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This talk is based on a picture | saw.

Gunnells, Paul E. Cells in Coxeter Groups. NAMS, 53 (2006)



Let S and S’ be and let RC S x S’ be a (write “aRb" to
mean (a, b) € R). For all AC S and B C S/, define

A*:={be S :aRbforallac A} C S,
B* :={ae S:aRbforall be B} CS.
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Galois Connections

Definition (G. Birkhoff and @. Ore, ~1940)

Let S and S’ be sets and let R C S x S’ be a relation (write “aRb" to
mean (a, b) € R). For all subsets AC S and B C S’, define

A*:={be S :aRbforallac A} C S,
B*:={ae S:aRbforall be B} CS.

Thus we have a pair of maps:
%:2% — 25,7

%:25 525






1. The maps s : 25 — 25 and sx : 25" 5 25" are closure operators, in
the sense that
» X C X** for all X,
» XCY=X*CYr,
> (X)) = X" for all X.
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Galois Connections

Properties

1. The maps *x* : 25 5 25 and #x : 25 — 25 are closure operators, in
the sense that
» X C X** forall X,
» XCY= X" CY,
> (XT)™ = X** for all X.

2. The maps * : 2° — 25" and x: 25" — 25 restrict to reciprocal
order-reversing lattice isomorphisms between

{% x -closed subsets of S}  «*+  {* x-closed subsets of S’}

3. Of course, this is general nonsense. The real math consists in
characterizing the *x-closure for specific examples.



* x -closed sets

I

* * -closed sets
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Galois Connections

S =K s a field
S’ = G < Aut(K) is a finite group of automorphisms

“aRg" means “g fixes a"

Theorem (Galois, Dedekind):

1. k:= G* = Fix(G) is a subfield of K (easy), and the #x-closed
subsets of K are all the intermediate fields k C F C K.

2. Given any X C K, the set X* C G is a subgroup (easy), and the
x*-closed subsets of G are all the subgroups H < G.
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S = K", where K is an algebraically closed field
S' = K|[x1, X2, . . ., Xp] is the ring of polynomials
“xRf" means “f(x) = 0"

Theorem (Hilbert, Zariski):

Given any X C K", the set X* C K|[xi, ..., X,] is an ideal (easy),
and the xx-closure of an ideal | C K[xi, ..., X,] is its radical:

/**:\/7:{geK[xl,...,x,,]:gzelforsomeﬁ}.

Definition:
The xx-closure on K" is called Zariski closure.
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Galois Connections

S = V is a Euclidean space
S' = G < Aut(V) is a finite group generated by reflections

“vRg" means “g fixes v"

Theorem (Steinberg, folklore, Barcelo-lhrig):
Given any X C V, the set X* C G is a subgroup (easy), and it is
generated by the reflections that fix X pointwise.

Corollary:
The xx-closed subsets of V are the intersections of reflecting
hyperplanes.

Definition:

The *x*-closed subgroups of G are called parabolic.



Galois Connections

(probably 0)

G G*
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Galois Connections

1. Par(G) is the lattice of Parabolic subgroups of G.

2. Parabolic subgroups are conjugate to simple parabolic subgroups
(generated by subsets of simple reflections). The simple parabolics
form a boolean sublattice inside Par(G).

3. Par(G) is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of
flats of a matroid (Whitney, 1935).

4. The lattice Par(G) is graded of rank r, where
r:=dim(V/G*) ( probably G*=10)

is also called the rank of G.
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» The symmetric group S, acts on R” by permuting a basis
e;,e,...,e, € R”

» The transposition (i,j) € S, is the reflection in (e; — e;)~ C R".
» The rank of S, ~R"is r = n — 1 because

S;=Rler+ert - +e).



Type A

» The symmetric group S, acts on R” by permuting a basis

e;,e,...,e, € R”

v

The transposition (i, /) € S, is the reflection in (e; — e;)* C R".

v

The rank of S, ~ R" is r = n — 1 because

S;=R(e1+ey+---+e,).

v

Par(S,) ~ Par(n), the lattice of Partitions of the set {1,2,...,n}:

The isomorphism Par(n) — Par(S,) is given by

= Xy = ﬂ(e; —e;)* € Par(S,),
(i)

where the intersection is over (/, ) in the same block of 7 € Par(n).
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The number of maximal chains in Par(n) is

» Erdés, Guy and Moon, On refining partitions. JLMS, (1975)



Type A

Theorem (Erdés-Guy-Moon)

—1)!n!
The number of maximal chains in Par(n) is (nZn%

» Erdds, Guy and Moon, On refining partitions. JLMS, (1975)

Proof.

Start with {1} U {2} U--- U {n}. Choose two blocks and join them, in
(5) ways. Now you have n — 1 blocks. Choose two blocks and join them,
in ("71) ways. Continue until you reach {1,2,...,n}. The total number

) (") Q)G -

of choices was






Other Types

Now let G be a finite reflection group of rank r and consider the
permutohedron Perm(G) (the dual zonotope):
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Other Types

» The vertices of Perm(G) are the elements of the group G.

» For each corank 1 parabolic G’ < G there is a pair of facets, each
isomorphic to Perm(G’).

» Each vertex is contained in r facets (the zonotope is simple).

» We conclude that

rl6l=2%" 16 (*)

G'<G

where the sum is over corank 1 parabolic subgroups G’ < G.



r!'|G]

The number of maximal chains in Par(G) is o



!
The number of maximal chains in Par(G) is & |rG|

We know from (x) that
2 /
61==3" 16,
G'<G
with the sum over corank 1 parabolic subgroups G’ < G. Recurse:

|G| = %(# maximal flags of parabolics).



Let Cy equal be the number of chains of parabolic subgroups

G>=G =Gy >+ Gy

where G; has corank i. Let F; be the number of codimension-d faces in
the permutohedron. Then

d Fy=29¢Cy4



Other Types

More Generally

Let Cy equal be the number of chains of parabolic subgroups
GG =Gy == Gy

where G; has corank . Let Fy be the number of codimension-d faces in
the permutohedron. Then

d Fy=29C,

If G has rank r, then
» F, = number of vertices = |G|,
» C, = number of maximal chains in Par(G).



Other Types

Investigate the action of G on chains in Par(G).

Type A has been thoroughly studied since
» Stanley, Richard P. Some aspects of groups acting on finite posets. JCTA, (1982)

But maybe the formula r!|G|/2" gives new insight?






Extension of the Idea

This is also a picture of the Shi hyperplane arrangement of type As:




If G has crystallographic root system ®, then the Shi arrangement is

Shi(G) := |J {Hau0s Ha1}

acodt



Extension of the ldea

Definition
If G has crystallographic root system ®, then the Shi arrangement is

Shi(G) := | {Ha0) Ho1}

acodt

Theorem (Yoshinaga, 2004)

The characteristic polynomial of Shi(G) is

XShi(G)(P) =(p—h),

where h, r are the Coxeter number and rank of G. Hence (Zaslavsky),
Shi(G) has (h+ 1)" regions and (h — 1)" bounded regions.



Extension of the Idea

Definition
Given a region R of Shi(G), let dof(R) be the maximal number of
linearly-independent rays in R. Call this the “degrees of freedom” of R.

Note: R bounded <= dof(R) =0

o | =
o | =

1

ANDVAZ
AVAN
2112



Define the “degrees of freedom” polynomial of the Shi arrangement

DFg(q):= ) ¢*®.
REShI(G)

The DF polynomial satisfies the recurrence
d
d—DFG )=2 Y DF¢/(q),
G'<G

where the sum is over corank 1 parabolic subgroups G' < G.



Extension of the ldea

Theorem
The recurrence can be explicitly solved:

’

DFs(q) = (-1)" > (L= h)" - xgie(-1)-a",

G'<G

where
» The sum is over all parabolic subgroups G' < G,
» h,r" are the Coxeter number and rank of G’,
> Xc|c'(p) is the char. poly. of the reflection arrangement of G
restricted to the fixed space of G'.



Extension of the Idea

1. Use the recurrence to define DF¢(g) for non-crystallographic
groups G. For example:

DF 4, (g) = 729 + 302qg + 180¢> + 1204°.

Does this mean anything?



Extension of the Idea

1. Use the recurrence to define DF¢(g) for non-crystallographic
groups G. For example:

DF 4, (g) = 729 + 302qg + 180¢> + 1204°.

Does this mean anything?

2. Replace x¢|¢/(—1) by the unevaluated x|c/(—p) to define
DFa(p.q) = (-1)" > (1= H)" - xge(-p) a "
G'<G

Does this mean anything?



Extension of the Idea

3. Replace xsni(c)(1) = (1 — H)" by xsni(en(—t) = (—t — H)"":

DF¢(t,p.q 1) > (—t=H)" xge(—p)-a".
G'<G

Does this mean anything?



Extension of the Idea

3. Replace xsni(c)(1) = (1 — H)" by xsni(en(—t) = (—t — H)"":

DF¢(t,p,q )" > (—t—H) " Xeie(—p)- g
ér<c

Does this mean anything?

4. Replace Shi(G) by any deformation A(G) of the Coxeter
arrangement in the sense of (Postnikov-Stanley, 2000):

DFa(t,p.q) = (—1)" > xae)(—t) xee(—p) - a" "
G'<G

Does this mean anything?



Thank You

-y




