Noncrossing Parking Functions

Drew Armstrong (with B. Rhoades and V. Reiner)

University of Miami
www.math.miami.edu/~armstrong
"Non-crossing partitions in representation theory" Bielefeld, June 2014

Plan

1. Parking Functions
2. Noncrossing Partitions
3. Noncrossing Parking Functions

Plan

1. Parking Functions
2. Noncrossing Partitions
3. Noncrossing Parking Functions

Plan

1. Parking Functions
2. Noncrossing Partitions
3. Noncrossing Parking Functions

What is a Parking Function?

What is a Parking Function?

Definition

A parking function is a vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, b_{i} \leq i
$$

What is a Parking Function?

Definition

A parking function is a vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, b_{i} \leq i
$$

Imagine a one-way street with n parking spaces.

What is a Parking Function?

Definition

A parking function is a vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, b_{i} \leq i
$$

Imagine a one-way street with n parking spaces.

- There are n cars.
- If space a_{i} is full, she parks in first available space.

What is a Parking Function?

Definition

A parking function is a vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, b_{i} \leq i
$$

Imagine a one-way street with n parking spaces.

- There are n cars.
- Car i wants to park in space a_{i}.

What is a Parking Function?

Definition

A parking function is a vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, \quad b_{i} \leq i
$$

Imagine a one-way street with n parking spaces.

- There are n cars.
- Car i wants to park in space a_{i}.
- If space a_{i} is full, she parks in first available space.

What is a Parking Function?

Definition

A parking function is a vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, \quad b_{i} \leq i
$$

Imagine a one-way street with n parking spaces.

- There are n cars.
- Car i wants to park in space a_{i}.
- If space a_{i} is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.

What is a Parking Function?

Definition

A parking function is a vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$ whose increasing rearrangement $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ satisfies:

$$
\forall i, \quad b_{i} \leq i
$$

Imagine a one-way street with n parking spaces.

- There are n cars.
- Car i wants to park in space a_{i}.
- If space a_{i} is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

What is a Parking Function?

Example ($n=3$)

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Note that $\# \mathrm{PF}_{3}=16$ and \mathfrak{S}_{3} acts on PF_{3} with 5 orbits.

What is a Parking Function?

Example ($n=3$)

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Note that $\# \mathrm{PF}_{3}=16$ and \mathfrak{S}_{3} acts on PF_{3} with 5 orbits.

What is a Parking Function?

Example ($n=3$)

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Note that $\# \mathrm{PF}_{3}=16$ and \mathfrak{S}_{3} acts on PF_{3} with 5 orbits.

In General We Have

$$
\# \mathrm{PF}_{n}=(n+1)^{n-1} \quad \# \text { orbits }=\frac{1}{n+1}\binom{2 n}{n}
$$

What is a Parking Function?

Example $(n=3)$

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Note that $\# \mathrm{PF}_{3}=16$ and \mathfrak{S}_{3} acts on PF_{3} with 5 orbits.

In General We Have

$$
\begin{array}{c|c}
\# \mathrm{PF}_{n}=(n+1)^{n-1} & \text { \# orbits }=\frac{1}{n+1}\binom{2 n}{n} \\
\text { "Cayley" } &
\end{array}
$$

What is a Parking Function?

Example $(n=3)$

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Note that $\# \mathrm{PF}_{3}=16$ and \mathfrak{S}_{3} acts on PF_{3} with 5 orbits.

In General We Have

$$
\begin{array}{c|c}
\# \mathrm{PF}_{n}=(n+1)^{n-1} & \text { \# orbits }=\frac{1}{n+1}\binom{2 n}{n} \\
\text { "Cayley" } & \text { "Catalan" }
\end{array}
$$

Structure of Parking Functions

$$
\text { Choice functions }=(\mathbb{Z} /(n+1) \mathbb{Z})^{n} \text {. }
$$

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \Longleftrightarrow space $n+1$ remains empty.

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \Longleftrightarrow space $n+1$ remains empty.
- One parking function per rotation class.

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \Longleftrightarrow space $n+1$ remains empty.
- One parking function per rotation class.

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \Longleftrightarrow space $n+1$ remains empty.
- One parking function per rotation class.

Conclusion:

- $P F_{n}=$ choice functions / rotation

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \Longleftrightarrow space $n+1$ remains empty.
- One parking function per rotation class.

Conclusion:

- $\mathrm{PF}_{n}=$ choice functions / rotation
- $\mathrm{PF}_{n} \approx_{\mathfrak{S}_{n}}(\mathbb{Z} /(n+1) \mathbb{Z})^{n} /(1,1, \ldots, 1)$

Structure of Parking Functions

Idea (Pollack, ~ 1974)

Now imagine a circular street with $n+1$ parking spaces.

- Choice functions $=(\mathbb{Z} /(n+1) \mathbb{Z})^{n}$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \Longleftrightarrow space $n+1$ remains empty.
- One parking function per rotation class.

Conclusion:

- $\mathrm{PF}_{n}=$ choice functions / rotation
- $\mathrm{PF}_{n} \approx_{\mathfrak{G}_{n}}(\mathbb{Z} /(n+1) \mathbb{Z})^{n} /(1,1, \ldots, 1)$
- PPF $_{n}=\frac{(n+1)^{n}}{n+1}=(n+1)^{n-1}$

Why do We Care?

Culture

The symmetric group \mathfrak{S}_{n} acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$
\mathbb{S}_{n} \curvearrowright \mathbb{Q}[x, y]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_{n}-action as parking functions:

$$
\omega \cdot \mathrm{PF}_{n} \approx \mathfrak{S}_{n} \mathbb{Q}[\mathbf{x}, \mathbf{y}] / \mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{S}_{n}}
$$

Why do We Care?

Culture

The symmetric group \mathfrak{S}_{n} acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$
\mathfrak{S}_{n} \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_{n}-action as parking functions:

The proof was hard. It comes down to this theorem:
The isospectral Hilbert scheme of n points in \mathbb{C}^{2} is Cohen-Macaulay and Gorenstein.

Why do We Care?

Culture

The symmetric group \mathfrak{S}_{n} acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$
\mathfrak{S}_{n} \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_{n}-action as parking functions:

$$
\omega \cdot \mathrm{PF}_{n} \approx_{\mathfrak{S}_{n}} \mathbb{Q}[\mathbf{x}, \mathbf{y}] / \mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{E}_{n}}
$$

The proof was hard. It comes down to this theorem:
The isospectral Hilbert scheme of n points in \mathbb{C}^{2} is Cohen-Macaulay and Gorenstein.

Why do We Care?

Culture

The symmetric group \mathfrak{S}_{n} acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$
\mathfrak{S}_{n} \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]
$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_{n}-action as parking functions:

$$
\omega \cdot \mathrm{PF}_{n} \approx_{\mathfrak{S}_{n}} \mathbb{Q}[\mathbf{x}, \mathbf{y}] / \mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{E}_{n}}
$$

The proof was hard. It comes down to this theorem:
The isospectral Hilbert scheme of n points in \mathbb{C}^{2} is Cohen-Macaulay and Gorenstein.

Pollack's Idea \Rightarrow Weyl Groups

This generalizes Pollack because we have

$$
(m /(n+1) m a n /(1,1 \ldots 1)=Q /(n+1) Q .
$$

\square

Pollack's Idea \Rightarrow Weyl Groups

Haiman, Conjectures on the quotient ring..., Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, $W \curvearrowright \mathbb{R}^{r}$ by reflections and stabilizes a "root lattice" $Q \leq \mathbb{R}^{r}$. We define the W-parking functions as

$$
\mathrm{PF}_{W}:=Q /(h+1) Q
$$

Pollack's Idea \Rightarrow Weyl Groups

Haiman, Conjectures on the quotient ring.... Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, $W \curvearrowright \mathbb{R}^{r}$ by reflections and stabilizes a "root lattice" $Q \leq \mathbb{R}^{r}$. We define the W-parking functions as

$$
\mathrm{PF}_{W}:=Q /(h+1) Q
$$

This generalizes Pollack because we have

$$
(\mathbb{Z} /(n+1) \mathbb{Z})^{n} /(1,1, \ldots, 1)=Q /(n+1) Q .
$$

Recall that $W=\mathfrak{S}_{n}$ has Coxeter number $h=n$, and root lattice

$$
Q=\mathbb{Z}^{n} /(1,1, \ldots, 1)=\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{Z}^{n}: \sum_{i} r_{i}=0\right\} .
$$

Pollack's Idea \Rightarrow Weyl Groups

Haiman, Conjectures on the quotient ring. .. Section 7

Pollack's Idea \Rightarrow Weyl Groups

Haiman, Conjectures on the quotient ring. .. Section 7
The W-parking space has dimension generalizing the Cayley numbers

$$
\operatorname{dim} \mathrm{PF}_{w}=(h+1)^{r}\left(=(n+1)^{n-1}\right)
$$

Pollack's Idea \Rightarrow Weyl Groups

Haiman, Conjectures on the quotient ring. .. Section 7
The W-parking space has dimension generalizing the Cayley numbers

$$
\operatorname{dim} \mathrm{PF}_{w}=(h+1)^{r}\left(=(n+1)^{n-1}\right)
$$

More generally: Given $w \in W$, the character of PF_{w} is

$$
\begin{aligned}
\chi(w) & =\#\left\{\vec{a} \in \mathrm{PF}_{W}: w(\vec{a})=w\right\} \\
& =(h+1)^{r-\operatorname{rank}(1-w)}\left(=(n+1)^{\# \operatorname{cycles}(w)-1}\right)
\end{aligned}
$$

and the number of W-orbits generalizes the Catalan numbers

Pollack's Idea \Rightarrow Weyl Groups

Haiman, Conjectures on the quotient ring. .. Section 7
The W-parking space has dimension generalizing the Cayley numbers

$$
\operatorname{dim} \mathrm{PF}_{W}=(h+1)^{r}\left(=(n+1)^{n-1}\right)
$$

More generally: Given $w \in W$, the character of PF_{w} is

$$
\begin{aligned}
\chi(w) & =\#\left\{\vec{a} \in \mathrm{PF}_{W}: w(\vec{a})=w\right\} \\
& =(h+1)^{r-\operatorname{rank}(1-w)}\left(=(n+1)^{\# \text { cycles }(w)-1}\right)
\end{aligned}
$$

and the number of W-orbits generalizes the Catalan numbers

$$
\text { \#orbits }=\frac{1}{|W|} \prod_{i=1}^{r}\left(h+d_{i}\right)\left(=\frac{1}{n+1}\binom{2 n}{n}\right)
$$

Parking Functions \Leftrightarrow Shi Arrangement

Parking Functions \Leftrightarrow Shi Arrangement

Another Language

The W-parking space is the same as the Shi arrangement of hyperplanes. Given positive root $\alpha \in \Phi^{+} \subseteq Q$ and integer $k \in \mathbb{Z}$ consider the hyperplane $H_{\alpha, k}:=\{\mathbf{x}:(\alpha, \mathbf{x})=k\}$. Then we define

$$
\text { Shiw }:=\left\{H_{\alpha, \pm 1}: \alpha \in \Phi^{+}\right\} .
$$

Cellini-Papi and Shi give an explicit bijection:

Parking Functions \Leftrightarrow Shi Arrangement

Another Language

The W-parking space is the same as the Shi arrangement of hyperplanes. Given positive root $\alpha \in \Phi^{+} \subseteq Q$ and integer $k \in \mathbb{Z}$ consider the hyperplane $H_{\alpha, k}:=\{\mathbf{x}:(\alpha, \mathbf{x})=k\}$. Then we define

$$
\text { Shi } w:=\left\{H_{\alpha, \pm 1}: \alpha \in \Phi^{+}\right\}
$$

Cellini-Papi and Shi give an explicit bijection: elements of $Q /(h+1) Q \quad \longleftrightarrow \quad$ chambers of Shi $_{w}$

Parking Functions \Leftrightarrow Shi Arrangement

Example $\left(W=\mathfrak{S}_{3}\right)$

There are $16=(3+1)^{3-1}$ chambers and $5=\frac{1}{4}\binom{6}{3}$ orbits.

Parking Functions \Leftrightarrow Shi Arrangement

Example $\left(W=\mathfrak{S}_{3}\right)$

There are $16=(3+1)^{3-1}$ chambers and $5=\frac{1}{4}\binom{6}{3}$ orbits.

Parking Functions \Leftrightarrow Shi Arrangement

"Ceiling Diagrams"

I like to think of Shi chambers as elements of the set

$$
\left\{(w, A): w \in W, \text { antichain } A \subseteq \Phi^{+}, A \cap \operatorname{inv}(w)=\emptyset\right\}
$$

Parking Functions \Leftrightarrow Shi Arrangement

"Ceiling Diagrams"

I like to think of Shi chambers as elements of the set

$$
\left\{(w, A): w \in W, \text { antichain } A \subseteq \Phi^{+}, A \cap \operatorname{inv}(w)=\emptyset\right\}
$$

The Shi chamber with "ceiling diagram" (w, A)

Parking Functions \Leftrightarrow Shi Arrangement

"Ceiling Diagrams"

I like to think of Shi chambers as elements of the set

$$
\left\{(w, A): w \in W, \text { antichain } A \subseteq \Phi^{+}, A \cap \operatorname{inv}(w)=\emptyset\right\}
$$

The Shi chamber with "ceiling diagram" (w, A)

- is in the cone determined by w

Parking Functions \Leftrightarrow Shi Arrangement

"Ceiling Diagrams"

I like to think of Shi chambers as elements of the set

$$
\left\{(w, A): w \in W, \text { antichain } A \subseteq \Phi^{+}, A \cap \operatorname{inv}(w)=\emptyset\right\}
$$

The Shi chamber with "ceiling diagram" (w, A)

- is in the cone determined by w
- and has ceilings given by A.

Parking Functions \Leftrightarrow Shi Arrangement

"Ceiling Diagrams"

I like to think of Shi chambers as elements of the set

$$
\left\{(w, A): w \in W, \text { antichain } A \subseteq \Phi^{+}, A \cap \operatorname{inv}(w)=\emptyset\right\}
$$

The Shi chamber with "ceiling diagram" (w, A)

- is in the cone determined by w
- and has ceilings given by A.

I.O.U.

How to describe the W-action on ceiling diagrams?

Pause

What is a Noncrossing Partition?

What is a Noncrossing Partition?

Definition by Example

We encode this partition by the permutation $(1367)(45)(89) \in \mathcal{S}_{9}$.

What is a Noncrossing Partition?

Definition by Example

We encode this partition by the permutation $(1367)(45)(89) \in \mathfrak{S}_{9}$.

What is a Noncrossing Partition?

Theorem (Biane, and probably others)
Let $T \subseteq \mathfrak{S}_{n}$ be the generating set of all transpositions and consider the Cayley metric $d_{T}: \mathfrak{S}_{n} \times \mathfrak{S}_{n} \rightarrow \mathbb{N}$ defined by

$$
d_{T}(\pi, \mu):=\min \left\{k: \pi^{-1} \mu \text { is a product of } k \text { transpositions }\right\} .
$$

What is a Noncrossing Partition?

Theorem (Biane, and probably others)

Let $T \subseteq \mathfrak{S}_{n}$ be the generating set of all transpositions and consider the Cayley metric $d_{T}: \mathfrak{S}_{n} \times \mathfrak{S}_{n} \rightarrow \mathbb{N}$ defined by

$$
d_{T}(\pi, \mu):=\min \left\{k: \pi^{-1} \mu \text { is a product of } k \text { transpositions }\right\} .
$$

Let $c=(123 \cdots n)$ be the standard n-cycle. Then the permutation $\pi \in \mathfrak{S}_{n}$ corresponds to a noncrossing partition if and only if

$$
d_{T}(1, \pi)+d_{T}(\pi, c)=d_{T}(1, c) .
$$

" π is on a geodesic between 1 and c "

What is Noncrossing Partition?

Definition (Brady-Watt, Bessis)

Let W be any finite Coxeter group with reflections $T \subseteq W$. Let $c \in W$ be any Coxeter element. We say $w \in W$ is a "noncrossing partition" if

$$
d_{T}(1, w)+d_{T}(w, c)=d_{T}(1, c)
$$

" w is on a geodesic between 1 and c "

The Mystery of NC and NN

Mystery

Let W be a Weyl group (crystallographic finite Coxeter group). Let $\mathrm{NC}(W)$ be the set of noncrossing partitions and let $\operatorname{NN}(W)$ be the set of antichains in Φ^{+}(called "nonnesting partitions"). Then we have

$$
\# \mathrm{NC}(W)=\frac{1}{|W|} \prod_{i=1}^{r}\left(h+d_{i}\right)=\# \mathrm{NN}(W)
$$

The Mystery of NC and NN

Mystery

Let W be a Weyl group (crystallographic finite Coxeter group). Let $\mathrm{NC}(W)$ be the set of noncrossing partitions and let $\operatorname{NN}(W)$ be the set of antichains in Φ^{+}(called "nonnesting partitions"). Then we have

$$
\# \mathrm{NC}(W)=\frac{1}{|W|} \prod_{i=1}^{r}\left(h+d_{i}\right)=\# \mathrm{NN}(W)
$$

- The right equality has at least two uniform proofs.
- The left equality is only known case-by-case. - What is going on here?

The Mystery of NC and NN

Mystery

Let W be a Weyl group (crystallographic finite Coxeter group). Let $\mathrm{NC}(W)$ be the set of noncrossing partitions and let $\operatorname{NN}(W)$ be the set of antichains in Φ^{+}(called "nonnesting partitions"). Then we have

$$
\# \mathrm{NC}(W)=\frac{1}{|W|} \prod_{i=1}^{r}\left(h+d_{i}\right)=\# \mathrm{NN}(W)
$$

- The right equality has at least two uniform proofs.
- The left equality is only known case-by-case.

The Mystery of NC and NN

Mystery

Let W be a Weyl group (crystallographic finite Coxeter group). Let $\mathrm{NC}(W)$ be the set of noncrossing partitions and let $\mathrm{NN}(W)$ be the set of antichains in Φ^{+}(called "nonnesting partitions"). Then we have

$$
\# \mathrm{NC}(W)=\frac{1}{|W|} \prod_{i=1}^{r}\left(h+d_{i}\right)=\# \mathrm{NN}(W)
$$

- The right equality has at least two uniform proofs.
- The left equality is only known case-by-case.
- What is going on here?

The Mystery of NC and NN

Idea and an Anecdote

Idea: Since the parking functions can be though of as

$$
\{(w, A): w \in W, A \in \mathrm{NN}(W), A \cap \operatorname{inv}(w)=\emptyset\}
$$

maybe we should also consider the set
where " $\sigma \cap \operatorname{inv}(w)$ " means something sensible.
Anecdote: Where did the idea come from?

The Mystery of NC and NN

Idea and an Anecdote

Idea: Since the parking functions can be though of as

$$
\{(w, A): w \in W, A \in \mathrm{NN}(W), A \cap \operatorname{inv}(w)=\emptyset\}
$$

maybe we should also consider the set

$$
\{(w, \sigma): w \in W, \sigma \in \mathrm{NC}(W), \sigma \cap \operatorname{inv}(w)=\emptyset\}
$$

where " $\sigma \cap \operatorname{inv}(w)$ " means something sensible.
Anecdote: Where did the idea come from?

The Mystery of NC and NN

Idea and an Anecdote

Idea: Since the parking functions can be though of as

$$
\{(w, A): w \in W, A \in \mathrm{NN}(W), A \cap \operatorname{inv}(w)=\emptyset\}
$$

maybe we should also consider the set

$$
\{(w, \sigma): w \in W, \sigma \in \mathrm{NC}(W), \sigma \cap \operatorname{inv}(w)=\emptyset\}
$$

where " $\sigma \cap \operatorname{inv}(w)$ " means something sensible.
Anecdote: Where did the idea come from?

Pause

Now we define the W-action on Shi chambers

Definition of \mathcal{F}-parking functions
Deall the definition of the hattion of fiaten for W
and for any flat $X \in \mathcal{L}(W)$ recall the definition of the parabolic subgroup

$$
W x:=\{w \in W: w(x)=x \text { for all } x \in X\}
$$

Now we define the W-action on Shi chambers

Definition of \mathcal{F}-parking functions

Recall the definition of the lattice of flats for W

$$
\mathcal{L}(W):=\left\{\cap_{\alpha \in J} H_{\alpha, 0}: J \subseteq \Phi^{+}\right\}
$$

and for any flat $X \in \mathcal{L}(W)$ recall the definition of the parabolic subgroup

$$
W_{X}:=\{w \in W: w(\mathbf{x})=\mathbf{x} \text { for all } \mathbf{x} \in X\} .
$$

Now we define the W-action on Shi chambers

Definition of \mathcal{F}-parking functions

For any set of flats $\mathcal{F} \subseteq \mathcal{L}(W)$ we define the \mathcal{F}-parking functions

$$
\operatorname{PF}_{\mathcal{F}}:=\{[w, X]: w \in W, X \in \mathcal{F}, w(X) \in \mathcal{F}\} / \sim
$$

where

$$
[w, X] \sim\left[w^{\prime}, X^{\prime}\right] \Longleftrightarrow X=X^{\prime} \text { and } w W_{X}=w^{\prime} W_{X^{\prime}}
$$

Now we define the W-action on Shi chambers

Definition of \mathcal{F}-parking functions

For any set of flats $\mathcal{F} \subseteq \mathcal{L}(W)$ we define the \mathcal{F}-parking functions

$$
\begin{gathered}
\operatorname{PF}_{\mathcal{F}}:=\{[w, X]: w \in W, X \in \mathcal{F}, w(X) \in \mathcal{F}\} / \sim \\
\text { where } \quad[w, X] \sim\left[w^{\prime}, X^{\prime}\right] \Longleftrightarrow X=X^{\prime} \text { and } w W_{X}=w^{\prime} W_{X^{\prime}}
\end{gathered}
$$

This set carries a natural W-action. For all $u \in W$ we define

$$
u \cdot[w, X]:=\left[w u^{-1}, u(X)\right]
$$

Now we define the W-action on Shi chambers

The Prototypical Example of \mathcal{F}-Parking Functions

If we consider the set of nonnesting flats

$$
\mathcal{F}=\mathcal{N N}:=\left\{\cap_{\alpha \in A} H_{\alpha, 0}: \text { antichain } A \subseteq \Phi^{+}\right\}
$$

then $\mathrm{PF}_{\mathcal{N N}}$ is just the set of ceiling diagrams of Shi chambers with the natural action corresponding to $W \curvearrowright Q /(h+1) Q$.

Now we define the W-action on Shi chambers

But There is Another Example

Noncrossing Parking Functions

But There is Another Example

Noncrossing Parking Functions

But There is Another Example

Given any $w \in W$ there is a corresponding flat

$$
\operatorname{ker}(1-w)=\{\mathbf{x}: w(\mathbf{x})=\mathbf{x}\} \in \mathcal{L}(W)
$$

If we consider the set of noncrossing flats
then $\mathrm{PF}_{\mathcal{N C}}$ is something new and possibly interesting. We call $\mathrm{PF}_{\mathcal{N C}}$ the set of noncrossing parking functions.

Noncrossing Parking Functions

But There is Another Example

Given any $w \in W$ there is a corresponding flat

$$
\operatorname{ker}(1-w)=\{\mathbf{x}: w(\mathbf{x})=\mathbf{x}\} \in \mathcal{L}(W)
$$

If we consider the set of noncrossing flats

$$
\mathcal{F}=\mathcal{N C}:=\{\operatorname{ker}(1-w): w \in \operatorname{NC}(W)\}
$$

then $\mathrm{PF}_{\mathcal{N C}}$ is something new and possibly interesting. We call $\mathrm{PF}_{\mathcal{N C}}$ the set of noncrossing parking functions.

Noncrossing Parking Functions

Example $\left(W=\mathfrak{S}_{9}\right)$

Type A NC parking functions are just NC partitions with labeled blocks.

Noncrossing Parking Functions

Theorem

If W is a Weyl group then we have an isomorphism of W-actions:

$$
\mathrm{PF}_{\mathcal{N C}} \approx_{w} \mathrm{PF}_{\mathcal{N N}}
$$

This is just a fancy restatement of a theorem of Athanasiadis, Chapoton, and Reiner. Unfortunately the proof is case-by-case using a computer.

Noncrossing Parking Functions

However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

Noncrossing Parking Functions

However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

1. $\mathrm{PF}_{\mathcal{N N}}$ is defined only for Weyl groups but $\mathrm{PF}_{\mathcal{N C}}$ is defined also for noncrystallographic Coxeter groups.

Noncrossing Parking Functions

However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

1. $\mathrm{PF}_{\mathcal{N N}}$ is defined only for Weyl groups but $\mathrm{PF}_{\mathcal{N C}}$ is defined also for noncrystallographic Coxeter groups.
2. $\mathrm{PF}_{\mathcal{N C}}$ carries an exta cyclic action. Let $C=\langle c\rangle \leq W$ where $c \in W$ is a Coxeter element. Then the group $W \times C$ acts on $\mathrm{PF}_{\mathcal{N C}}$ by

$$
\left(u, c^{d}\right) \cdot[w, X]:=\left[c^{d} w u^{-1}, u(X)\right] .
$$

Noncrossing Parking Functions

Cyclic Sieving "Theorem"
Let $h:=|\langle c\rangle|$ be the Coxeter number and let $\zeta:=e^{2 \pi i / h}$.

where mult $_{u}\left(\zeta^{d}\right)$ is the multiplicity of the eigenvalue ζ^{d} in $u \in W$.

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)

Noncrossing Parking Functions

Cyclic Sieving "Theorem"

Let $h:=|\langle c\rangle|$ be the Coxeter number and let $\zeta:=e^{2 \pi i / h}$. Then for all $u \in W$ and $c^{d} \in C$ we have

$$
\begin{aligned}
\chi\left(u, c^{d}\right) & =\#\left\{[w, X] \in \operatorname{PF}_{\mathcal{N C}}:\left(u, c^{d}\right) \cdot[w, X]=[w, X]\right\} \\
& =\lim _{q \rightarrow \zeta^{d}} \frac{\operatorname{det}\left(1-q^{h+1} u\right)}{\operatorname{det}(1-q u)} \\
& =(h+1)^{\text {mult }_{u}\left(\zeta^{d}\right)},
\end{aligned}
$$

where mult $_{u}\left(\zeta^{d}\right)$ is the multiplicity of the eigenvalue ζ^{d} in $u \in W$.

Noncrossing Parking Functions

Cyclic Sieving "Theorem"

Let $h:=|\langle c\rangle|$ be the Coxeter number and let $\zeta:=e^{2 \pi i / h}$. Then for all $u \in W$ and $c^{d} \in C$ we have

$$
\begin{aligned}
\chi\left(u, c^{d}\right) & =\#\left\{[w, X] \in \operatorname{PF}_{\mathcal{N C}}:\left(u, c^{d}\right) \cdot[w, X]=[w, X]\right\} \\
& =\lim _{q \rightarrow \zeta^{d}} \frac{\operatorname{det}\left(1-q^{h+1} u\right)}{\operatorname{det}(1-q u)} \\
& =(h+1)^{\operatorname{mult}_{u}\left(\zeta^{d}\right)},
\end{aligned}
$$

where mult ${ }_{u}\left(\zeta^{d}\right)$ is the multiplicity of the eigenvalue ζ^{d} in $u \in W$.
Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)

Noncrossing Parking Functions

For more on noncrossing parking functions see my paper with Brendon Rhoades and Vic Reiner:

Parking Spaces (2012), http://arxiv.org/abs/1204.1760

Vielen Dank!

picture by +Drew Armstrong and +David Roberts

