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Here is it.

Let 0 < a < b be coprime and consider x = a/(b — a) € Q.
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Here is it.
Let 0 < a < b be coprime and consider x = a/(b — a) € Q.
Then we define the Catalan number

Cat(x) == — (

a+b\ (a+b—-1)
at+b\ ab )

alb! '
Please note the a, b-symmetry.
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Special cases.



Special cases.

> Eugéne Charles Catalan (1814-1894)

(a < b) = (n < n+ 1) gives the good old Catalan number

Cat(n) = Cat (2)

1
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Special cases.

> Eugéne Charles Catalan (1814-1894)

(a < b) = (n < n+ 1) gives the good old Catalan number

Cat(n) = Cat (2)

1
» Nicolaus Fuss (1755-1826)

1 (241
C2n+1 n )
(a < b) = (n < kn + 1) gives the Fuss-Catalan number

Cat ((kn +n1) - n> -

1

(k+1)n+1<(k+1)n+1>'

n




Again let x = a/(b — a) for 0 < a < b coprime.
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Euclidean Algorithm & Symmetry.

Definition
Again let x = a/(b — a) for 0 < a < b coprime.
Then we define the derived Catalan number

ooy 1(b\ _ JCat(l/(x—1)) ifx>1
Catl) =3 (a) B {Cat(x/(l —x)) ifx<1

This is a “categorification” of the Euclidean algorithm.



Euclidean Algorithm & Symmetry.
Definition

Again let x = a/(b — a) for 0 < a < b coprime.
Then we define the derived Catalan number

Cat'(x) = %(:) - {Cat(l/(x -1))

Cat(x/(1 — x))

if x <1
This is a “categorification” of the Euclidean algorithm.

If we define Cat: Q\ [-1,0] — N by Cat(—x — 1) := Cat(x) then the
formula is simpler:

Cat/(x) = Cat(1/(x — 1)) = Cat(x/(1 — x)).

if x>1




Catalan “Number Theory”?

Describe a recurrence for the Cat function, perhaps in terms of the
Calkin-Wilf sequence
1

1

2 1 3 2 3 1 4
> — > — > — > — > — > — > — > —
1 2 1 3 2 3 1 4 3
which is defined by
1
2Ix] +1—x"

See Aigner and Ziegler: “Proofs from THE BOOK”, Chapter 17.




Motivation 1: Core Partitions
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Motivation 1: GG/¢/Partitions (see my webpage)
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Motivation 1: GG/¢/Partitions (see my webpage)
Motivation 2: Parking Functions
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Motivation 1: GG/¢/Partitions (see my webpage)
Motivation 2: PAYKing/Funtiens (see my webpage)
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Motivation 1: GG/¢/Partitions (see my webpage)
Motivation 2: PAYKing/Funtiens (see my webpage)
Motivation 3: “Lie Theory”
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Motivation 1: GG/¢/Partitions (see my webpage)

Motivation 2: PAYKing/Funtiens (see my webpage)
Motivation 3: //Li€/Vkéery] (see my webpage)
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Motivation?

Motivation 1: (6Y¢/Partitions (see my webpage)
Motivation 2: RAYKing/Fukchgns (see my webpage)
Motivation 3: //Li€/Vkéery] (see my webpage)

Motivation 4: Noncrossing Partitions (with N.Williams)



Motivation?

Motivation 1: Z6Y¢/Partitions (see my webpage)
Motivation 2: PAKing/Funiciens (see my webpage)
Motivation 3: //Li€/Vkiéery] (see my webpage)

Motivation 4: Noncrossing Partitions (with N.Williams)
Motivation 5: Associahedra (with B. Rhoades and N. Williams)



The Prototype: Actuarial Science.

» Consider the “Dyck paths” in an a x b rectangle.




The Prototype: Actuarial Science.

» Again let x = a/(b — a) with 0 < a < b coprime.

(8,5)




The Prototype: Actuarial Science.

» Let D(x) denote the set of Dyck paths.
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For a, b coprime, the number of Dyck paths is the Catalan number:

ID(x)] = Cat(x) = ﬁ (a:bb).
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The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

ID(x)] = Cat(x) = ﬁ ("’:bb)

» Claimed by Grossman (1950), “Fun with lattice points”.
(He wrote 8 articles with this name.)



The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)
For a, b coprime, the number of Dyck paths is the Catalan number:

ID(x)] = Cat(x) = ﬁ ("’:bb)

» Claimed by Grossman (1950), “Fun with lattice points”.
(He wrote 8 articles with this name.)

» Proved by Bizley (1954), in Journal of the Institute of Actuaries.



The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

ID(x)] = Cat(x) = ﬁ ("’:bb)

» Claimed by Grossman (1950), “Fun with lattice points”.
(He wrote 8 articles with this name.)

» Proved by Bizley (1954), in Journal of the Institute of Actuaries.

> Proof: Break (%0) lattice paths into cyclic orbits of size a + b.

Each orbit contains a unique Dyck path.
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The Prototype: Actuarial Science.

Theorem (Armstrong, 2010, Loehr, 2010)

» Consider the rectangle of height a and width b with 0 < a < b
coprime . The number of Dyck paths with i vertical runs equals

Nar(x, i) := i(?) (tl):ll)

Call these the Narayana numbers.



The Prototype: Actuarial Science.

Theorem (Armstrong, 2010, Loehr, 2010)

» Consider the rectangle of height a and width b with 0 < a < b
coprime . The number of Dyck paths with i vertical runs equals

Nar(x, i) := i(?) (tl):ll)

Call these the Narayana numbers.

» And the number with r; vertical runs of length j equals

1 b b!
K = S
rew(x,r) b(ro,rl,...,ra> roln! )

Call these the Kreweras numbers.



To create a noncrossing partition. . .

» Start with a Dyck path. (E.g. (a,b) = (5,8).)




To create a noncrossing partition. . .

» Label the internal vertices by {1,2,...,a+ b —1}.




To create a noncrossing partition. . .

» Shoot lasers from the bottom left.




To create a noncrossing partition. . .

» Who can see each other?




To create a noncrossing partition. . .

» There you go!




To create a noncrossing partition. . .

> We have created Cat(x) = 1(2"2) different noncrossing partitions of

the cycle [a+ b — 1], and each of them has a blocks.

1 12




To rotate a noncrossing partition. . .

» Q: What does “rotation” of the partition correspond to?

1 12




To rotate a noncrossing partition. . .

» A: Think of the path as a maximal chain in a poset.




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .
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To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.
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To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Perform “promotion” on the chain.

10




To rotate a noncrossing partition. . .

» Think of it as a path again.

10 1" 12
9—e—o——9
6 7 8 i
59—
4¢
3¢
2




To rotate a noncrossing partition. . .

» Again with the lasers.




To rotate a noncrossing partition. . .

» And there you go!




To rotate a noncrossing partition. . .

» Psst ... mention the case (a < b) = (n < n(k —1) +1).

10 1 12
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What have we done?
Definition

For 0 < a < b coprime, consider the triangle poset

T(a,b) :={(x,y) €Z*:y <a, x<b, yb—xa>0}.

[T




Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas.
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» Promotion on T (a, b) has order a+ b — 1.

Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas.
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What have we done?

Theorem (with Nathan Williams)

» Promotion on 7T (a, b) has order a+ b — 1.

» Furthermore, the number of orbits Orb with d dividing a‘gﬁb"l is

(most likely) the coefficient of q? in
1 [a +b

m 2 b :| mod (qa+b71 — 1)
q ’ q



What have we done?

Theorem (with Nathan Williams)

» Promotion on T (a, b) has order a+ b — 1.
» Furthermore, the number of orbits Orb with d dividing
(most likely) the coefficient of q? in

a+b—1 -
o] 'S

1 a+b L=
B Loo), ™
q ) q

» T(n,n+ 1) is a root poset.



What have we done?

Theorem (with Nathan Williams)

» Promotion on T (a, b) has order a+ b — 1.

» Furthermore, the number of orbits Orb with d dividing a\—gbrl:ﬁ is
(most likely) the coefficient of q? in

1 a+b L=
B o), 0
q ) q

» T(n,n+ 1) is a root poset.

» Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas.
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We have some “rational NC partitions” but they don't form a poset.
(They all have a blocks!)
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We have some “rational NC partitions” but they don't form a poset.
(They all have a blocks!)

Can one define a poset of “rational NC partitions” ?
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So now what?

Observation

We have some “rational NC partitions” but they don't form a poset.
(They all have a blocks!)

Can one define a poset of “rational NC partitions” ?
Yes.



To de-homogenize a noncrossing partition. . .

» Remember this thing?




To de-homogenize a noncrossing partition. . .

» Now we label only the horizontal steps.




To de-homogenize a noncrossing partition. . .

» Now we label only the horizontal steps.




To de-homogenize a noncrossing partition. . .

» Now we shoot lasers only from the corners.




To de-homogenize a noncrossing partition. . .

» Now who can see each other?




To de-homogenize a noncrossing partition. . .

» There you go!
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Consider x = a/(b — a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).
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What have we done?

Definition (with Nathan Williams)

Consider x = a/(b — a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

» NC(n,n+ 1) = NC(n) is the good old noncrossing partitions.



What have we done?

Definition (with Nathan Williams)

Consider x = a/(b — a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

» NC(n,n+ 1) = NC(n) is the good old noncrossing partitions.

» NC(n,(k —1)n+ 1) is the k-divisible noncrossing partitions.



What have we done?

Definition (with Nathan Williams)

Consider x = a/(b — a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

» NC(n,n+ 1) = NC(n) is the good old noncrossing partitions.
» NC(n,(k —1)n+ 1) is the k-divisible noncrossing partitions.
» NC(a, b) is a (graded) order filter in NC(b — 1).



What have we done?

Definition (with Nathan Williams)

Consider x = a/(b — a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

» NC(n,n+ 1) = NC(n) is the good old noncrossing partitions.
» NC(n,(k —1)n+ 1) is the k-divisible noncrossing partitions.
» NC(a, b) is a (graded) order filter in NC(b — 1).

(a, b

» NC(a, b) is ranked by the Narayana numbers 2 (‘7) (?:11)

a



What have we done?

Definition (with Nathan Williams)

Consider x = a/(b — a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

>

v

v
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C(a, b) is a (graded) order filter in NC(b — 1).
C(a, b

(

n,n+ 1) = NC(n) is the good old noncrossing partitions.

n,(k —1)n+ 1) is the k-divisible noncrossing partitions.

a, b) is ranked by the Narayana numbers 1 (‘7) (?:11)

a

x) has Cat(x) = 15 (1)) elements.



What have we done?

Definition (with Nathan Williams)

Consider x = a/(b — a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

» NC

C(x) has Cat(x) =

C(x) has Cat’(x) =

n,n+ 1) = NC(n) is the good old noncrossing partitions.

(n,n
NC(n, (k —1)n+ 1) is the k-divisible noncrossing partitions.
NC(a, b) is a (graded) order filter in NC(b — 1).
C(a, b) is ranked by the Narayana numbers 7(’) (b 1)
(
(

i—1

i (‘”:) elements.
1
b

b
( ) elements of minimum rank.



Inversion = “Alexander Duality” 7

» Note that x <> 1/x is the same as (a < b) <> (b— a < b).

.
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The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.
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So now what?

Observation

The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.

Can one define a “rational associahedron” with h-vector given by

w3020

1



So now what?

Observation

The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.

Can one define a “rational associahedron” with h-vector given by

w3020

1
Yes.



To create a polygon dissection. . .

» Start with a Dyck path. (E.g. (a,b) = (5,8).)




To create a polygon dissection. . .

» Label the columns by {1,2,...,b+1}.

o ~N

@ ©®




To create a polygon dissection. . .

» Shoot some lasers from the bottom left.




To create a polygon dissection. . .

» Lift the lasers up.




To create a polygon dissection. . .

» There you go!

N



To create a polygon dissection. . .

» We have created Cat(x) = %(a:':) different “triangulations” of the

cycle [b+ 1], and each of them has a diagonals.

N
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We have a simplicial complex Ass(x) = Ass(a, b).
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We have a simplicial complex Ass(x) = Ass(a, b).

> Ass(n,n+ 1) = Ass(n) is the good old associahedron.
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What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

> Ass(n,n+ 1) = Ass(n) is the good old associahedron.

» Ass(n,(k — 1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.
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Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

> Ass(n,n+ 1) = Ass(n) is the good old associahedron.

» Ass(n,(k — 1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

» Ass(x) has Cat(x) facets and Euler characteristic Cat’(x).



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

> Ass(n,n+ 1) = Ass(n) is the good old associahedron.

» Ass(n,(k — 1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

» Ass(x) has Cat(x) facets and Euler characteristic Cat’(x).

> Ass(x) is shellable with h-vector Nar(x, i) = 1 (3) (57]).

a\i/\i—1



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

> Ass(n,n+ 1) = Ass(n) is the good old associahedron.

v

Ass(n, (k —1)n+ 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

v

Ass(x) has Cat(x) facets and Euler characteristic Cat’(x).

Ass(x) is shellable with h-vector Nar(x, i) = 1(2)(5Z]).

a\i/\i—1

v

v

Hence its f-vector is given by the Kirkman numbers

Kirk(x, i) := é (‘;") (b ,+—II 1> :



» E.g. Ass(2/3) and Ass(3/2) are dual inside Ass(4).
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