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Galois Connections

Definition (G. Birkhoff and Ø. Ore, ∼1940)

Let S and S ′ be sets and let R ⊆ S × S ′ be a relation (write “aRb” to
mean (a, b) ∈ R). For all subsets A ⊆ S and B ⊆ S ′, define

A∗ := {b ∈ S ′ : aRb for all a ∈ A} ⊆ S ′,

B∗ := {a ∈ S : aRb for all b ∈ B} ⊆ S .

Thus we have a pair of maps:

∗ : 2S → 2S′ ,

∗ : 2S′ → 2S .
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Galois Connections

Properties

1. The maps ∗∗ : 2S → 2S and ∗∗ : 2S′ → 2S′ are closure operators, in
the sense that

I X ⊆ X ∗∗ for all X ,
I X ⊆ Y ⇒ X ∗∗ ⊆ Y ∗∗,
I (X ∗∗)∗∗ = X ∗∗ for all X .

2. The maps ∗ : 2S → 2S′ and ∗ : 2S′ → 2S restrict to reciprocal
order-reversing lattice isomorphisms between

{∗ ∗ -closed subsets of S} ∗←→ {∗ ∗ -closed subsets of S ′}

3. Of course, this is general nonsense. The real math consists in
characterizing the ∗∗-closure for specific examples.
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Galois Connections

Example 1 (Galois Theory)

S = K is a field

S ′ = G ≤ Aut(K) is a finite group of automorphisms

“aRg” means “g fixes a”

Theorem (Galois, Dedekind):

1. k := G∗ = Fix(G) is a subfield of K (easy), and the ∗∗-closed
subsets of K are all the intermediate fields k ⊆ F ⊆ K .

2. Given any X ⊆ K , the set X ∗ ⊆ G is a subgroup (easy), and the
∗∗-closed subsets of G are all the subgroups H ≤ G .
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Galois Connections

Example 2 (Nullstellensatz)

S = K n, where K is an algebraically closed field

S ′ = K [x1, x2, . . . , xn] is the ring of polynomials

“xRf ” means “f (x) = 0”

Theorem (Hilbert, Zariski):

Given any X ⊆ K n, the set X ∗ ⊆ K [x1, . . . , xn] is an ideal (easy),
and the ∗∗-closure of an ideal I ⊆ K [x1, . . . , xn] is its radical:

I ∗∗ =
√
I =

{
g ∈ K [x1, . . . , xn] : g ` ∈ I for some `

}
.

Definition:

The ∗∗-closure on K n is called Zariski closure.
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Galois Connections

Example 3 (Steinberg’s Theorem)

S = V is a Euclidean space

S ′ = G ≤ Aut(V) is a finite group generated by reflections

“vRg” means “g fixes v”

Theorem (Steinberg, folklore, Barcelo-Ihrig):

Given any X ⊆ V , the set X ∗ ⊆ G is a subgroup (easy), and it is
generated by the reflections that fix X pointwise.

Corollary:

The ∗∗-closed subsets of V are the intersections of reflecting
hyperplanes.

Definition:

The ∗∗-closed subgroups of G are called parabolic.
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Galois Connections

Remarks on Steinberg

1. Par(G ) is the lattice of Parabolic subgroups of G .

2. Parabolic subgroups are conjugate to simple parabolic subgroups
(generated by subsets of simple reflections). The simple parabolics
form a boolean sublattice inside Par(G ).

3. Par(G ) is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of
flats of a matroid (Whitney, 1935).

4. The lattice Par(G ) is graded of rank r , where

r := dim(V /G∗) ( probably G∗ = 0 )

is also called the rank of G .
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Type A

I The symmetric group Sn acts on Rn by permuting a basis

e1, e2, . . . , en ∈ Rn

I The transposition (i , j) ∈ Sn is the reflection in (ei − ej)
⊥ ⊆ Rn.

I The rank of Sn y Rn is r = n − 1 because

S∗n = R(e1 + e2 + · · ·+ en).

I Par(Sn) ≈ Par(n), the lattice of Partitions of the set {1, 2, . . . , n}:

The isomorphism Par(n)→ Par(Sn) is given by

π 7→ Xπ :=
⋂
(i,j)

(ei − ej)
⊥ ∈ Par(Sn),

where the intersection is over (i , j) in the same block of π ∈ Par(n).
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Type A

Theorem (Erdős-Guy-Moon)

The number of maximal chains in Par(n) is
(n − 1)! n!

2n−1
.

I Erdős, Guy and Moon, On refining partitions. JLMS, (1975)

Proof.

Start with {1} ∪ {2} ∪ · · · ∪ {n}. Choose two blocks and join them, in(
n
2

)
ways. Now you have n − 1 blocks. Choose two blocks and join them,

in
(
n−1

2

)
ways. Continue until you reach {1, 2, . . . , n}. The total number

of choices was (
n

2

)(
n − 1

2

)
· · ·
(

3

2

)(
2

2

)
=

(n − 1)! n!

2n−1
.
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Theorem (Erdős-Guy-Moon)

The number of maximal chains in Par(n) is
(n − 1)! n!

2n−1
.
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Now let G be a finite reflection group of rank r and consider the
permutohedron Perm(G ) (the dual zonotope):



Other Types

Remarks on Permutohedra

I The vertices of Perm(G ) are the elements of the group G .

I For each corank 1 parabolic G ′ ≺ G there is a pair of facets, each
isomorphic to Perm(G ′).

I Each vertex is contained in r facets (the zonotope is simple).

I We conclude that
r |G | = 2

∑
G ′≺G

|G ′| (?)

where the sum is over corank 1 parabolic subgroups G ′ ≺ G .
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Theorem (Could this possibly be new?):

The number of maximal chains in Par(G ) is
r ! |G |

2r
.

Proof.

We know from (?) that

|G | =
2

r

∑
G ′≺G

|G ′|,

with the sum over corank 1 parabolic subgroups G ′ ≺ G . Recurse:

|G | =
2r

r !
(# maximal flags of parabolics ).
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Other Types

More Generally

Let Cd equal be the number of chains of parabolic subgroups

G � G1 � G2 � · · · � Gd

where Gi has corank i . Let Fd be the number of codimension-d faces in
the permutohedron. Then

d!Fd = 2d Cd

Example

If G has rank r , then

I Fr = number of vertices = |G |,
I Cr = number of maximal chains in Par(G ).
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Other Types

Humble Suggestion

Investigate the action of G on chains in Par(G ).

Type A has been thoroughly studied since

I Stanley, Richard P. Some aspects of groups acting on finite posets. JCTA, (1982)

But maybe the formula r !|G |/2r gives new insight?
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This is also a picture of the Shi hyperplane arrangement of type A3:



Extension of the Idea

Definition

If G has crystallographic root system Φ, then the Shi arrangement is

Shi(G ) :=
⋃
α∈Φ+

{Hα,0,Hα,1}

Theorem (Yoshinaga, 2004)

The characteristic polynomial of Shi(G ) is

χShi(G)(p) = (p − h)r ,

where h, r are the Coxeter number and rank of G . Hence (Zaslavsky),
Shi(G ) has (h + 1)r regions and (h − 1)r bounded regions.



Extension of the Idea

Definition

If G has crystallographic root system Φ, then the Shi arrangement is

Shi(G ) :=
⋃
α∈Φ+

{Hα,0,Hα,1}

Theorem (Yoshinaga, 2004)

The characteristic polynomial of Shi(G ) is

χShi(G)(p) = (p − h)r ,

where h, r are the Coxeter number and rank of G . Hence (Zaslavsky),
Shi(G ) has (h + 1)r regions and (h − 1)r bounded regions.



Extension of the Idea

Definition

Given a region R of Shi(G ), let dof(R) be the maximal number of
linearly-independent rays in R. Call this the “degrees of freedom” of R.

Note: R bounded ⇐⇒ dof(R) = 0

Example



Extension of the Idea

Definition

Define the “degrees of freedom” polynomial of the Shi arrangement

DFG (q) :=
∑

R∈Shi(G)

qdof(R).

Theorem

The DF polynomial satisfies the recurrence

d

dq
DFG (q) = 2

∑
G ′≺G

DFG ′(q),

where the sum is over corank 1 parabolic subgroups G ′ ≺ G.



Extension of the Idea

Theorem

The recurrence can be explicitly solved:

DFG (q) = (−1)r
∑
G ′≤G

(1− h′)r
′
· χG |G ′(−1) · qr−r

′
,

where

I The sum is over all parabolic subgroups G ′ ≤ G,

I h′, r ′ are the Coxeter number and rank of G ′,

I χG |G ′(p) is the char. poly. of the reflection arrangement of G
restricted to the fixed space of G ′.



Extension of the Idea

Questions

1. Use the recurrence to define DFG (q) for non-crystallographic
groups G . For example:

DFH3 (q) = 729 + 302q + 180q2 + 120q3.

Does this mean anything?

2. Replace χG |G ′(−1) by the unevaluated χG |G ′(−p) to define

DFG (p, q) = (−1)r
∑
G ′≤G

(1− h′)r
′
· χG |G ′(−p) · qr−r

′
.

Does this mean anything?



Extension of the Idea

Questions

1. Use the recurrence to define DFG (q) for non-crystallographic
groups G . For example:

DFH3 (q) = 729 + 302q + 180q2 + 120q3.

Does this mean anything?

2. Replace χG |G ′(−1) by the unevaluated χG |G ′(−p) to define

DFG (p, q) = (−1)r
∑
G ′≤G

(1− h′)r
′
· χG |G ′(−p) · qr−r

′
.

Does this mean anything?



Extension of the Idea

Questions

3. Replace χShi(G ′)(1) = (1− h′)r
′

by χShi(G ′)(−t) = (−t − h′)r
′
:

DFG (t, p, q) = (−1)r
∑
G ′≤G

(−t − h′)r
′
· χG |G ′(−p) · qr−r

′
.

Does this mean anything?

4. Replace Shi(G ) by any deformation A(G ) of the Coxeter
arrangement in the sense of (Postnikov-Stanley, 2000):

DFG (t, p, q) = (−1)r
∑
G ′≤G

χA(G ′)(−t) · χG |G ′(−p) · qr−r
′
.

Does this mean anything?



Extension of the Idea

Questions

3. Replace χShi(G ′)(1) = (1− h′)r
′

by χShi(G ′)(−t) = (−t − h′)r
′
:

DFG (t, p, q) = (−1)r
∑
G ′≤G

(−t − h′)r
′
· χG |G ′(−p) · qr−r

′
.

Does this mean anything?

4. Replace Shi(G ) by any deformation A(G ) of the Coxeter
arrangement in the sense of (Postnikov-Stanley, 2000):

DFG (t, p, q) = (−1)r
∑
G ′≤G

χA(G ′)(−t) · χG |G ′(−p) · qr−r
′
.

Does this mean anything?



Thank You


