Maximal Chains of Parabolic Subgroups

Drew Armstrong
University of Miami
www.math.miami.edu/~armstrong

CanaDAM, June 2013

This talk is based on a picture I saw.

Gunnells, Paul E. Cells in Coxeter Groups. NAMS, 53 (2006)

Galois Connections

Definition (G. Birkhoff and \varnothing. Ore, ~1940)
$l^{\text {at }} S_{\text {and }} S^{\prime}$ ba antr and lat $D \subset C^{\prime} C^{\prime}$ ba a malation (write "aRb" to mean $(a, b) \in R)$. For all subsets $A \subseteq S$ and $B \subseteq S^{\prime}$, define

$$
\begin{aligned}
& A^{*}:=\left\{b \in S^{\prime}: a R b \text { for all } a \in A\right\} \subseteq S^{\prime} \\
& B^{*}:=\{a \in S: a R b \text { for all } b \in B\} \subseteq S .
\end{aligned}
$$

Galois Connections

Definition (G. Birkhoff and \varnothing. Ore, ~1940)

Galois Connections

Definition (G. Birkhoff and \varnothing. Ore, ~1940)

Let S and S^{\prime} be sets and let $\mathrm{R} \subseteq S \times S^{\prime}$ be a relation (write " $a \mathrm{R} b$ " to mean $(a, b) \in \mathrm{R}$). For all subsets $A \subseteq S$ and $B \subseteq S^{\prime}$, define

$$
\begin{aligned}
& A^{*}:=\left\{b \in S^{\prime}: a \mathrm{R} b \text { for all } a \in A\right\} \subseteq S^{\prime}, \\
& B^{*}:=\{a \in S: a R b \text { for all } b \in B\} \subseteq S .
\end{aligned}
$$

Galois Connections

Definition (G. Birkhoff and \varnothing. Ore, ~1940)

Let S and S^{\prime} be sets and let $\mathrm{R} \subseteq S \times S^{\prime}$ be a relation (write " $a \mathrm{R} b$ " to mean $(a, b) \in R$). For all subsets $A \subseteq S$ and $B \subseteq S^{\prime}$, define

$$
\begin{aligned}
& A^{*}:=\left\{b \in S^{\prime}: a R b \text { for all } a \in A\right\} \subseteq S^{\prime}, \\
& B^{*}:=\{a \in S: a R b \text { for all } b \in B\} \subseteq S .
\end{aligned}
$$

Thus we have a pair of maps:

$$
\begin{aligned}
& *: 2^{S} \rightarrow 2^{S^{\prime}} \\
& *: 2^{S^{\prime}} \rightarrow 2^{S} .
\end{aligned}
$$

Galois Connections

Properties
the sense that

2. The maps $*: 2^{S} \rightarrow 2^{S^{\prime}}$ and $*: 2^{S^{\prime}} \rightarrow 2^{S}$ restrict to reciprocal order-reversing lattice isomorphisms between
$\{* *$-closed subsets of $S\}$
$\left\{* *\right.$-closed subsets of $\left.S^{\prime}\right\}$

Galois Connections

Properties

1. The maps $* *: 2^{S} \rightarrow 2^{S}$ and $* *: 2^{S^{\prime}} \rightarrow 2^{S^{\prime}}$ are closure operators, in the sense that

- $X \subseteq X^{* *}$ for all X,
- $X \subseteq Y \Rightarrow X^{* *} \subseteq Y^{* *}$,
- $\left(X^{* *}\right)^{* *}=X^{* *}$ for all X.

3. Of course, this is general nonsense. The real math consists in characterizing the $* *$-closure for specific examples.

Galois Connections

Properties

1. The maps $* *: 2^{S} \rightarrow 2^{S}$ and $* *: 2^{S^{\prime}} \rightarrow 2^{S^{\prime}}$ are closure operators, in the sense that

- $X \subseteq X^{* *}$ for all X,
- $X \subseteq Y \Rightarrow X^{* *} \subseteq Y^{* *}$,
- $\left(X^{* *}\right)^{* *}=X^{* *}$ for all X.

2. The maps $*: 2^{S} \rightarrow 2^{S^{\prime}}$ and $*: 2^{S^{\prime}} \rightarrow 2^{S}$ restrict to reciprocal order-reversing lattice isomorphisms between
$\{* *$-closed subsets of $S\} \quad{ }^{*} \quad\left\{* *\right.$-closed subsets of $\left.S^{\prime}\right\}$
3. Of course, this is general nonsense. The real math consists in
characterizing the $* *$-closure for specific examples.

Galois Connections

Properties

1. The maps $* *: 2^{S} \rightarrow 2^{S}$ and $* *: 2^{S^{\prime}} \rightarrow 2^{S^{\prime}}$ are closure operators, in the sense that

- $X \subseteq X^{* *}$ for all X,
- $X \subseteq Y \Rightarrow X^{* *} \subseteq Y^{* *}$,
- $\left(X^{* *}\right)^{* *}=X^{* *}$ for all X.

2. The maps $*: 2^{S} \rightarrow 2^{S^{\prime}}$ and $*: 2^{S^{\prime}} \rightarrow 2^{S}$ restrict to reciprocal order-reversing lattice isomorphisms between
$\{* *$-closed subsets of $S\} \quad{ }^{*} \quad\left\{* *\right.$-closed subsets of $\left.S^{\prime}\right\}$
3. Of course, this is general nonsense. The real math consists in characterizing the $* *$-closure for specific examples.

Galois Connections

Galois Connections

Example 1 (Galois Theory)

$S=K$ is a field
$S^{\prime}=G \leq \operatorname{Aut}(K)$ is a finite group of automorphisms
"aRg" means " g fixes a "

Theorem (Galois, Dedekind):

```
1. }k:=\mp@subsup{G}{}{*}=\operatorname{Fix}(G)\mathrm{ is a subfie d of K (easy), and the **-closed
    subsets of }K\mathrm{ are all the intermediate fields }k\subseteq\mathbb{F}\subseteqK
    2. Given any X\subseteqK, the set }\mp@subsup{X}{}{*}\subseteqG\mathrm{ is a subgroup (easy), and the
    **-closed subsets of G are all the subgroups H\leqG
```


Galois Connections

Example 1 (Galois Theory)

$S=K$ is a field
$S^{\prime}=G \leq \operatorname{Aut}(\mathrm{K})$ is a finite group of automorphisms
"aRg" means " g fixes a"

Theorem (Galois, Dedekind):

$k:=G^{*}=\operatorname{Fix}(\mathrm{G})$ is a subfiel of $K($ easy $)$, and the **-closed
subsets of K are all the intermediate fields $k \subseteq \mathbb{F} \subseteq K$.
2. Given any $X \subseteq K$, the set $X^{*} \subseteq G$ is a subgroup (easy), and the
**-closed subsets of G are all the subgroups $H \leq G$.

Galois Connections

Example 1 (Galois Theory)

$S=K$ is a field
$S^{\prime}=G \leq \operatorname{Aut}(\mathrm{K})$ is a finite group of automorphisms
"aRg" means " g fixes a"

Theorem (Galois, Dedekind):

1. $k:=G^{*}=\operatorname{Fix}(\mathrm{G})$ is a subfield of K (easy), and the $* *$-closed subsets of K are all the intermediate fields $k \subseteq \mathbb{F} \subseteq K$.
2. Given any $X \subseteq K$, the set $X^{*} \subseteq G$ is a subgroup (easy), and the **-closed subsets of G are all the subgroups $H \leq G$.

Galois Connections

Example 2 (Nullstellensatz)
$S=K^{n}$, where K is an algebraically closed field
$S^{\prime}=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is the ring of polynomials
"xRf" means " $f(x)=0$ "

Theorem (Hilbert, Zariski):

Given anv $X \subset K^{n}$. the set $X \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal (easy),
and the $* *$-closure of an ideal $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is its radical:

$$
I^{* *}=\sqrt{I}=\left\{g \in K\left[x_{1}, \ldots, x_{n}\right]: g^{\ell} \in I \text { for some } \ell\right\} .
$$

Definition:

Galois Connections

Example 2 (Nullstellensatz)

$S=K^{n}$, where K is an algebraically closed field
$S^{\prime}=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is the ring of polynomials
"xRf" means " $f(x)=0$ "
Theorem (Hilbert, Zariski):
Given any $X \subseteq K^{n}$, the set $\lambda \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal (easy),
and the **-closure of an ideal $/ \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is it radical:

$$
I^{*}=\sqrt{I}=\left\{g \in K\left[x_{1}, \ldots, x_{n}\right]: g^{\ell} \in I \text { for some } \ell\right\} .
$$

Definition:

The $* *$-closure on K^{n} is called Zariski closure.

Galois Connections

Example 2 (Nullstellensatz)

$S=K^{n}$, where K is an algebraically closed field
$S^{\prime}=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is the ring of polynomials
" $x R f$ " means " $f(x)=0$ "

Theorem (Hilbert, Zariski):

Given any $X \subseteq K^{n}$, the set $X^{*} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal (easy), and the $* *$-closure of an ideal $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is its radical:

$$
I^{* *}=\sqrt{I}=\left\{g \in K\left[x_{1}, \ldots, x_{n}\right]: g^{\ell} \in I \text { for some } \ell\right\} .
$$

Definition:

The $* *$-cld sure on K^{n} is called Zariski closure.

Galois Connections

Example 2 (Nullstellensatz)

$S=K^{n}$, where K is an algebraically closed field
$S^{\prime}=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is the ring of polynomials
" $x R f$ " means " $f(x)=0$ "

Theorem (Hilbert, Zariski):

Given any $X \subseteq K^{n}$, the set $X^{*} \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is an ideal (easy), and the $* *$-closure of an ideal $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is its radical:

$$
I^{* *}=\sqrt{I}=\left\{g \in K\left[x_{1}, \ldots, x_{n}\right]: g^{\ell} \in I \text { for some } \ell\right\} .
$$

Definition:

The $* *$-closure on K^{n} is called Zariski closure.

Galois Connections

Example 3 (Steinberg's Theorem)

```
\(S=V\) is a Euclidean space
\(S^{\prime}=G \leq \operatorname{Aut}(\mathrm{V})\) is a finite group generated by reflections
" \(v R g\) " means " \(g\) fixes \(v\) "
```


Theorem (Steinberg, folklore, Barcelo-lhrig):

Given anv $X \subset V$, the set $X^{*} \subset G$ is a subgro ip (easy), and it is generated by the reflections that fix X pointwise.

Galois Connections

Example 3 (Steinberg's Theorem)

$S=V$ is a Euclidean space
$S^{\prime}=G \leq \operatorname{Aut}(\mathrm{V})$ is a finite group generated by reflections
" $v R g$ " means " g fixes v "

Theorem (Steinberg, folklore, Barcelo-Ihrig):
Given any $X \subseteq V$, the set $X^{*} \subseteq G$ is a subgroup (easy), and it is
generated by the reflections that fix X pointwise.

Corollary:

The $* *-\mathrm{c}$ osed subsets of V are the intersections of reflectine hyperplanes.

Galois Connections

Example 3 (Steinberg's Theorem)

$S=V$ is a Euclidean space
$S^{\prime}=G \leq \operatorname{Aut}(\mathrm{V})$ is a finite group generated by reflections
" $v \mathrm{Rg}^{\prime \prime}$ means " g fixes v "

Theorem (Steinberg, folklore, Barcelo-lhrig):
Given any $X \subseteq V$, the set $X^{*} \subseteq G$ is a subgroup (easy), and it is generated by the reflections that fix X pointwise.

Galois Connections

Example 3 (Steinberg's Theorem)

$S=V$ is a Euclidean space
$S^{\prime}=G \leq \operatorname{Aut}(\mathrm{V})$ is a finite group generated by reflections
" $v R g$ " means " g fixes v "

Theorem (Steinberg, folklore, Barcelo-lhrig):
Given any $X \subseteq V$, the set $X^{*} \subseteq G$ is a subgroup (easy), and it is generated by the reflections that fix X pointwise.

Corollary:

The $* *$-closed subsets of V are the intersections of reflecting hyperplanes.

Definition:
The **-closed subgroups of G are called parabolic.

Galois Connections

Example 3 (Steinberg's Theorem)

$S=V$ is a Euclidean space
$S^{\prime}=G \leq \operatorname{Aut}(\mathrm{V})$ is a finite group generated by reflections
" $v R g$ " means " g fixes v "

Theorem (Steinberg, folklore, Barcelo-lhrig):
Given any $X \subseteq V$, the set $X^{*} \subseteq G$ is a subgroup (easy), and it is generated by the reflections that fix X pointwise.

Corollary:

The $* *$-closed subsets of V are the intersections of reflecting hyperplanes.

Definition:

The $* *$-closed subgroups of G are called parabolic.

Galois Connections

Galois Connections

Remarks on Steinberg
$\operatorname{Par}(G)$ is the lattice of Parabolic subgroups of G.

Parabolic subgroups are conjugate to simple parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside $\operatorname{Par}(G)$.

Galois Connections

Remarks on Steinberg

1. $\operatorname{Par}(G)$ is the lattice of Parabolic subgroups of G.

Parabolic subgroups are conjugate to simple parabolic subgroups (generated bv subsets of simple reflections). The simple parabolics form a boolean sublattice inside $\operatorname{Par}(G)$.
$\operatorname{Par}(G)$ is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitnev. 1935).

Galois Connections

Remarks on Steinberg

1. $\operatorname{Par}(G)$ is the lattice of Parabolic subgroups of G.
2. Parabolic subgroups are conjugate to simple parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside $\operatorname{Par}(G)$.
$\operatorname{Par}(G)$ is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of
flats of a matroid (Whitney, 1935).
The lattice $\operatorname{Par}(G)$ is graded of rank r, where
is also called the rank of G.

Galois Connections

Remarks on Steinberg

1. $\operatorname{Par}(G)$ is the lattice of Parabolic subgroups of G.
2. Parabolic subgroups are conjugate to simple parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside $\operatorname{Par}(G)$.
3. $\operatorname{Par}(G)$ is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitney, 1935).

The lattice $\operatorname{Par}(G)$ is graded of rank r, where

Galois Connections

Remarks on Steinberg

1. $\operatorname{Par}(G)$ is the lattice of Parabolic subgroups of G.
2. Parabolic subgroups are conjugate to simple parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside $\operatorname{Par}(G)$.
3. $\operatorname{Par}(G)$ is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitney, 1935).
4. The lattice $\operatorname{Par}(G)$ is graded of rank r, where

$$
r:=\operatorname{dim}\left(V / G^{*}\right) \quad\left(\text { probably } G^{*}=0\right)
$$

is also called the rank of G.

Type A

$$
\begin{aligned}
& \text { The symmetric group } S_{n} \text { acts on } \mathbb{R}^{n} \text { by permuting a basis } \\
& \qquad \mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}
\end{aligned}
$$

- The transposition $(i, j) \in S_{n}$ is the reflection in $\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\perp} \subseteq \mathbb{R}^{n}$

Type A

- The symmetric group S_{n} acts on \mathbb{R}^{n} by permuting a basis

$$
\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}
$$

Type A

- The symmetric group S_{n} acts on \mathbb{R}^{n} by permuting a basis

$$
\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}
$$

- The transposition $(i, j) \in S_{n}$ is the reflection in $\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\perp} \subseteq \mathbb{R}^{n}$.
\square The isomorphism $\operatorname{Par}(n) \rightarrow \operatorname{Par}\left(S_{n}\right)$ is given by

Type A

- The symmetric group S_{n} acts on \mathbb{R}^{n} by permuting a basis

$$
\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}
$$

- The transposition $(i, j) \in S_{n}$ is the reflection in $\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\perp} \subseteq \mathbb{R}^{n}$.
- The rank of $S_{n} \curvearrowright \mathbb{R}^{n}$ is $r=n-1$ because

$$
S_{n}^{*}=\mathbb{R}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{n}\right) .
$$

Type A

- The symmetric group S_{n} acts on \mathbb{R}^{n} by permuting a basis

$$
\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}
$$

- The transposition $(i, j) \in S_{n}$ is the reflection in $\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\perp} \subseteq \mathbb{R}^{n}$.
- The rank of $S_{n} \curvearrowright \mathbb{R}^{n}$ is $r=n-1$ because

$$
S_{n}^{*}=\mathbb{R}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\cdots+\mathbf{e}_{n}\right) .
$$

- $\operatorname{Par}\left(S_{n}\right) \approx \operatorname{Par}(n)$, the lattice of Partitions of the set $\{1,2, \ldots, n\}$: The isomorphism $\operatorname{Par}(n) \rightarrow \operatorname{Par}\left(S_{n}\right)$ is given by

$$
\pi \mapsto X_{\pi}:=\bigcap_{(i, j)}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\perp} \in \operatorname{Par}\left(S_{n}\right),
$$

where the intersection is over (i, j) in the same block of $\pi \in \operatorname{Par}(n)$.

Type A

Type A

Theorem (Erdős-Guy-Moon)

The number of maximal chains in $\operatorname{Par}(n)$ is $\frac{(n-1)!n!}{2^{n-1}}$.

- Erdős, Guy and Moon, On refining partitions. JLMS, (1975)

Type A

Theorem (Erdős-Guy-Moon)

The number of maximal chains in $\operatorname{Par}(n)$ is $\frac{(n-1)!n!}{2^{n-1}}$.

- Erdős, Guy and Moon, On refining partitions. JLMS, (1975)

Proof.

Start with $\{1\} \cup\{2\} \cup \cdots \cup\{n\}$. Choose two blocks and join them, in $\binom{n}{2}$ ways. Now you have $n-1$ blocks. Choose two blocks and join them, in $\binom{n-1}{2}$ ways. Continue until you reach $\{1,2, \ldots, n\}$. The total number of choices was

$$
\binom{n}{2}\binom{n-1}{2} \cdots\binom{3}{2}\binom{2}{2}=\frac{(n-1)!n!}{2^{n-1}}
$$

Other Types

Other Types

Now let G be a finite reflection group of rank r and consider the permutohedron $\operatorname{Perm}(G)$ (the dual zonotope):

Other Types

Remarks on Permutohedra

- The vertices of $\operatorname{Perm}(G)$ are the elements of the group G.
- For each corank 1 parabolic $G^{\prime} \prec G$ there is a pair of facets, each isomorphic to $\operatorname{Perm}\left(G^{\prime}\right)$.

Other Types

Remarks on Permutohedra

- The vertices of $\operatorname{Perm}(G)$ are the elements of the group G.
- For each corank 1 parabolic $G^{\prime} \prec G$ there is a pair of facets, each isomorphic to $\operatorname{Perm}\left(G^{\prime}\right)$.
- Ench unutax is containad in facets (the zonotope is simple).

Other Types

Remarks on Permutohedra

- The vertices of $\operatorname{Perm}(G)$ are the elements of the group G.
- For each corank 1 parabolic $G^{\prime} \prec G$ there is a pair of facets, each isomorphic to $\operatorname{Perm}\left(G^{\prime}\right)$.
- Each vertex is contained in r facets (the zonotope is simple).
- We conclude that

Other Types

Remarks on Permutohedra

- The vertices of $\operatorname{Perm}(G)$ are the elements of the group G.
- For each corank 1 parabolic $G^{\prime} \prec G$ there is a pair of facets, each isomorphic to $\operatorname{Perm}\left(G^{\prime}\right)$.
- Each vertex is contained in r facets (the zonotope is simple).
- We conclude that
where the sum is over corank 1 parabolic subgroups $G^{\prime} \prec G$.

Other Types

Remarks on Permutohedra

- The vertices of $\operatorname{Perm}(G)$ are the elements of the group G.
- For each corank 1 parabolic $G^{\prime} \prec G$ there is a pair of facets, each isomorphic to Perm $\left(G^{\prime}\right)$.
- Each vertex is contained in r facets (the zonotope is simple).
- We conclude that

$$
r|G|=2 \sum_{G^{\prime} \prec G}\left|G^{\prime}\right|
$$

where the sum is over corank 1 parabolic subgroups $G^{\prime} \prec G$.

Other Types

Theorem (Could this possibly be new?):
The number of maximal chains in $\operatorname{Par}(G)$ is $\frac{r!|G|}{2^{r}}$.

We know from (\star) that

with the sum over corank 1 parabolic subgroups $G^{\prime} \prec G$. Recurse:

Other Types

Theorem (Could this possibly be new?):

The number of maximal chains in $\operatorname{Par}(G)$ is $\frac{r!|G|}{2^{r}}$.

Proof.

We know from (\star) that

$$
|G|=\frac{2}{r} \sum_{G^{\prime} \prec G}\left|G^{\prime}\right|,
$$

with the sum over corank 1 parabolic subgroups $G^{\prime} \prec G$. Recurse:

$$
|G|=\frac{2^{r}}{r!}(\# \text { maximal flags of parabolics }) .
$$

Other Types

More Generally

Let C_{d} equal be the number of chains of parabolic subgroups

$$
G \succ G_{1} \succ G_{2} \succ \cdots \succ G_{d}
$$

where G_{i} has corank i. Let F_{d} be the number of codimension- d faces in the permutohedron. Then

$$
d!F_{d}=2^{d} C_{d}
$$

Other Types

More Generally

Let C_{d} equal be the number of chains of parabolic subgroups

$$
G \succ G_{1} \succ G_{2} \succ \cdots \succ G_{d}
$$

where G_{i} has corank i. Let F_{d} be the number of codimension- d faces in the permutohedron. Then

$$
d!F_{d}=2^{d} C_{d}
$$

Example

If G has rank r, then

- $F_{r}=$ number of vertices $=|G|$,
- $C_{r}=$ number of maximal chains in $\operatorname{Par}(G)$.

Other Types

Humble Suggestion

Investigate the action of G on chains in $\operatorname{Par}(G)$.
Type A has been thoroughly studied since

- Stanley, Richard P. Some aspects of groups acting on finite posets. JCTA, (1982)

But maybe the formula $r!|G| / 2^{r}$ gives new insight?

Extension of the Idea

Extension of the Idea

This is also a picture of the Shi hyperplane arrangement of type A_{3} :

Extension of the Idea

Definition

If G has crystallographic root system Φ, then the Shi arrangement is

$$
\operatorname{Shi}(G):=\bigcup_{\alpha \in \Phi^{+}}\left\{H_{\alpha, 0}, H_{\alpha, 1}\right\}
$$

Theorem (Yoshinaga, 2004)
The characteristic polynomial of Shil G) is
where h, r are the Coxeter number and rank of G. Hence (Zaslavsky), Shi (G) has $(h+1)^{r}$ regions and $(h-1)^{r}$ bounded regions.

Extension of the Idea

Definition

If G has crystallographic root system Φ, then the Shi arrangement is

$$
\operatorname{Shi}(G):=\bigcup_{\alpha \in \Phi^{+}}\left\{H_{\alpha, 0}, H_{\alpha, 1}\right\}
$$

Theorem (Yoshinaga, 2004)

The characteristic polynomial of $\operatorname{Shi}(G)$ is

$$
\chi_{\operatorname{Shi}(G)}(p)=(p-h)^{r},
$$

where h, r are the Coxeter number and rank of G. Hence (Zaslavsky), $\operatorname{Shi}(G)$ has $(h+1)^{r}$ regions and $(h-1)^{r}$ bounded regions.

Extension of the Idea

Definition

Given a region R of $\operatorname{Shi}(G)$, let $\operatorname{dof}(R)$ be the maximal number of linearly-independent rays in R. Call this the "degrees of freedom" of R.

Note: R bounded $\Longleftrightarrow \operatorname{dof}(R)=0$

Example

Extension of the Idea

Definition

Define the "degrees of freedom" polynomial of the Shi arrangement

$$
\operatorname{DF}_{G}(q):=\sum_{R \in \operatorname{Shi}(G)} q^{\operatorname{dof}(R)}
$$

Theorem

The DF polynomial satisfies the recurrence

$$
\frac{d}{d q} \mathrm{DF}_{G}(q)=2 \sum_{G^{\prime} \prec G} \mathrm{DF}_{G^{\prime}}(q),
$$

where the sum is over corank 1 parabolic subgroups $G^{\prime} \prec G$.

Extension of the Idea

Theorem

The recurrence can be explicitly solved:

$$
\operatorname{DF}_{G}(q)=(-1)^{r} \sum_{G^{\prime} \leq G}\left(1-h^{\prime}\right)^{r^{\prime}} \cdot \chi_{G \mid G^{\prime}}(-1) \cdot q^{r-r^{\prime}}
$$

where

- The sum is over all parabolic subgroups $G^{\prime} \leq G$,
- h^{\prime}, r^{\prime} are the Coxeter number and rank of G^{\prime},
- $\chi_{G \mid G^{\prime}}(p)$ is the char. poly. of the reflection arrangement of G restricted to the fixed space of G^{\prime}.

Extension of the Idea

Questions

1. Use the recurrence to define $\mathrm{DF}_{G}(q)$ for non-crystallographic groups G. For example:

$$
\mathrm{DF}_{H_{3}}(q)=729+302 q+180 q^{2}+120 q^{3} .
$$

Does this mean anything?
Replace $\chi_{G \mid G^{\prime}}(-1)$ by the unevaluated $\chi_{G \mid G^{\prime}}(-p)$ to define Does this mean anything?

Extension of the Idea

Questions

1. Use the recurrence to define $\mathrm{DF}_{G}(q)$ for non-crystallographic groups G. For example:

$$
\mathrm{DF}_{H_{3}}(q)=729+302 q+180 q^{2}+120 q^{3} .
$$

Does this mean anything?
2. Replace $\chi_{G \mid G^{\prime}}(-1)$ by the unevaluated $\chi_{G \mid G^{\prime}}(-p)$ to define

$$
\operatorname{DF}_{G}(p, q)=(-1)^{r} \sum_{G^{\prime} \leq G}\left(1-h^{\prime}\right)^{r^{\prime}} \cdot \chi_{G \mid G^{\prime}}(-p) \cdot q^{r-r^{\prime}} .
$$

Does this mean anything?

Extension of the Idea

Questions

3. Replace $\chi_{\operatorname{Shi}\left(G^{\prime}\right)}(1)=\left(1-h^{\prime}\right)^{r^{\prime}}$ by $\chi_{\operatorname{Shi}\left(G^{\prime}\right)}(-t)=\left(-t-h^{\prime}\right)^{r^{\prime}}$:

$$
\mathrm{DF}_{G}(t, p, q)=(-1)^{r} \sum_{G^{\prime} \leq G}\left(-t-h^{\prime}\right)^{r^{\prime}} \cdot \chi_{G \mid G^{\prime}}(-p) \cdot q^{r-r^{\prime}} .
$$

Does this mean anything?
Replace Shi (G) by any deformation $\mathcal{A}(G)$ of the Coxeter arrangement in the sense of (Postnikov-Stanley, 2000):

Does this mean anything?

Extension of the Idea

Questions

3. Replace $\chi_{\operatorname{Shi}\left(G^{\prime}\right)}(1)=\left(1-h^{\prime}\right)^{r^{\prime}}$ by $\chi_{\operatorname{Shi}\left(G^{\prime}\right)}(-t)=\left(-t-h^{\prime}\right)^{r^{\prime}}$:

$$
\operatorname{DF}_{G}(t, p, q)=(-1)^{r} \sum_{G^{\prime} \leq G}\left(-t-h^{\prime}\right)^{r^{\prime}} \cdot \chi_{G \mid G^{\prime}}(-p) \cdot q^{r-r^{\prime}}
$$

Does this mean anything?
4. Replace $\operatorname{Shi}(G)$ by any deformation $\mathcal{A}(G)$ of the Coxeter arrangement in the sense of (Postnikov-Stanley, 2000):

$$
\operatorname{DF}_{G}(t, p, q)=(-1)^{r} \sum_{G^{\prime} \leq G} \chi_{\mathcal{A}\left(G^{\prime}\right)}(-t) \cdot \chi_{G \mid G^{\prime}}(-p) \cdot q^{r-r^{\prime}}
$$

Does this mean anything?

Thank You

