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What is a Parking Function?

Definition

A parking function is a vector ~a = (a1, a2, . . . , an) ∈ Nn whose increasing
rearrangement b1 ≤ b2 ≤ · · · ≤ bn satisfies:

∀ i , bi ≤ i

Imagine a one-way street with n parking spaces.

I There are n cars.

I Car i wants to park in space ai .

I If space ai is full, she parks in first available space.

I Car 1 parks first, then car 2, etc.

I “~a is a parking function” ≡ “everyone is able to park”.
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What is a Parking Function?

Example (n = 3)

111
112 121 211
113 131 311
122 212 221
123 132 213 231 312 321

Note that #PF3 = 16 and S3 acts on PF3 with 5 orbits.

In General We Have

#PFn = (n + 1)n−1 # orbits = 1
n+1

(
2n
n

)
“Cayley” “Catalan”
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Structure of Parking Functions

Idea (Pollack, ∼ 1974)

Now imagine a circular street with n + 1 parking spaces.

I Choice functions = (Z/(n + 1)Z)n.

I Everyone can park. One empty spot remains.

I Choice is a parking function ⇐⇒ space n + 1 remains empty.

I One parking function per rotation class.

Conclusion:

I PFn = choice functions / rotation

I PFn ≈Sn (Z/(n + 1)Z)n /(1, 1, . . . , 1)

I #PFn = (n+1)n

n+1 = (n + 1)n−1
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Why do We Care?

Culture

The symmetric group Sn acts diagonally on the algebra of polynomials in
two commuting sets of variables:

Sn y Q[x, y] := Q[x1, . . . , xn, y1, . . . , yn]

After many years of work, Mark Haiman (2001) proved that the algebra
of diagonal coinvariants carries the same Sn-action as parking functions:

ω · PFn ≈Sn Q[x, y]/Q[x, y]Sn

The proof was hard. It comes down to this theorem:

The isospectral Hilbert scheme of n points in C2 is
Cohen-Macaulay and Gorenstein.
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Pollack’s Idea ⇒ Weyl Groups

Haiman, Conjectures on the quotient ring. . . , Section 7

Let W be a Weyl group with rank r and Coxeter number h. That is,
W y Rr by reflections and stabilizes a “root lattice” Q ≤ Rr . We define
the W -parking functions as

PFW := Q/(h + 1)Q

This generalizes Pollack because we have

(Z/(n + 1)Z)n/(1, 1, . . . , 1) = Q/(n + 1)Q.

Recall that W = Sn has Coxeter number h = n, and root lattice

Q = Zn/(1, 1, . . . , 1) = {(r1, . . . , rn) ∈ Zn :
∑

i ri = 0}.
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Pollack’s Idea ⇒ Weyl Groups

Haiman, Conjectures on the quotient ring. . . , Section 7

The W -parking space has dimension generalizing the Cayley numbers

dim PFW = (h + 1)r
(
= (n + 1)n−1

)
More generally: Given w ∈W , the character of PFW is

χ(w) = #{~a ∈ PFW : w(~a) = w}

= (h + 1)r−rank(1−w)
(

= (n + 1)#cycles(w)−1
)

and the number of W -orbits generalizes the Catalan numbers

#orbits =
1

|W |

r∏
i=1

(h + di )

(
=

1

n + 1

(
2n

n

))
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Parking Functions ⇔ Shi Arrangement

Another Language

The W -parking space is the same as the Shi arrangement of hyperplanes.
Given positive root α ∈ Φ+ ⊆ Q and integer k ∈ Z consider the
hyperplane Hα,k := {x : (α, x) = k}. Then we define

ShiW := {Hα,±1 : α ∈ Φ+}.

Cellini-Papi and Shi give an explicit bijection:

elements of Q/(h + 1)Q ←→ chambers of ShiW
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Parking Functions ⇔ Shi Arrangement

Example (W = S3)

There are 16 = (3 + 1)3−1 chambers and 5 = 1
4

(
6
3

)
orbits.
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Parking Functions ⇔ Shi Arrangement

“Ceiling Diagrams”

I like to think of Shi chambers as elements of the set{
(w ,A) : w ∈W , antichain A ⊆ Φ+,A ∩ inv(w) = ∅

}
.

The Shi chamber with “ceiling diagram” (w ,A)

I is in the cone determined by w

I and has ceilings given by A.

I.O.U.

How to describe the W -action on ceiling diagrams?
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We encode this partition by the permutation (1367)(45)(89) ∈ S9.
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What is a Noncrossing Partition?

Theorem (Biane, and probably others)

Let T ⊆ Sn be the generating set of all transpositions and consider the
Cayley metric dT : Sn ×Sn → N defined by

dT (π, µ) := min{k : π−1µ is a product of k transpositions }.

Let c = (123 · · · n) be the standard n-cycle. Then the permutation
π ∈ Sn corresponds to a noncrossing partition if and only if

dT (1, π) + dT (π, c) = dT (1, c).

“π is on a geodesic between 1 and c”
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What is Noncrossing Partition?

Definition (Brady-Watt, Bessis)

Let W be any finite Coxeter group with reflections T ⊆W . Let c ∈W
be any Coxeter element. We say w ∈W is a “noncrossing partition” if

dT (1,w) + dT (w , c) = dT (1, c)

“w is on a geodesic between 1 and c”



The Mystery of NC and NN

Mystery

Let W be a Weyl group (crystallographic finite Coxeter group). Let
NC(W ) be the set of noncrossing partitions and let NN(W ) be the set of
antichains in Φ+ (called “nonnesting partitions”). Then we have

#NC(W ) =
1

|W |

r∏
i=1

(h + di ) = #NN(W )

I The right equality has at least two uniform proofs.

I The left equality is only known case-by-case.

I What is going on here?
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The Mystery of NC and NN

Idea and an Anecdote

Idea: Since the parking functions can be though of as

{(w ,A) : w ∈W ,A ∈ NN(W ),A ∩ inv(w) = ∅}

maybe we should also consider the set

{(w , σ) : w ∈W , σ ∈ NC(W ), σ ∩ inv(w) = ∅}

where “σ ∩ inv(w)” means something sensible.

Anecdote: Where did the idea come from?
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Now we define the W -action on Shi chambers

Definition of F -parking functions

Recall the definition of the lattice of flats for W

L(W ) := {∩α∈JHα,0 : J ⊆ Φ+},

and for any flat X ∈ L(W ) recall the definition of the parabolic subgroup

WX := {w ∈W : w(x) = x for all x ∈ X}.
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and for any flat X ∈ L(W ) recall the definition of the parabolic subgroup

WX := {w ∈W : w(x) = x for all x ∈ X}.



Now we define the W -action on Shi chambers

Definition of F -parking functions

For any set of flats F ⊆ L(W ) we define the F-parking functions

PFF := {[w ,X ] : w ∈W ,X ∈ F ,w(X ) ∈ F}/ ∼

where [w ,X ] ∼ [w ′,X ′]⇐⇒ X = X ′ and wWX = w ′WX ′

This set carries a natural W -action. For all u ∈W we define

u · [w ,X ] := [wu−1, u(X )]
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Now we define the W -action on Shi chambers

The Prototypical Example of F -Parking Functions

If we consider the set of nonnesting flats

F = NN := {∩α∈AHα,0 : antichain A ⊆ Φ+}

then PFNN is just the set of ceiling diagrams of Shi chambers with the
natural action corresponding to W y Q/(h + 1)Q.
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But There is Another Example



Noncrossing Parking Functions

But There is Another Example



Noncrossing Parking Functions

But There is Another Example

Given any w ∈W there is a corresponding flat

ker(1− w) = {x : w(x) = x} ∈ L(W ).

If we consider the set of noncrossing flats

F = NC := {ker(1− w) : w ∈ NC(W )}

then PFNC is something new and possibly interesting. We call PFNC the
set of noncrossing parking functions.
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Noncrossing Parking Functions

Example (W = S9)

Type A NC parking functions are just NC partitions with labeled blocks.



Noncrossing Parking Functions

Theorem

If W is a Weyl group then we have an isomorphism of W -actions:

PFNC ≈W PFNN

This is just a fancy restatement of a theorem of Athanasiadis, Chapoton,
and Reiner. Unfortunately the proof is case-by-case using a computer.



Noncrossing Parking Functions

However

The noncrossing parking functions have two advantages over the
nonnesting parking functions.

1. PFNN is defined only for Weyl groups but PFNC is defined also for
noncrystallographic Coxeter groups.

2. PFNC carries an exta cyclic action. Let C = 〈c〉 ≤W where c ∈W
is a Coxeter element. Then the group W × C acts on PFNC by

(u, cd) · [w ,X ] := [cdwu−1, u(X )].
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Noncrossing Parking Functions

Cyclic Sieving “Theorem”

Let h := |〈c〉| be the Coxeter number and let ζ := e2πi/h. Then for all
u ∈W and cd ∈ C we have

χ(u, cd) = #
{

[w ,X ] ∈ PFNC : (u, cd) · [w ,X ] = [w ,X ]
}

= lim
q→ζd

det(1− qh+1u)

det(1− qu)

= (h + 1)multu(ζ
d ),

where multu(ζd) is the multiplicity of the eigenvalue ζd in u ∈W .

Unfortunately the proof is case-by-case. (And it is not yet checked for all
exceptional types.)
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Noncrossing Parking Functions

For more on noncrossing parking functions see my paper with Brendon
Rhoades and Vic Reiner:

Parking Spaces (2012), http://arxiv.org/abs/1204.1760

http://arxiv.org/abs/1204.1760
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