lasers from the bottom left with slope a/b.



To create a noncrossing partition. . .

I Who can see each other?



To create a noncrossing partition. . .

I There you go!



To create a noncrossing partition. . .

I We have created Cat(x) = 1
a

(
a+b
a,b

)
different noncrossing partitions of

the cycle [a + b − 1], and each of them has a blocks.



To rotate a noncrossing partition. . .

I Q: What does “rotation” of the partition correspond to?



To rotate a noncrossing partition. . .

I A: Think of the path as a maximal chain in a poset.



To rotate a noncrossing partition. . .

I Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .
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To rotate a noncrossing partition. . .

I Perform “promotion” on the chain.



To rotate a noncrossing partition. . .

I Perform “promotion” on the chain.



To rotate a noncrossing partition. . .

I Think of it as a path again.



To rotate a noncrossing partition. . .

I Again the lasers.



To rotate a noncrossing partition. . .

I And there you go!



To rotate a noncrossing partition. . .

I Drew: mention the case (a, b) = (n, (k − 1)n + 1).



A Few Facts



A Few Facts

Definition

For (a, b) coprime, consider the triangle poset

T (a, b) := {(x , y) ∈ Z2 : y ≤ a, x ≤ b, yb − xa ≥ 0}.

As you see here.



A Few Facts

Results (with Nathan Williams)

I Promotion on T (a, b) has order a + b − 1.

I Conjecture: The number of chains invariant under promotiond is the
q-Catalan number evaluated at a root of unity:

1

[a + b]q

[
a + b

a, b

]
q

∣∣∣∣∣
q=e

2πid
a+b−1

!

I T (n, n + 1) is related to the type A root poset.

I D.White, Panyushev, Striker-Williams, A-Stump-Thomas.
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Next: Rational NC Partition Posets

Observation

Our rational NC partitions don’t form a nice poset. Indeed, they each
have the same number of blocks! (i.e., a)

Question

Can one define a nice poset of rational NC partitions?

Answer

Yes.
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Next: Rational NC Partition Posets

Observation

Our rational NC partitions don’t form a nice poset. Indeed, they each
have the same number of blocks! (i.e., a)

Question

Can one define a nice poset of rational NC partitions?

Answer

Yes.



To de-homogenize a noncrossing partition. . .

I Recall this.



To de-homogenize a noncrossing partition. . .

I Now we label only the horizontal steps.



To de-homogenize a noncrossing partition. . .

I Now we label only the horizontal steps.



To de-homogenize a noncrossing partition. . .

I Now we shoot lasers only from the corners.



To de-homogenize a noncrossing partition. . .

I Now who can see each other?



To de-homogenize a noncrossing partition. . .

I There you go!



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



A Few Facts

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
k

)(
b−1
k−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.



Rational Duality

I Note that x ↔ 1/x is the same as (a < b)↔ (b − a < b).



Next: Rational Associahedra

Observation

The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.

Question

Can one define a rational associahedron with h-vector given by

Nar(x ; k) =
1

a

(
a

k

)(
b − 1

k − 1

)
?

Answer

Yes. (But it’s not a polytope.)
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To create a polygon dissection. . .

I Start with a Dyck path. Here (a, b) = (5, 8).



To create a polygon dissection. . .

I Label the columns by {1, 2, . . . , b + 1}.



To create a polygon dissection. . .

I Shoot some lasers from the bottom left with slope a/b.



To create a polygon dissection. . .

I Lift the lasers up.



To create a polygon dissection. . .

I There you go!



To create a polygon dissection. . .

I We have created Cat(x) = 1
a

(
a+b
a,b

)
different “rational dissections” of

the cycle [b + 1], and each of them has a diagonals.



A Few Facts

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

Facts (with B. Rhoades and N. Williams)

I Ass(n, n + 1) = Ass(n) is the good old associahedron.

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) facets, and Euler characteristic Cat′(x).

I Ass(x) is shellable with h-vector Nar(x ; k) = 1
a

(
a
k

)(
b−1
k−1

)
.

I Hence its f -vector is given by the Kirkman numbers:

Kirk(x ; k) :=
1

a

(
a

k

)(
b + k − 1

k − 1

)
.
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Rational Duality = Alexander Duality

I E.g. Ass(2/3) and Ass(3/2) are Alexander dual inside Ass(4).



Motivation: Core Partitions



Motivation: Core Partitions

Definition

Let λ ` n be an integer partition of “size” n.

I Say λ is a p-core if it has no cell with hook length p.

I Say λ is an (a, b)-core if it has no cell with hook length a or b.

Example

The partition (5, 4, 2, 1, 1) ` 13 is a (5, 8)-core.



Motivation: Core Partitions

Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are
coprime, in which case they are counted by the Catalan number

Cat(a, b) =
1

a + b

(
a + b

a, b

)
.

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime ∃ unique largest (a, b)-core of size (a2−1)(b2−1)
24 , which

contains all others as subdiagrams.

Suggestion

Study Young’s lattice restricted to (a, b)-cores.
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Motivation: Core Partitions

Example: The poset of (3, 4)-cores.



Motivation: Core Partitions

Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is
(b a

2 c+b
b
2 c

b a
2 c,b

b
2 c

)
.

Note: Beautiful bijective proof! (omitted)

Observation/Problem(b a
2c+ b b

2 c
b a

2c, b
b
2 c

)
=

1

[a + b]q

[
a + b

a, b

]
q

∣∣∣∣∣
q=−1

Conjecture (Armstrong 2011)

The average size of an (a, b)-core and the average size of a self-conjugate

(a, b)-core are both equal to (a+b+1)(a−1)(b−1)
24 .
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Anderson’s Beautiful Proof

Proof.

Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (The (5, 8)-core from earlier.)
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Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (Label the rectangle cells by “height”.)



Anderson’s Beautiful Proof

Proof.

Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (Label the first column hook lengths.)



Anderson’s Beautiful Proof

Proof.

Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (Voila!)



Anderson’s Beautiful Proof

Proof.

Bijection: (a, b)-cores ↔ Dyck paths in a× b rectangle

Example (Observe: Conjugation is a bit strange.)



Next: Rational Parking Functions/Spaces



The Rational Parking Space

Definition

I Label the up-steps by {1, 2, . . . , a}, increasing up columns.

I Call this a parking function.

I Let PF(x) = PF(a, b) denote the set of parking functions.

I Classical form (z1, z2, . . . , za) has label zi in column i .

I Example: (3, 1, 4, 4, 1)
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The Rational Parking Space

Definition

I The symmetric group Sa acts on classical forms.

I Example: (3, 1, 4, 4, 1) versus (3, 1, 1, 4, 4)

I By abuse, let PF(x) = PF(a, b) denote this representation of Sa.

I Call it the rational parking space.
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A Few Facts

Theorems (with N. Loehr and N. Williams)

I The dimension of PF(a, b) is ba−1.

I The complete homogeneous expansion is

PF(a, b) =
∑
r`a

1

b

(
b

r0, r1, . . . , ra

)
hr,

where the sum is over r = 0r01r1 · · · ara ` a with
∑

i ri = b.

I That is: PF(a, b) is the coefficient of ta in 1
b H(t)b, where

H(t) = h0 + h1t + h2t2 + · · · .
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A Few Facts

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get. . .

I The power sum expansion is

PF(a, b) =
∑
r`a

b`(r)−1 pr

zr

i.e. the # of parking functions fixed by σ ∈ Sa is b#cycles(σ)−1.

I The Schur expansion is

PF(a, b) =
∑
r`a

1

b
sr(1b) sr.



A Few Facts

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get. . .

I The power sum expansion is

PF(a, b) =
∑
r`a

b`(r)−1 pr

zr

i.e. the # of parking functions fixed by σ ∈ Sa is b#cycles(σ)−1.

I The Schur expansion is

PF(a, b) =
∑
r`a

1

b
sr(1b) sr.



A Few Facts

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get. . .

I The power sum expansion is

PF(a, b) =
∑
r`a

b`(r)−1 pr

zr

i.e. the # of parking functions fixed by σ ∈ Sa is b#cycles(σ)−1.

I The Schur expansion is

PF(a, b) =
∑
r`a

1

b
sr(1b) sr.



A Few Facts

Observation/Definition

The multiplicities of the hook Schur functions s[k + 1, 1a−k−1] in
PF(a, b) are given by the Schröder numbers

Schrö(a, b; k) :=
1

b
s[k+1,1a−k−1](1b) =

1

b

(
a− 1

k

)(
b + k

a

)
.

Special Cases:

I Trivial character: Schrö(a, b; a− 1) = Cat(a, b).

I Smallest k that occurs is k = max{0, a− b}, in which case

Schrö(a, b; k) = Cat′(a, b).

I Hence Schrö(x ; k) interpolates between Cat(x) and Cat′(x).
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I Hence Schrö(x ; k) interpolates between Cat(x) and Cat′(x).



A Few Facts

Observation/Definition

The multiplicities of the hook Schur functions s[k + 1, 1a−k−1] in
PF(a, b) are given by the Schröder numbers
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I Trivial character: Schrö(a, b; a− 1) = Cat(a, b).

I Smallest k that occurs is k = max{0, a− b}, in which case

Schrö(a, b; k) = Cat′(a, b).
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Rational Duality

Problem

Given a, b coprime we have an Sa-module PF(a, b) of dimension ba−1

and an Sb-module PF(b, a) of dimension ab−1.

I What is the relationship between PF(a, b) and PF(b, a)?

I Note that hook multiplicities are the same:

Schrö(a, b; k) = Schrö(b, a; k + b − a).

I See Eugene Gorsky, Arc spaces and DAHA representations, 2011.
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Summary of Catalan Refinements

I The Kirkman/Narayana/Schröder numbers are equivalent. They
contain information about rank. (1 < k < a− 1)

Kirk(x ; k) = 1
a

(
a
k

)(
b+k−1
k−1

)
Nar(x ; k) = 1

a

(
a
k

)(
b−1
k−1

)
Schrö(x ; k) = 1

b

(
a−1
k

)(
b+k

a

)


f -vector

h-vector

“dual” f -vector

I The Kreweras numbers are more refined. They contain parabolic
information. (r ` a)

Krew(x ; r) =
1

b

(
b

r0, r1, . . . , ra

)
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Finally: How about q and t?

We want a “Shuffle Conjecture”

Define a quasisymmetric function with coefficients in N[q, t] by

PFq,t(a, b) :=
∑
P

qqstat(P)ttstat(P)FiDes(P).

I Sum over (a, b)-parking functions P.

I F is a fundamental (Gessel) quasisymmetric function.
— natural refinement of Schur functions

I We require PF1,1(a, b) = PF(a, b).

I Must define qstat, tstat, iDes for (a, b)-parking function P.
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PFq,t(a, b) :=
∑
P

qqstat(P)ttstat(P)FiDes(P).

I Sum over (a, b)-parking functions P.

I F is a fundamental (Gessel) quasisymmetric function.
— natural refinement of Schur functions
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qstat is easy

Definition

I Let qstat := area := # boxes between the path and diagonal.

I Note: Maximum value of area is (a− 1)(b − 1)/2. (Frobenius)
— see Beck and Robins, Chapter 1

Example

I This (5, 8)-parking function has area = 6.



iDes is reasonable

Definition

I Read labels by increasing “height” to get permutation σ ∈ Sa.

I iDes := the descent set of σ−1.

Example

I Remember the “height”?

I iDes = {1, 4}



iDes is reasonable

Definition

I Read labels by increasing “height” to get permutation σ ∈ Sa.

I iDes := the descent set of σ−1.

Example

I Look at the heights of the vertical step boxes.

I iDes = {1, 4}



iDes is reasonable

Definition

I Read labels by increasing “height” to get permutation σ ∈ Sa.

I iDes := the descent set of σ−1.

Example

I Remember the labels we had before.

I iDes = {1, 4}



iDes is reasonable

Definition

I Read labels by increasing “height” to get permutation σ ∈ Sa.

I iDes := the descent set of σ−1.

Example

I Read them by increasing height to get σ = 21̄534̄ ∈ S5.

I iDes = {1, 4}



tstat is hard (as usual)

Definition

I “Blow up” the (a, b)-parking function.

I Compute “dinv” of the blowup.

Example

I Recall our favorite the (5, 8)-parking function.



tstat is hard (as usual)

Definition

I “Blow up” the (a, b)-parking function.

I Compute “dinv” of the blowup.

Example

I Since 2 · 8− 3 · 5 = 1 we “blow up” by 2 horiz. and 3 vert....



tstat is hard (as usual)

Example

I To get this!



tstat is hard (as usual)

Example

I To get this! Now compute dinv = 7.



tstat is hard (as usual)

Example

I (There’s a scaling factor depending on the path, so tstat = 3.)



All Together

Example

I So our favorite (5, 8)-parking function contributes q6t3F{1,4}.

I Proof of Concept: The coefficient of s[2, 2, 1] in PFq,t(5, 8) is

1 1 1 1 1
1 3 4 3 2 1

2 6 6 4 2 1
2 7 7 4 2 1

1 6 7 4 2 1
3 6 4 2 1

1 4 4 2 1
1 3 2 1
1 2 1
1 1
1





All Together

Example

I So our favorite (5, 8)-parking function contributes q6t3F{1,4}.

I Proof of Concept: The coefficient of s[2, 2, 1] in PFq,t(5, 8) is

1 1 1 1 1
1 3 4 3 2 1

2 6 6 4 2 1
2 7 7 4 2 1

1 6 7 4 2 1
3 6 4 2 1

1 4 4 2 1
1 3 2 1
1 2 1
1 1
1





A Few Facts

Facts

I PF1,1(a, b) = PF(a, b).

I PFq,t(a, b) is symmetric and Schur-positive with coeffs ∈ N[q, t].
— via LLT polynomials (HHLRU Lemma 6.4.1)

I Experimentally: PFq,t(a, b) = PFt,q(a, b).
— this will be “impossible” to prove (see Loehr’s Maxim)

I Definition: The coefficient of the hook s[k + 1, 1a−k−1] is the
q, t-Schröder number Schröq,t(a, b; k).

I Experimentally: Specialization t = 1/q gives

Schröq, 1
q
(a, b; k) =

1

[b]q

[
a− 1

k

]
q

[
b + k

a

]
q

(centered)
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Schröq, 1
q
(a, b; k) =

1

[b]q

[
a− 1

k

]
q

[
b + k

a

]
q

(centered)



A Few Facts

Facts

I PF1,1(a, b) = PF(a, b).

I PFq,t(a, b) is symmetric and Schur-positive with coeffs ∈ N[q, t].
— via LLT polynomials (HHLRU Lemma 6.4.1)

I Experimentally: PFq,t(a, b) = PFt,q(a, b).
— this will be “impossible” to prove (see Loehr’s Maxim)

I Definition: The coefficient of the hook s[k + 1, 1a−k−1] is the
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Epilogue: Lie Theory



Epilogue: Lie Theory

The James-Kerber Bijection

I between a-cores and the root lattice of the Weyl group Sa



Epilogue: Lie Theory

I These are the root and weight lattices Q ⊆ Λ of Sa.



Epilogue: Lie Theory

I Here is a fundamental parallelepiped for Λ/bΛ.



Epilogue: Lie Theory

I It contains ba−1 elements (these are the “parking functions”).



Epilogue: Lie Theory

I But they look better as a simplex...



Epilogue: Lie Theory

I ...which is congruent to a nicer simplex.



Epilogue: Lie Theory

I There are Cat(a, b) = 1
a+b

(
a+b
a,b

)
elements of the root lattice inside.



Epilogue: Lie Theory

I These are the (a, b)-Dyck paths (via Anderson, James-Kerber).



Other Weyl Groups?

Definition

Consider a Weyl group W with Coxeter number h and let p ∈ N be
coprime to h. We define the Catalan number

Catq(W , p) :=
∏

j

[p + mj ]q
[1 + mj ]q

where e2πimj/h are the eigenvalues of a Coxeter element.

Observation

Catq(Sa, b) =
1

[a + b]q

[
a + b

a, b

]
q



Here’s to a Productive Workshop


