Noncrossing Parking Functions

Drew Armstrong (with B. Rhoades and V. Reiner)

University of Miami www.math.miami.edu/~armstrong

"Non-crossing partitions in representation theory" Bielefeld, June 2014

1. Parking Functions

- 2. Noncrossing Partitions
- 3. Noncrossing Parking Functions

- 1. Parking Functions
- 2. Noncrossing Partitions
- 3. Noncrossing Parking Functions

- 1. Parking Functions
- 2. Noncrossing Partitions
- 3. Noncrossing Parking Functions

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

- ▶ There are *n* cars.
- Car i wants to park in space a_i.
- ▶ If space *a_i* is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

- There are n cars.
- Car i wants to park in space a_i.
- If space a_i is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

- There are n cars.
- Car i wants to park in space a_i.
- If space a_i is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

- There are n cars.
- ► Car *i* wants to park in space *a_i*.
- If space a_i is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

- There are n cars.
- ► Car *i* wants to park in space *a_i*.
- If space a_i is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

Imagine a one-way street with n parking spaces.

- There are n cars.
- ► Car *i* wants to park in space *a_i*.
- If space a_i is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.

• " \vec{a} is a parking function" \equiv "everyone is able to park".

Definition

A parking function is a vector $\vec{a} = (a_1, a_2, ..., a_n) \in \mathbb{N}^n$ whose increasing rearrangement $b_1 \leq b_2 \leq \cdots \leq b_n$ satisfies:

$$\forall i, b_i \leq i$$

- There are n cars.
- ► Car *i* wants to park in space *a_i*.
- ▶ If space *a_i* is full, she parks in first available space.
- Car 1 parks first, then car 2, etc.
- " \vec{a} is a parking function" \equiv "everyone is able to park".

Example (n = 3)

111					
112	121	211			
113	131	311			
122	212	221			
123	132	213	231	312	321

Note that $\#PF_3 = 16$ and \mathfrak{S}_3 acts on PF_3 with 5 orbits.

Example $(n = 3)$									
	111								
	112	121	211						
	113	131	311						
	122	212	221						
	123	132	213	231	312	321			

Note that $\#PF_3 = 16$ and \mathfrak{S}_3 acts on PF_3 with 5 orbits.

Example $(n = 3)$									
	111								
	112	121	211						
	113	131	311						
	122	212	221						
	123	132	213	231	312	321			

Note that $\#PF_3 = 16$ and \mathfrak{S}_3 acts on PF_3 with 5 orbits.

In General We Have

$$\#\mathsf{PF}_n = (n+1)^{n-1} \qquad \# \text{ orbits} = \frac{1}{n+1} \binom{2n}{n}$$

"Cayley" "Catalan"

Example $(n = 3)$									
	111								
	112	121	211						
	113	131	311						
	122	212	221						
	123	132	213	231	312	321			

Note that $\#PF_3 = 16$ and \mathfrak{S}_3 acts on PF_3 with 5 orbits.

In General We Have

$$#\mathsf{PF}_n = (n+1)^{n-1} \qquad # \text{ orbits} = \frac{1}{n+1} \binom{2n}{n}$$

"Cayley" "Catalan"

Example $(n = 3)$									
	111								
	112	121	211						
	113	131	311						
	122	212	221						
	123	132	213	231	312	321			

Note that $\#PF_3 = 16$ and \mathfrak{S}_3 acts on PF_3 with 5 orbits.

In General We Have

$$\#\mathsf{PF}_n = (n+1)^{n-1} \qquad \# \text{ orbits} = \frac{1}{n+1} \binom{2n}{n}$$

"Cayley" "Catalan"

Idea (Pollack, $\sim 1974)$

Now imagine a circular street with n+1 parking spaces.

- Choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- ► Choice is a parking function ⇐⇒ space n + 1 remains empty.
- One parking function per rotation class

Conclusion:

PF_n = choice functions / rotation
 PF_n ≈_{☉_n} (ℤ/(n+1)ℤ)ⁿ/(1,1,...,1)
 #PF_n = (n+1)ⁿ/(n+1) = (n+1)ⁿ⁻¹

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space n + 1 remains empty.
- One parking function per rotation class.

Conclusion:

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions $= (\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space n + 1 remains empty.
- One parking function per rotation class.

Conclusion:

PF_n = choice functions / rotation
 PF_n ≈_{S_n} (ℤ/(n+1)ℤ)ⁿ/(1,1,...,1)
 #PF_n = (n+1)ⁿ/(n+1) = (n+1)ⁿ⁻¹

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions $= (\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- ► Choice is a parking function ⇐⇒ space n + 1 remains empty.
- One parking function per rotation class.

Conclusion:

PF_n = choice functions / rotation
 PF_n ≈_{☉_n} (ℤ/(n+1)ℤ)ⁿ/(1,1,...,1)
 #PF = (n+1)ⁿ = (n+1)ⁿ⁻¹

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions $= (\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space n + 1 remains empty.

• One parking function per rotation class.

Conclusion:

- \triangleright PF_n = choice functions / rotation
- ► $\mathsf{PF}_n \approx_{\mathfrak{S}_n} \left(\mathbb{Z}/(n+1)\mathbb{Z} \right)^n / (1, 1, \dots, 1)$ ► $\#\mathsf{PF}_n = \frac{(n+1)^n}{n} = (n+1)^{n-1}$

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space n + 1 remains empty.
- One parking function per rotation class.

Conclusion:

 \blacktriangleright PF_n = choice functions / rotation

 $\mathsf{PF}_n \approx_{\mathfrak{S}_n} \left(\mathbb{Z}/(n+1)\mathbb{Z} \right)^n / (1,1,\ldots,1)$ $\#\mathsf{PF}_n = \binom{(n+1)^n}{n} - \binom{(n+1)^{n-1}}{n}$

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space n + 1 remains empty.
- One parking function per rotation class.

Conclusion:

• PF_n = choice functions / rotation

 $\mathsf{PF}_n \approx_{\mathfrak{S}_n} \left(\mathbb{Z}/(n+1)\mathbb{Z} \right)^n / (1, 1, \dots, 1)$

• $\# \mathsf{PF}_n = \frac{(n+1)}{n+1} = (n+1)^{n-1}$

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space n + 1 remains empty.
- One parking function per rotation class.

Conclusion:

PF_n = choice functions / rotation

$$\blacktriangleright \mathsf{PF}_n \approx_{\mathfrak{S}_n} \left(\mathbb{Z}/(n+1)\mathbb{Z} \right)^n / (1,1,\ldots,1)$$

• $\# \mathsf{PF}_n = \frac{(n+1)^n}{n+1} = (n+1)^{n-1}$

Idea (Pollack, \sim 1974)

Now imagine a circular street with n + 1 parking spaces.

- Choice functions = $(\mathbb{Z}/(n+1)\mathbb{Z})^n$.
- Everyone can park. One empty spot remains.
- Choice is a parking function \iff space n + 1 remains empty.
- One parking function per rotation class.

Conclusion:

- PF_n = choice functions / rotation
- ▶ $\mathsf{PF}_n \approx_{\mathfrak{S}_n} \left(\mathbb{Z}/(n+1)\mathbb{Z} \right)^n / (1, 1, \dots, 1)$

•
$$\# \mathsf{PF}_n = \frac{(n+1)^n}{n+1} = (n+1)^{n-1}$$

The symmetric group \mathfrak{S}_n acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}] := \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_n -action as parking functions:

 $\omega \cdot \mathsf{PF}_n \approx_{\mathfrak{S}_n} \mathbb{Q}[\mathbf{x}, \mathbf{y}] / \mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{S}_n}$

The proof was hard. It comes down to this theorem:

The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.

The symmetric group \mathfrak{S}_n acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}] := \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_n -action as parking functions:

 $\omega \cdot \mathsf{PF}_n \approx_{\mathfrak{S}_n} \mathbb{Q}[\mathbf{x}, \mathbf{y}] / \mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{S}_n}$

The proof was hard. It comes down to this theorem: The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen Masaulay and Corenttain

The symmetric group \mathfrak{S}_n acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}] := \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_n -action as parking functions:

$\omega \cdot \mathsf{PF}_n \approx_{\mathfrak{S}_n} \mathbb{Q}[\mathbf{x}, \mathbf{y}] / \mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{S}_n}$

The proof was hard. It comes down to this theorem:

The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.

The symmetric group \mathfrak{S}_n acts diagonally on the algebra of polynomials in two commuting sets of variables:

$$\mathfrak{S}_n \curvearrowright \mathbb{Q}[\mathbf{x}, \mathbf{y}] := \mathbb{Q}[x_1, \dots, x_n, y_1, \dots, y_n]$$

After many years of work, Mark Haiman (2001) proved that the algebra of diagonal coinvariants carries the same \mathfrak{S}_n -action as parking functions:

$$\omega \cdot \mathsf{PF}_n \approx_{\mathfrak{S}_n} \mathbb{Q}[\mathbf{x}, \mathbf{y}]/\mathbb{Q}[\mathbf{x}, \mathbf{y}]^{\mathfrak{S}_n}$$

The proof was hard. It comes down to this theorem:

The isospectral Hilbert scheme of n points in \mathbb{C}^2 is Cohen-Macaulay and Gorenstein.

Pollack's Idea \Rightarrow Weyl Groups

Haiman, Conjectures on the quotient ring..., Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, W $\sim \mathbb{R}'$ by reflections and stabilizes a "root lattice" $Q \leq \mathbb{R}'$. We define the W-parking functions as

 $\mathsf{PF}_W := Q/(h+1)Q$

This generalizes Pollack because we have

 $(\mathbb{Z}/(n+1)\mathbb{Z})^n/(1,1,\ldots,1)=Q/(n+1)Q.$

Recall that $W = \mathfrak{S}_n$ has Coxeter number h = n, and root lattice

 $Q = \mathbb{Z}^n/(1, 1, \dots, 1) = \{(r_1, \dots, r_n) \in \mathbb{Z}^n : \sum_i r_i = 0\}.$

Haiman, Conjectures on the quotient ring..., Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, $W \curvearrowright \mathbb{R}^r$ by reflections and stabilizes a "root lattice" $Q \leq \mathbb{R}^r$. We define the W-parking functions as

$$\mathsf{PF}_W := Q/(h+1)Q$$

This generalizes Pollack because we have

 $(\mathbb{Z}/(n+1)\mathbb{Z})^n/(1,1,\ldots,1)=Q/(n+1)Q.$

Recall that $W = \mathfrak{S}_n$ has Coxeter number h = n, and root lattice

 $Q = \mathbb{Z}^n/(1, 1, \dots, 1) = \{(r_1, \dots, r_n) \in \mathbb{Z}^n : \sum_i r_i = 0\}.$

Haiman, Conjectures on the quotient ring..., Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is, $W \curvearrowright \mathbb{R}^r$ by reflections and stabilizes a "root lattice" $Q \leq \mathbb{R}^r$. We define the W-parking functions as

$$\mathsf{PF}_W := Q/(h+1)Q$$

This generalizes Pollack because we have

$$(\mathbb{Z}/(n+1)\mathbb{Z})^n/(1,1,\ldots,1)=Q/(n+1)Q.$$

Recall that $W = \mathfrak{S}_n$ has Coxeter number h = n, and root lattice

$$Q = \mathbb{Z}^n/(1, 1, \dots, 1) = \{(r_1, \dots, r_n) \in \mathbb{Z}^n : \sum_i r_i = 0\}.$$

Haiman, Conjectures on the quotient ring..., Section 7

Haiman, Conjectures on the quotient ring..., Section 7 The W-parking space has dimension generalizing the Cayley numbers $\dim \mathsf{PF}_W = (h+1)^r \left(=(n+1)^{n-1}\right)$

More generally: Given $w \in W$, the character of PF_W is

 $egin{aligned} \chi(w) &= \#\{ec{a} \in \mathsf{PF}_W: w(ec{a}) = w\} \ &= (h+1)^{r-\mathsf{rank}(1-w)} \left(= (n+1)^{\#\mathsf{cycles}(w)-1}
ight) \end{aligned}$

and the number of W-orbits generalizes the Catalan numbers

$$\#\text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h+d_i) \left(= \frac{1}{n+1} \binom{2n}{n} \right)$$

Haiman, *Conjectures on the quotient ring*..., Section 7 The *W*-parking space has dimension generalizing the Cayley numbers

dim
$$\mathsf{PF}_W = (h+1)^r (= (n+1)^{n-1})$$

More generally: Given $w \in W$, the character of PF_W is

$$\chi(w) = \#\{\vec{a} \in \mathsf{PF}_W : w(\vec{a}) = w\}$$
$$= (h+1)^{r-\mathsf{rank}(1-w)} \left(= (n+1)^{\#\mathsf{cycles}(w)-1}\right)$$

and the number of W-orbits generalizes the Catalan numbers

$$\#\text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h+d_i) \left(= \frac{1}{n+1} \binom{2n}{n} \right)$$
Haiman, *Conjectures on the quotient ring...*, Section 7 The *W*-parking space has dimension generalizing the Cayley numbers

dim
$$PF_W = (h+1)^r (= (n+1)^{n-1})$$

More generally: Given $w \in W$, the character of PF_W is

$$\chi(w) = \#\{\vec{a} \in \mathsf{PF}_W : w(\vec{a}) = w\}$$
$$= (h+1)^{r-\mathsf{rank}(1-w)} \left(= (n+1)^{\#\mathsf{cycles}(w)-1}\right)$$

and the number of W-orbits generalizes the Catalan numbers

$$\#\text{orbits} = \frac{1}{|W|} \prod_{i=1}^{r} (h+d_i) \left(= \frac{1}{n+1} \binom{2n}{n} \right)$$

Parking Functions ⇔ Shi Arrangement

Another Language

The *W*-parking space is the same as the Shi arrangement of hyperplanes. Given positive root $\alpha \in \Phi^+ \subseteq Q$ and integer $k \in \mathbb{Z}$ consider the hyperplane $H_{\alpha,k} := \{\mathbf{x} : (\alpha, \mathbf{x}) = k\}$. Then we define

 $\mathsf{Shi}_W := \{ H_{\alpha,\pm 1} : \alpha \in \Phi^+ \}.$

Cellini-Papi and Shi give an explicit bijection:

elements of $Q/(h+1)Q \iff$ chambers of Shi_W

Another Language

The *W*-parking space is the same as the Shi arrangement of hyperplanes. Given positive root $\alpha \in \Phi^+ \subseteq Q$ and integer $k \in \mathbb{Z}$ consider the hyperplane $H_{\alpha,k} := \{\mathbf{x} : (\alpha, \mathbf{x}) = k\}$. Then we define

 $\mathsf{Shi}_W := \{ H_{\alpha,\pm 1} : \alpha \in \Phi^+ \}.$

Cellini-Papi and Shi give an explicit bijection:

elements of $Q/(h+1)Q \iff$ chambers of Shi_W

Parking Functions ⇔ Shi Arrangement

Parking Functions ⇔ Shi Arrangement

I like to think of Shi chambers as elements of the set

 $\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap inv(w) = \emptyset\}.$

The Shi chamber with "ceiling diagram" (w, A)

▶ is in the cone determined by *w*

and has ceilings given by A.

I.O.U.

I like to think of Shi chambers as elements of the set

 $\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap inv(w) = \emptyset\}.$

The Shi chamber with "ceiling diagram" (w, A)

▶ is in the cone determined by *w*

and has ceilings given by A.

I.O.U.

I like to think of Shi chambers as elements of the set

 $\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap inv(w) = \emptyset\}.$

The Shi chamber with "ceiling diagram" (w, A)

▶ is in the cone determined by *w*

and has ceilings given by A.

I.O.U.

I like to think of Shi chambers as elements of the set

 $\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap inv(w) = \emptyset\}.$

The Shi chamber with "ceiling diagram" (w, A)

- ▶ is in the cone determined by *w*
- ► and has ceilings given by *A*.

I.O.U.

I like to think of Shi chambers as elements of the set

 $\{(w, A) : w \in W, \text{ antichain } A \subseteq \Phi^+, A \cap inv(w) = \emptyset\}.$

The Shi chamber with "ceiling diagram" (w, A)

- ▶ is in the cone determined by *w*
- ▶ and has ceilings given by A.

I.O.U.

Pause

What is a Noncrossing Partition?

What is a Noncrossing Partition?

What is a Noncrossing Partition?

Theorem (Biane, and probably others)

Let $T \subseteq \mathfrak{S}_n$ be the generating set of all transpositions and consider the Cayley metric $d_T : \mathfrak{S}_n \times \mathfrak{S}_n \to \mathbb{N}$ defined by

 $d_{\mathcal{T}}(\pi,\mu) := \min\{k : \pi^{-1}\mu \text{ is a product of } k \text{ transpositions }\}.$

Let $c = (123 \cdots n)$ be the standard *n*-cycle. Then the permutation $\pi \in \mathfrak{S}_n$ corresponds to a noncrossing partition if and only if

 $d_T(1,\pi) + d_T(\pi,c) = d_T(1,c).$

" π is on a geodesic between 1 and c"

Theorem (Biane, and probably others)

Let $T \subseteq \mathfrak{S}_n$ be the generating set of all transpositions and consider the Cayley metric $d_T : \mathfrak{S}_n \times \mathfrak{S}_n \to \mathbb{N}$ defined by

 $d_{\mathcal{T}}(\pi,\mu) := \min\{k : \pi^{-1}\mu \text{ is a product of } k \text{ transpositions }\}.$

Let $c = (123 \cdots n)$ be the standard *n*-cycle. Then the permutation $\pi \in \mathfrak{S}_n$ corresponds to a noncrossing partition if and only if

 $d_T(1,\pi) + d_T(\pi,c) = d_T(1,c).$

" π is on a geodesic between 1 and c"

Definition (Brady-Watt, Bessis)

Let W be any finite Coxeter group with reflections $T \subseteq W$. Let $c \in W$ be any Coxeter element. We say $w \in W$ is a "noncrossing partition" if

$$d_T(1,w) + d_T(w,c) = d_T(1,c)$$

"w is on a geodesic between 1 and c"

$$\#\mathsf{NC}(\mathcal{W}) = rac{1}{|\mathcal{W}|}\prod_{i=1}^r(h+d_i) = \#\mathsf{NN}(\mathcal{W})$$

- The right equality has at least two uniform proofs.
- ▶ The left equality is only known case-by-case.
- What is going on here?

$$\#\mathsf{NC}(\mathcal{W}) = rac{1}{|\mathcal{W}|}\prod_{i=1}^r(h+d_i) = \#\mathsf{NN}(\mathcal{W})$$

- ▶ The right equality has at least two uniform proofs.
- ► The left equality is only known case-by-case.
- What is going on here?

$$\#\mathsf{NC}(W) = \frac{1}{|W|} \prod_{i=1}^{r} (h+d_i) = \#\mathsf{NN}(W)$$

- ▶ The right equality has at least two uniform proofs.
- ▶ The left equality is only known case-by-case.
- What is going on here?

$$\#\mathsf{NC}(W) = \frac{1}{|W|} \prod_{i=1}^{r} (h+d_i) = \#\mathsf{NN}(W)$$

- ▶ The right equality has at least two uniform proofs.
- ▶ The left equality is only known case-by-case.
- What is going on here?

Idea and an Anecdote

Idea: Since the parking functions can be though of as

 $\{(w, A) : w \in W, A \in NN(W), A \cap inv(w) = \emptyset\}$

maybe we should also consider the set

 $\{(w,\sigma): w \in W, \sigma \in \mathsf{NC}(W), \sigma \cap \mathsf{inv}(w) = \emptyset\}$

where " $\sigma \cap inv(w)$ " means something sensible.

Anecdote: Where did the idea come from?

Idea and an Anecdote

Idea: Since the parking functions can be though of as

$$\{(w, A) : w \in W, A \in \mathsf{NN}(W), A \cap \mathsf{inv}(w) = \emptyset\}$$

maybe we should also consider the set

$$\{(w,\sigma): w \in W, \sigma \in \mathsf{NC}(W), \sigma \cap \mathsf{inv}(w) = \emptyset\}$$

where " $\sigma \cap inv(w)$ " means something sensible.

Anecdote: Where did the idea come from?

Idea and an Anecdote

Idea: Since the parking functions can be though of as

$$\{(w, A) : w \in W, A \in \mathsf{NN}(W), A \cap \mathsf{inv}(w) = \emptyset\}$$

maybe we should also consider the set

$$\{(w,\sigma): w \in W, \sigma \in \mathsf{NC}(W), \sigma \cap \mathsf{inv}(w) = \emptyset\}$$

where " $\sigma \cap inv(w)$ " means something sensible.

Anecdote: Where did the idea come from?

Pause

Recall the definition of the lattice of flats for W

 $\mathcal{L}(W) := \{ \cap_{\alpha \in J} H_{\alpha,0} : J \subseteq \Phi^+ \},\$

and for any flat $X \in \mathcal{L}(W)$ recall the definition of the parabolic subgroup

 $W_X := \{ w \in W : w(\mathbf{x}) = \mathbf{x} \text{ for all } \mathbf{x} \in X \}.$

Recall the definition of the lattice of flats for W

$$\mathcal{L}(W) := \{ \cap_{\alpha \in J} H_{\alpha,0} : J \subseteq \Phi^+ \},\$$

and for any flat $X \in \mathcal{L}(W)$ recall the definition of the parabolic subgroup

$$W_X := \{ w \in W : w(\mathbf{x}) = \mathbf{x} \text{ for all } \mathbf{x} \in X \}.$$

For any set of flats $\mathcal{F} \subseteq \mathcal{L}(W)$ we define the \mathcal{F} -parking functions

$$\mathsf{PF}_\mathcal{F} := \{[w,X] : w \in W, X \in \mathcal{F}, w(X) \in \mathcal{F}\} / \sim$$

where

$$[w,X] \sim [w',X'] \iff X = X' \text{ and } wW_X = w'W_{X'}$$

This set carries a natural W-action. For all $u \in W$ we define

 $u \cdot [w, X] := [wu^{-1}, u(X)]$

For any set of flats $\mathcal{F} \subseteq \mathcal{L}(W)$ we define the \mathcal{F} -parking functions

$$\mathsf{PF}_\mathcal{F} := \{[w,X] : w \in W, X \in \mathcal{F}, w(X) \in \mathcal{F}\} / \sim$$

where

$$[w,X] \sim [w',X'] \iff X = X' \text{ and } wW_X = w'W_{X'}$$

This set carries a natural W-action. For all $u \in W$ we define

$$u \cdot [w, X] := [wu^{-1}, u(X)]$$

The Prototypical Example of \mathcal{F} -Parking Functions

If we consider the set of nonnesting flats

$$\mathcal{F} = \mathcal{N}\mathcal{N} := \{ \cap_{\alpha \in \mathcal{A}} H_{\alpha,0} : \text{ antichain } \mathcal{A} \subseteq \Phi^+ \}$$

then $\mathsf{PF}_{\mathcal{NN}}$ is just the set of ceiling diagrams of Shi chambers with the natural action corresponding to $W \curvearrowright Q/(h+1)Q$.

Now we define the W-action on Shi chambers

But There is Another Example

Noncrossing Parking Functions

But There is Another Example

But There is Another Example

Given any $w \in W$ there is a corresponding flat

$$\ker(1-w) = \{\mathbf{x} : w(\mathbf{x}) = \mathbf{x}\} \in \mathcal{L}(W).$$

If we consider the set of noncrossing flats

$$\mathcal{F} = \mathcal{NC} := \{ \ker(1 - w) : w \in \mathsf{NC}(W) \}$$

then $\mathsf{PF}_{\mathcal{NC}}$ is something new and possibly interesting. We call $\mathsf{PF}_{\mathcal{NC}}$ the set of noncrossing parking functions.

But There is Another Example

Given any $w \in W$ there is a corresponding flat

$$\ker(1-w) = \{\mathbf{x} : w(\mathbf{x}) = \mathbf{x}\} \in \mathcal{L}(W).$$

If we consider the set of noncrossing flats

$$\mathcal{F} = \mathcal{NC} := \{ \mathsf{ker}(1 - w) : w \in \mathsf{NC}(W) \}$$

then $\mathsf{PF}_{\mathcal{NC}}$ is something new and possibly interesting. We call $\mathsf{PF}_{\mathcal{NC}}$ the set of noncrossing parking functions.

Noncrossing Parking Functions

Type A NC parking functions are just NC partitions with labeled blocks.
Theorem

If W is a Weyl group then we have an isomorphism of W-actions:

 $\mathsf{PF}_{\mathcal{NC}}\approx_W\mathsf{PF}_{\mathcal{NN}}$

This is just a fancy restatement of a theorem of Athanasiadis, Chapoton, and Reiner. Unfortunately the proof is case-by-case using a computer.

However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

- 1. PF_{NN} is defined only for Weyl groups but PF_{NC} is defined also for noncrystallographic Coxeter groups.
- 2. $PF_{\mathcal{NC}}$ carries an exta cyclic action. Let $C = \langle c \rangle \leq W$ where $c \in W$ is a Coxeter element. Then the group $W \times C$ acts on $PF_{\mathcal{NC}}$ by

$$(u, c^d) \cdot [w, X] := [c^d w u^{-1}, u(X)].$$

However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

- 1. PF_{NN} is defined only for Weyl groups but PF_{NC} is defined also for noncrystallographic Coxeter groups.
- 2. $PF_{\mathcal{NC}}$ carries an exta cyclic action. Let $C = \langle c \rangle \leq W$ where $c \in W$ is a Coxeter element. Then the group $W \times C$ acts on $PF_{\mathcal{NC}}$ by

 $(u, c^d) \cdot [w, X] := [c^d w u^{-1}, u(X)].$

However

The noncrossing parking functions have two advantages over the nonnesting parking functions.

- 1. PF_{NN} is defined only for Weyl groups but PF_{NC} is defined also for noncrystallographic Coxeter groups.
- 2. $PF_{\mathcal{NC}}$ carries an exta cyclic action. Let $C = \langle c \rangle \leq W$ where $c \in W$ is a Coxeter element. Then the group $W \times C$ acts on $PF_{\mathcal{NC}}$ by

$$(u, c^d) \cdot [w, X] := [c^d w u^{-1}, u(X)].$$

Noncrossing Parking Functions

Cyclic Sieving "Theorem"

Let $h := |\langle c \rangle|$ be the Coxeter number and let $\zeta := e^{2\pi i/h}$. Then for all $u \in W$ and $c^d \in C$ we have

$$\begin{split} \chi(u, c^{d}) &= \# \left\{ [w, X] \in \mathsf{PF}_{\mathcal{NC}} : (u, c^{d}) \cdot [w, X] = [w, X] \right\} \\ &= \lim_{q \to \zeta^{d}} \frac{\det(1 - q^{h+1}u)}{\det(1 - qu)} \\ &= (h+1)^{\operatorname{mult}_{u}(\zeta^{d})}, \end{split}$$

where mult_u(ζ^d) is the multiplicity of the eigenvalue ζ^d in $u \in W$.

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)

Noncrossing Parking Functions

Cyclic Sieving "Theorem"

Let $h := |\langle c \rangle|$ be the Coxeter number and let $\zeta := e^{2\pi i/h}$. Then for all $u \in W$ and $c^d \in C$ we have

$$\chi(u, c^d) = \# \left\{ [w, X] \in \mathsf{PF}_{\mathcal{NC}} : (u, c^d) \cdot [w, X] = [w, X] \right\}$$
$$= \lim_{q \to \zeta^d} \frac{\det(1 - q^{h+1}u)}{\det(1 - qu)}$$
$$= (h+1)^{\operatorname{mult}_u(\zeta^d)},$$

where mult_u(ζ^d) is the multiplicity of the eigenvalue ζ^d in $u \in W$.

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)

Noncrossing Parking Functions

Cyclic Sieving "Theorem"

Let $h := |\langle c \rangle|$ be the Coxeter number and let $\zeta := e^{2\pi i/h}$. Then for all $u \in W$ and $c^d \in C$ we have

$$\chi(u, c^d) = \# \left\{ [w, X] \in \mathsf{PF}_{\mathcal{NC}} : (u, c^d) \cdot [w, X] = [w, X] \right\}$$
$$= \lim_{q \to \zeta^d} \frac{\det(1 - q^{h+1}u)}{\det(1 - qu)}$$
$$= (h+1)^{\operatorname{mult}_u(\zeta^d)},$$

where mult_u(ζ^d) is the multiplicity of the eigenvalue ζ^d in $u \in W$.

Unfortunately the proof is case-by-case. (And it is not yet checked for all exceptional types.)

For more on noncrossing parking functions see my paper with Brendon Rhoades and Vic Reiner:

Parking Spaces (2012), http://arxiv.org/abs/1204.1760

Vielen Dank!

picture by +Drew Armstrong and +David Roberts