Maximal Chains of Parabolic Subgroups

Drew Armstrong

University of Miami www.math.miami.edu/~armstrong

CanaDAM, June 2013

This talk is based on a picture I saw.

Gunnells, Paul E. Cells in Coxeter Groups. NAMS, 53 (2006)

Definition (G. Birkhoff and \emptyset . Ore, ~1940)

Let S and S' be sets and let $R \subseteq S \times S'$ be a relation (write "aRb" to mean $(a, b) \in R$). For all subsets $A \subseteq S$ and $B \subseteq S'$, define

 $A^* := \{ b \in S' : aRb \text{ for all } a \in A \} \subseteq S', \\B^* := \{ a \in S : aRb \text{ for all } b \in B \} \subseteq S.$

Thus we have a pair of maps:

$$*: 2^{S} \to 2^{S'},$$
$$*: 2^{S'} \to 2^{S}.$$

Definition (G. Birkhoff and Ø. Ore, ~1940)

Let S and S' be sets and let $R \subseteq S \times S'$ be a relation (write "aRb" to mean $(a, b) \in R$). For all subsets $A \subseteq S$ and $B \subseteq S'$, define

 $A^* := \{ b \in S' : aRb \text{ for all } a \in A \} \subseteq S', \\ B^* := \{ a \in S : aRb \text{ for all } b \in B \} \subseteq S.$

Thus we have a pair of maps:

$$*: 2^{S} \to 2^{S'},$$
$$*: 2^{S'} \to 2^{S}.$$

Definition (G. Birkhoff and \emptyset . Ore, ~1940)

Let S and S' be sets and let $R \subseteq S \times S'$ be a relation (write "aRb" to mean $(a, b) \in R$). For all subsets $A \subseteq S$ and $B \subseteq S'$, define

$$A^* := \{ b \in S' : aRb \text{ for all } a \in A \} \subseteq S'$$
$$B^* := \{ a \in S : aRb \text{ for all } b \in B \} \subseteq S.$$

Thus we have a pair of maps

$$*: 2^{S} \to 2^{S'},$$
$$*: 2^{S'} \to 2^{S}.$$

Definition (G. Birkhoff and \emptyset . Ore, ~1940)

Let S and S' be sets and let $R \subseteq S \times S'$ be a relation (write "aRb" to mean $(a, b) \in R$). For all subsets $A \subseteq S$ and $B \subseteq S'$, define

$$A^* := \{b \in S' : aRb \text{ for all } a \in A\} \subseteq S', \\B^* := \{a \in S : aRb \text{ for all } b \in B\} \subseteq S.$$

Thus we have a pair of maps:

$$\begin{aligned} *: 2^{S} \to 2^{S'}, \\ *: 2^{S'} \to 2^{S}. \end{aligned}$$

Properties

- 1. The maps $**:2^S\to 2^S$ and $**:2^{S'}\to 2^{S'}$ are closure operators, in the sense that
 - $X \subseteq X^{**}$ for all X,
 - $X \subseteq Y \Rightarrow X^{**} \subseteq Y^{**}$,
 - $(X^{**})^{**} = X^{**}$ for all X.
- 2. The maps $*: 2^S \rightarrow 2^{S'}$ and $*: 2^{S'} \rightarrow 2^S$ restrict to reciprocal order-reversing lattice isomorphisms between

 $\{** \text{-closed subsets of } S\} \quad \stackrel{*}{\longleftrightarrow} \quad \{** \text{-closed subsets of } S'\}$

Properties

- 1. The maps $**:2^S\to 2^S$ and $**:2^{S'}\to 2^{S'}$ are closure operators, in the sense that
 - $X \subseteq X^{**}$ for all X,

•
$$X \subseteq Y \Rightarrow X^{**} \subseteq Y^{**}$$
,

•
$$(X^{**})^{**} = X^{**}$$
 for all X.

2. The maps $*: 2^S \to 2^{S'}$ and $*: 2^{S'} \to 2^S$ restrict to reciprocal order-reversing lattice isomorphisms between

 $\{** \text{-closed subsets of } S\} \quad \stackrel{*}{\longleftrightarrow} \quad \{** \text{-closed subsets of } S'\}$

Properties

- 1. The maps $**:2^S\to 2^S$ and $**:2^{S'}\to 2^{S'}$ are closure operators, in the sense that
 - $X \subseteq X^{**}$ for all X,

•
$$X \subseteq Y \Rightarrow X^{**} \subseteq Y^{**}$$
,

2. The maps $*: 2^S \to 2^{S'}$ and $*: 2^{S'} \to 2^S$ restrict to reciprocal order-reversing lattice isomorphisms between

 $\{** \text{-closed subsets of } S\} \quad \stackrel{*}{\longleftrightarrow} \quad \{** \text{-closed subsets of } S'\}$

Properties

- 1. The maps $**:2^S\to 2^S$ and $**:2^{S'}\to 2^{S'}$ are closure operators, in the sense that
 - $X \subseteq X^{**}$ for all X,

•
$$X \subseteq Y \Rightarrow X^{**} \subseteq Y^{**}$$
,

•
$$(X^{**})^{**} = X^{**}$$
 for all X.

2. The maps $*: 2^S \to 2^{S'}$ and $*: 2^{S'} \to 2^S$ restrict to reciprocal order-reversing lattice isomorphisms between

 $\{** \text{-closed subsets of } S\} \quad \stackrel{*}{\longleftrightarrow} \quad \{** \text{-closed subsets of } S'\}$

Example 1 (Galois Theory)

S = K is a field $S' = G \le Aut(K)$ is a finite group of automorph "aRg" means "g fixes a"

Theorem (Galois, Dedekind):

- k := G* = Fix(G) is a subfield of K (easy), and the **-closed subsets of K are all the intermediate fields k ⊆ F ⊆ K.
- 2. Given any $X \subseteq K$, the set $X^* \subseteq G$ is a **subgroup** (easy), and the **-closed subsets of G are **all** the subgroups $H \leq G$.

Example 1 (Galois Theory)

S = K is a field $S' = G \le Aut(K)$ is a finite group of automorphisms "aRg" means "g fixes a"

Theorem (Galois, Dedekind):

- k := G* = Fix(G) is a subfield of K (easy), and the **-closed subsets of K are all the intermediate fields k ⊆ F ⊆ K.
- 2. Given any $X \subseteq K$, the set $X^* \subseteq G$ is a **subgroup** (easy), and the **-closed subsets of G are **all** the subgroups $H \leq G$.

Example 1 (Galois Theory)

S = K is a field $S' = G \le Aut(K)$ is a finite group of automorphisms "aRg" means "g fixes a"

Theorem (Galois, Dedekind):

- k := G* = Fix(G) is a subfield of K (easy), and the **-closed subsets of K are all the intermediate fields k ⊆ F ⊆ K.
- 2. Given any $X \subseteq K$, the set $X^* \subseteq G$ is a **subgroup** (easy), and the **-closed subsets of G are **all** the subgroups $H \leq G$.

Example 2 (Nullstellensatz)

 $S = K^n$, where K is an algebraically closed field $S' = K[x_1, x_2, ..., x_n]$ is the ring of polynomials "xRf" means " $f(\mathbf{x}) = 0$ "

Theorem (Hilbert, Zariski):

Given any $X \subseteq K^n$, the set $X^* \subseteq K[x_1, \ldots, x_n]$ is an **ideal** (easy), and the **-closure of an ideal $I \subseteq K[x_1, \ldots, x_n]$ is its radical:

$$I^{**} = \sqrt{I} = \left\{ g \in K[x_1, \dots, x_n] : g^\ell \in I \text{ for some } \ell \right\}.$$

Definition:

The ****-closure on** *Kⁿ* **is called Zariski closure**.

Example 2 (Nullstellensatz)

 $S = K^n$, where K is an algebraically closed field $S' = K[x_1, x_2, ..., x_n]$ is the ring of polynomials "**x**Rf" means " $f(\mathbf{x}) = 0$ "

Theorem (Hilbert, Zariski):

Given any $X \subseteq K^n$, the set $X^* \subseteq K[x_1, \ldots, x_n]$ is an **ideal** (easy), and the **-closure of an ideal $I \subseteq K[x_1, \ldots, x_n]$ is its radical:

$$I^{**} = \sqrt{I} = \left\{ g \in K[x_1, \dots, x_n] : g^\ell \in I \text{ for some } \ell \right\}.$$

Definition:

The ****-closure on** *Kⁿ* **is called Zariski closure**.

Example 2 (Nullstellensatz)

 $S = K^n$, where K is an algebraically closed field $S' = K[x_1, x_2, ..., x_n]$ is the ring of polynomials "**x**Rf" means " $f(\mathbf{x}) = 0$ "

Theorem (Hilbert, Zariski):

Given any $X \subseteq K^n$, the set $X^* \subseteq K[x_1, \ldots, x_n]$ is an **ideal** (easy), and the **-closure of an ideal $I \subseteq K[x_1, \ldots, x_n]$ is its radical:

$$I^{**} = \sqrt{I} = \left\{ g \in \mathcal{K}[x_1, \dots, x_n] : g^\ell \in I \text{ for some } \ell \right\}.$$

Definition:

The **-closure on *Kⁿ* is called Zariski closure.

Example 2 (Nullstellensatz)

 $S = K^n$, where K is an algebraically closed field $S' = K[x_1, x_2, ..., x_n]$ is the ring of polynomials "**x**Rf" means " $f(\mathbf{x}) = 0$ "

Theorem (Hilbert, Zariski):

Given any $X \subseteq K^n$, the set $X^* \subseteq K[x_1, \ldots, x_n]$ is an **ideal** (easy), and the **-closure of an ideal $I \subseteq K[x_1, \ldots, x_n]$ is its radical:

$$I^{**} = \sqrt{I} = \left\{ g \in \mathcal{K}[x_1, \dots, x_n] : g^\ell \in I \text{ for some } \ell \right\}.$$

Definition:

The **-closure on K^n is called Zariski closure.

Example 3 (Steinberg's Theorem)

S = V is a Euclidean space

 $S' = G \le Aut(V)$ is a finite group generated by reflections "vRg" means "g fixes v"

Theorem (Steinberg, folklore, Barcelo-Ihrig):

Given any $X \subseteq V$, the set $X^* \subseteq G$ is a **subgroup** (easy), and it is generated by the reflections that fix X pointwise.

Corollary:

The **-closed subsets of V are the intersections of reflecting hyperplanes.

Definition:

Example 3 (Steinberg's Theorem)

S = V is a Euclidean space $S' = G \le Aut(V)$ is a finite group generated by reflections "vRg" means "g fixes v"

Theorem (Steinberg, folklore, Barcelo-Ihrig): Given any $X \subseteq V$, the set $X^* \subseteq G$ is a **subgroup** (easy), and it is generated by the reflections that fix X pointwise.

Corollary:

The **-closed subsets of V are the intersections of reflecting hyperplanes.

Definition:

Example 3 (Steinberg's Theorem)

S = V is a Euclidean space $S' = G \le Aut(V)$ is a finite group generated by reflections "vRg" means "g fixes v"

Theorem (Steinberg, folklore, Barcelo-Ihrig):

Given any $X \subseteq V$, the set $X^* \subseteq G$ is a **subgroup** (easy), and it is generated by the reflections that fix X pointwise.

Corollary:

The **-closed subsets of V are the intersections of reflecting hyperplanes.

Definition:

Example 3 (Steinberg's Theorem)

S = V is a Euclidean space $S' = G \le Aut(V)$ is a finite group generated by reflections "vRg" means "g fixes v"

Theorem (Steinberg, folklore, Barcelo-Ihrig):

Given any $X \subseteq V$, the set $X^* \subseteq G$ is a **subgroup** (easy), and it is generated by the reflections that fix X pointwise.

Corollary:

The **-closed subsets of V are the intersections of reflecting hyperplanes.

Definition:

Example 3 (Steinberg's Theorem)

S = V is a Euclidean space $S' = G \le Aut(V)$ is a finite group generated by reflections "vRg" means "g fixes v"

Theorem (Steinberg, folklore, Barcelo-Ihrig):

Given any $X \subseteq V$, the set $X^* \subseteq G$ is a **subgroup** (easy), and it is generated by the reflections that fix X pointwise.

Corollary:

The **-closed subsets of V are the intersections of reflecting hyperplanes.

Definition:

Remarks on Steinberg

- 1. Par(G) is the lattice of **Parabolic subgroups of** G.
- 2. Parabolic subgroups are conjugate to **simple** parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside Par(*G*).
- Par(G) is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitney, 1935).
- 4. The lattice Par(G) is graded of rank r, where

 $r := \dim(V/G^*)$ (probably $G^* = 0$)

- 1. Par(G) is the lattice of **Par**abolic subgroups of G.
- 2. Parabolic subgroups are conjugate to **simple** parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside Par(*G*).
- 3. Par(G) is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitney, 1935).
- 4. The lattice Par(G) is graded of rank r, where

 $r := \dim(V/G^*)$ (probably $G^* = 0$)

- 1. Par(G) is the lattice of **Par**abolic subgroups of G.
- 2. Parabolic subgroups are conjugate to simple parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside Par(G).
- 3. Par(G) is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitney, 1935).
- 4. The lattice Par(G) is graded of rank r, where

 $r := \dim(V/G^*)$ (probably $G^* = 0$)

- 1. Par(G) is the lattice of **Par**abolic subgroups of G.
- 2. Parabolic subgroups are conjugate to simple parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside Par(G).
- 3. Par(G) is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitney, 1935).
- 4. The lattice Par(G) is graded of rank r, where

 $r := \dim(V/G^*)$ (probably $G^* = 0$)

- 1. Par(G) is the lattice of **Par**abolic subgroups of G.
- 2. Parabolic subgroups are conjugate to simple parabolic subgroups (generated by subsets of simple reflections). The simple parabolics form a boolean sublattice inside Par(G).
- 3. Par(G) is a geometric lattice (Birkhoff, 1935); i.e., it is the lattice of flats of a matroid (Whitney, 1935).
- 4. The lattice Par(G) is graded of rank r, where

 $r := \dim(V/G^*)$ (probably $G^* = 0$)

• The symmetric group S_n acts on \mathbb{R}^n by permuting a basis

 $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \in \mathbb{R}^n$

- The transposition $(i,j) \in S_n$ is the reflection in $(\mathbf{e}_i \mathbf{e}_j)^{\perp} \subseteq \mathbb{R}^n$.
- The rank of $S_n \curvearrowright \mathbb{R}^n$ is r = n 1 because

$$S_n^* = \mathbb{R}(\mathbf{e}_1 + \mathbf{e}_2 + \cdots + \mathbf{e}_n).$$

 Par(S_n) ≈ Par(n), the lattice of **Partitions** of the set {1, 2, ..., n}: The isomorphism Par(n) → Par(S_n) is given by

$$\pi \mapsto X_{\pi} := \bigcap_{(i,j)} (\mathbf{e}_i - \mathbf{e}_j)^{\perp} \in \operatorname{Par}(S_n),$$

$$\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n \in \mathbb{R}^n$$

- The transposition $(i,j) \in S_n$ is the reflection in $(\mathbf{e}_i \mathbf{e}_j)^{\perp} \subseteq \mathbb{R}^n$.
- The rank of $S_n \curvearrowright \mathbb{R}^n$ is r = n 1 because

$$S_n^* = \mathbb{R}(\mathbf{e}_1 + \mathbf{e}_2 + \cdots + \mathbf{e}_n).$$

 Par(S_n) ≈ Par(n), the lattice of Partitions of the set {1, 2, ..., n}: The isomorphism Par(n) → Par(S_n) is given by

$$\pi \mapsto X_{\pi} := \bigcap_{(i,j)} (\mathbf{e}_i - \mathbf{e}_j)^{\perp} \in \operatorname{Par}(S_n),$$

$$\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \in \mathbb{R}^n$$

- ▶ The transposition $(i,j) \in S_n$ is the reflection in $(\mathbf{e}_i \mathbf{e}_j)^{\perp} \subseteq \mathbb{R}^n$.
- The rank of $S_n \curvearrowright \mathbb{R}^n$ is r = n 1 because

$$S_n^* = \mathbb{R}(\mathbf{e}_1 + \mathbf{e}_2 + \cdots + \mathbf{e}_n).$$

 Par(S_n) ≈ Par(n), the lattice of Partitions of the set {1, 2, ..., n}: The isomorphism Par(n) → Par(S_n) is given by

$$\pi \mapsto X_{\pi} := \bigcap_{(i,j)} (\mathbf{e}_i - \mathbf{e}_j)^{\perp} \in \operatorname{Par}(S_n),$$

$$\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \in \mathbb{R}^n$$

- The transposition $(i,j) \in S_n$ is the reflection in $(\mathbf{e}_i \mathbf{e}_j)^{\perp} \subseteq \mathbb{R}^n$.
- The rank of $S_n \curvearrowright \mathbb{R}^n$ is r = n 1 because

$$S_n^* = \mathbb{R}(\mathbf{e}_1 + \mathbf{e}_2 + \cdots + \mathbf{e}_n).$$

 Par(S_n) ≈ Par(n), the lattice of Partitions of the set {1, 2, ..., n}: The isomorphism Par(n) → Par(S_n) is given by

$$\pi \mapsto X_{\pi} := \bigcap_{(i,j)} (\mathbf{e}_i - \mathbf{e}_j)^{\perp} \in \operatorname{Par}(S_n),$$

$$\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \in \mathbb{R}^n$$

- The transposition $(i,j) \in S_n$ is the reflection in $(\mathbf{e}_i \mathbf{e}_j)^{\perp} \subseteq \mathbb{R}^n$.
- The rank of $S_n \curvearrowright \mathbb{R}^n$ is r = n 1 because

$$S_n^* = \mathbb{R}(\mathbf{e}_1 + \mathbf{e}_2 + \cdots + \mathbf{e}_n).$$

 Par(S_n) ≈ Par(n), the lattice of Partitions of the set {1, 2, ..., n}: The isomorphism Par(n) → Par(S_n) is given by

$$\pi \mapsto X_{\pi} := \bigcap_{(i,j)} (\mathbf{e}_i - \mathbf{e}_j)^{\perp} \in \mathsf{Par}(S_n),$$

Theorem (Erdős-Guy-Moon)

The number of maximal chains in
$$Par(n)$$
 is $\frac{(n-1)! n!}{2^{n-1}}$.

Erdős, Guy and Moon, On refining partitions. JLMS, (1975)

Proof.

Start with $\{1\} \cup \{2\} \cup \cdots \cup \{n\}$. Choose two blocks and join them, in $\binom{n}{2}$ ways. Now you have n-1 blocks. Choose two blocks and join them, in $\binom{n-1}{2}$ ways. Continue until you reach $\{1, 2, \ldots, n\}$. The total number of choices was

$$\binom{n}{2}\binom{n-1}{2}\cdots\binom{3}{2}\binom{2}{2} = \frac{(n-1)!\,n!}{2^{n-1}}$$

Theorem (Erdős-Guy-Moon)

The number of maximal chains in Par(n) is $\frac{(n-1)! n!}{2^{n-1}}$.

Erdős, Guy and Moon, On refining partitions. JLMS, (1975)

Proof.

Start with $\{1\} \cup \{2\} \cup \cdots \cup \{n\}$. Choose two blocks and join them, in $\binom{n}{2}$ ways. Now you have n-1 blocks. Choose two blocks and join them, in $\binom{n-1}{2}$ ways. Continue until you reach $\{1, 2, \ldots, n\}$. The total number of choices was

$$\binom{n}{2}\binom{n-1}{2}\cdots\binom{3}{2}\binom{2}{2}=\frac{(n-1)!\,n!}{2^{n-1}}$$

Now let G be a finite reflection group of rank r and consider the permutohedron Perm(G) (the dual zonotope):

- ▶ The vertices of Perm(G) are the elements of the group G.
- For each corank 1 parabolic G' ≺ G there is a pair of facets, each isomorphic to Perm(G').
- Each vertex is contained in *r* facets (the zonotope is simple).
- ► We conclude that

$$r|G| = 2\sum_{G' \prec G} |G'|$$

(×)

where the sum is over corank 1 parabolic subgroups $G' \prec G$.

- ▶ The vertices of Perm(G) are the elements of the group G.
- For each corank 1 parabolic G' ≺ G there is a pair of facets, each isomorphic to Perm(G').
- ▶ Each vertex is contained in *r* facets (the zonotope is simple).
- ► We conclude that

$$r |G| = 2 \sum_{G' \prec G} |G'|$$

where the sum is over corank 1 parabolic subgroups $\mathit{G'}\prec \mathit{G}$.

- ▶ The vertices of Perm(G) are the elements of the group G.
- For each corank 1 parabolic G' ≺ G there is a pair of facets, each isomorphic to Perm(G').
- Each vertex is contained in *r* facets (the zonotope is simple).
- We conclude that $r |G| = 2 \sum_{G' \prec G} |G'| \qquad (*)$ where the sum is over corank 1 parabolic subgroups $G' \prec G$

- ▶ The vertices of Perm(G) are the elements of the group G.
- For each corank 1 parabolic G' ≺ G there is a pair of facets, each isomorphic to Perm(G').
- ▶ Each vertex is contained in *r* facets (the zonotope is simple).

- ▶ The vertices of Perm(G) are the elements of the group G.
- For each corank 1 parabolic G' ≺ G there is a pair of facets, each isomorphic to Perm(G').
- Each vertex is contained in *r* facets (the zonotope is simple).
- We conclude that

$$r|G| = 2\sum_{G' \prec G} |G'| \tag{(\star)}$$

where the sum is over corank 1 parabolic subgroups $G' \prec G$.

Theorem (Could this possibly be new?):

The number of maximal chains in Par(G) is $\frac{r!|G|}{2^r}$.

Proof.

We know from (\star) that

$$|G| = \frac{2}{r} \sum_{G' \prec G} |G'|,$$

with the sum over corank 1 parabolic subgroups $G' \prec G$. Recurse:

$$|G| = \frac{2^r}{r!}$$
 (# maximal flags of parabolics).

Theorem (Could this possibly be new?):

The number of maximal chains in Par(G) is $\frac{r! |G|}{2^r}$.

Proof.

We know from (\star) that

$$|G| = \frac{2}{r} \sum_{G' \prec G} |G'|,$$

with the sum over corank 1 parabolic subgroups $G' \prec G$. Recurse:

$$|G| = \frac{2^r}{r!} (\# \text{ maximal flags of parabolics}).$$

More Generally

Let C_d equal be the number of chains of parabolic subgroups

$$G \succ G_1 \succ G_2 \succ \cdots \succ G_d$$

where G_i has corank *i*. Let F_d be the number of codimension-*d* faces in the permutohedron. Then

$$d! F_d = 2^d C_d$$

Example

If G has rank r, then

- F_r = number of vertices = |G|,
- C_r = number of maximal chains in Par(G).

More Generally

Let C_d equal be the number of chains of parabolic subgroups

$$G \succ G_1 \succ G_2 \succ \cdots \succ G_d$$

where G_i has corank *i*. Let F_d be the number of codimension-*d* faces in the permutohedron. Then

$$d! F_d = 2^d C_d$$

Example

If G has rank r, then

- F_r = number of vertices = |G|,
- C_r = number of maximal chains in Par(G).

Humble Suggestion

Investigate the action of G on chains in Par(G).

Type A has been thoroughly studied since

Stanley, Richard P. Some aspects of groups acting on finite posets. JCTA, (1982)

But maybe the formula $r!|G|/2^r$ gives new insight?

This is also a picture of the Shi hyperplane arrangement of type A_3 :

Definition

If G has crystallographic root system Φ , then the Shi arrangement is

$$\mathsf{Shi}(G) := \bigcup_{\alpha \in \Phi^+} \{H_{\alpha,0}, H_{\alpha,1}\}$$

Theorem (Yoshinaga, 2004)

The characteristic polynomial of Shi(G) is

 $\chi_{\mathrm{Shi}(G)}(p) = (p-h)^r,$

where h, r are the Coxeter number and rank of G. Hence (Zaslavsky), Shi(G) has $(h + 1)^r$ regions and $(h - 1)^r$ bounded regions.

Definition

If G has crystallographic root system Φ , then the Shi arrangement is

$$\mathsf{Shi}(G) := \bigcup_{\alpha \in \Phi^+} \{H_{\alpha,0}, H_{\alpha,1}\}$$

Theorem (Yoshinaga, 2004)

The characteristic polynomial of Shi(G) is

$$\chi_{\mathrm{Shi}(G)}(p) = (p-h)^r,$$

where h, r are the Coxeter number and rank of G. Hence (Zaslavsky), Shi(G) has $(h+1)^r$ regions and $(h-1)^r$ bounded regions.

Definition

Given a region R of Shi(G), let dof(R) be the maximal number of linearly-independent rays in R. Call this the "degrees of freedom" of R.

Note: *R* bounded $\iff dof(R) = 0$

Definition

Define the "degrees of freedom" polynomial of the Shi arrangement

$$\mathsf{DF}_G(q) := \sum_{R \in \mathsf{Shi}(G)} q^{\mathsf{dof}(R)}.$$

Theorem

The DF polynomial satisfies the recurrence

$$\frac{d}{dq}\mathsf{DF}_G(q) = 2\sum_{G'\prec G}\mathsf{DF}_{G'}(q),$$

where the sum is over corank 1 parabolic subgroups $G' \prec G$.

Theorem

The recurrence can be explicitly solved:

$$\mathsf{DF}_{G}(q) = (-1)^{r} \sum_{G' \leq G} (1-h')^{r'} \cdot \chi_{G|G'}(-1) \cdot q^{r-r'},$$

where

- The sum is over all parabolic subgroups $G' \leq G$,
- ▶ h', r' are the Coxeter number and rank of G',
- ► \u03c8 \u03c8 \u03c8 G \

Questions

1. Use the recurrence to define $DF_G(q)$ for non-crystallographic groups *G*. For example:

$$\mathsf{DF}_{H_3}(q) = 729 + 302q + 180q^2 + 120q^3$$

Does this mean anything?

2. Replace $\chi_{G|G'}(-1)$ by the **unevaluated** $\chi_{G|G'}(-p)$ to define

$$\mathsf{DF}_G(\mathbf{p},q) = (-1)^r \sum_{G' \leq G} (1-h')^{r'} \cdot \chi_{G|G'}(-\mathbf{p}) \cdot q^{r-r'}.$$

Questions

1. Use the recurrence to define $DF_G(q)$ for non-crystallographic groups *G*. For example:

$$\mathsf{DF}_{H_3}(q) = 729 + 302q + 180q^2 + 120q^3$$

Does this mean anything?

2. Replace $\chi_{G|G'}(-1)$ by the **unevaluated** $\chi_{G|G'}(-p)$ to define

$$\mathsf{DF}_G(\mathbf{p},q) = (-1)^r \sum_{G' \leq G} (1-h')^{r'} \cdot \chi_{G|G'}(-\mathbf{p}) \cdot q^{r-r'}.$$

Questions

3. Replace
$$\chi_{\text{Shi}(G')}(1) = (1-h')^{r'}$$
 by $\chi_{\text{Shi}(G')}(-t) = (-t-h')^{r'}$

$$\mathsf{DF}_G(t,p,q) = (-1)^r \sum_{G' \leq G} (-t - h')^{r'} \cdot \chi_{G|G'}(-p) \cdot q^{r-r'}$$

Does this mean anything?

 Replace Shi(G) by any deformation A(G) of the Coxeter arrangement in the sense of (Postnikov-Stanley, 2000):

$$\mathsf{DF}_G(t,p,q) = (-1)^r \sum_{G' \leq G} \chi_{\mathcal{A}(G')}(-t) \cdot \chi_{G|G'}(-p) \cdot q^{r-r'}.$$

Questions

3. Replace
$$\chi_{\text{Shi}(G')}(1) = (1-h')^{r'}$$
 by $\chi_{\text{Shi}(G')}(-t) = (-t-h')^{r'}$:

$$\mathsf{DF}_G(t,p,q) = (-1)^r \sum_{G' \leq G} (-t - h')^{r'} \cdot \chi_{G|G'}(-p) \cdot q^{r-r'}.$$

Does this mean anything?

Replace Shi(G) by any deformation A(G) of the Coxeter arrangement in the sense of (Postnikov-Stanley, 2000):

$$\mathsf{DF}_G(t,p,q) = (-1)^r \sum_{G' \leq G} \chi_{\mathcal{A}(G')}(-t) \cdot \chi_{G|G'}(-p) \cdot q^{r-r'}.$$

Thank You

