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Question: What is space?

Answer: Rn

(2.A) Whatever “space” is, it is usually said to consist of “points”. We will begin with
Descartes’ revolutionary idea (1637):

a point ≡ an ordered list of numbers.

Having made this identification, it becomes irresistible to try to do algebraic things with
points, like add them:

(u1, u2, . . . , un) + (v1, v2, . . . , vn) := (u1 + v1, u2 + v2, . . . , un + vn).

This has the unfortunate side effect of singling out one special point 0 with the property
that u+0 = u for all points u. We probably don’t want to single out a special point, but we
can fix this later. In the meantime, we can use the special point 0 to make an identification
between the point u and the directed line segment 0 → u (called a vector). This shows
us that it was not really points we were trying to add before, but vector displacements,
which makes a lot more sense. (We can think of vector addition as functional composition
of translations.) Today we consider vectors as primary and points as secondary in the
axiomatic development of space.

(2.B) The question remains: what kind of “numbers” should we use to define our “vec-
tors”? We will temporarily retreat from the identification of numbers with R, since the
real number system has topological and analytic subtleties that are not always relevant. In
building up an axiomatic definition of space we prefer to begin with the weakest concept
of “number” that still yields interesting geometry. This is the concept of a field, which we
denote by K for Körper. Let K× stand for the nonzero elements of K.

A field is a structure (K,+,×, 0, 1) in which

(K,+, 0) is an “abelian group”:
• ∀ a ∈ K, a+ 0 = a,
• ∀ a, b ∈ K, a+ b = b+ a,
• ∀ a, b, c ∈ K, a+ (b+ c) = (a+ b) + c,
• ∀ a ∈ K,∃ b ∈ K, a+ b = 0.

(K×,×, 1) is an “abelian group”:
• ∀ a ∈ K×, 1a = a,
• ∀ a, b ∈ K×, ab = ba,
• ∀ a, b, c ∈ K×, a(bc) = (ab)c,
• ∀ a ∈ K×, ∃ b ∈ K×, ab = 1.

And “multiplication distributes over addition”:
• ∀ a, b, c ∈ K, a(b+ c) = ab+ ac.

Exercise: Should we also say that 0 6= 1? These nine axioms are clearly intended to
model the properties of the rational numbers Q, but they are not sufficient to characterize
the rational numbers. Indeed, R also satisfies these properties, but R 6= Q (Pythagoras).



We can also define number systems intermediate between Q and R. For example, given
any non-square d ∈ N we define

Q[
√
d] := {a+ b

√
d : a, b ∈ Q},

which is a field because
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It turns out that the field concept is rigid enough to support interesting geometry. When
working over a general field, we will be doing “geometric algebra” in the spirit of Emil
Artin (1957). After developing geometry at this level of generality, we can add in further
(e.g., topological) structure as desired.

(2.C) We are now ready to define a notion of “space”. Instead of constructing space,
we will try to characterize space in terms of abstract properties (just as the field axioms
characterize the concept of “number”). This was first attempted by Peano (1888) but
his definition was premature—perhaps lacking sufficient examples—and was ignored for
decades. Please consult Gregory Moore (1995) for the full story.

Following Peano, we define space as a set of vectors (the name is not important: you
may call them beer mugs if you like), and we say how they are allowed to behave.

A vector space is a structure (V,K, ·) in which

• V = (V,+,0) is an abelian group (of vectors),
• K = (K,+,×, 0, 1) is a field (of scalars),
• The field K acts linearly on vectors V by “scaling”. That is, we have a function
K × V → V denoted (a,v) 7→ a · v which satisfies

– ∀v ∈ V, 1 · v = v,
– ∀v ∈ V,∀ a, b ∈ K, (ab) · v = a · (b · v),
– ∀v ∈ V,∀ a, b ∈ K, (a+ b) · v = a · v + b · v.

Exercise: Show that 0 · v = 0 for all v ∈ V . It is sloppy (but harmless) that we use
the same symbol “+” for addition of vectors and addition of scalars. When the field is
understood we will denote the vector space (V,K) simply by V . One should think that
each individual vector v ∈ V generates a “line” K(v) := {a · v : a ∈ K} ⊆ V isomorphic
to K. Of course, this makes the most sense when K = R, but the intuition is helpful in
general.

Such an abstract definition should not be tolerated without motivation, so I will hurry
to prove a fundamental theorem. First let me define the notion of the linear closure
(a.k.a. span) of the vectors v1,v2, . . . ,vn ∈ V :

K(v1,v2, . . . ,vn) := {a1v1 + a2v2 + · · ·+ anvn : a1, a2, . . . , an ∈ K} ⊆ V.

Exercise: Show that this is the smallest subspace of V containing the set {v1,v2, . . . ,vn}.
Next we will assume a “finiteness condition”. We say that a vector space V is finitely
generated if there exists a finite set v1,v2, . . . ,vn such that V = K(v1,v2, . . . ,vn), and
in this case we say that {v1,v2, . . . ,vn} is a generating set for V . [Highbrow Remark:
I could have said “Noetherian” instead of “finitely generated”.] Given a set of vectors
S ⊆ V we will say that a vector u ∈ S is redundant if K(S) = K(S − u). This leads to
the notion of linear independence.



We say that the vectors u1,u2, . . . ,um ∈ V form an independent set if none of the
vectors is redundant, that is, if

a1u1 + a2u2 + · · ·+ amum = 0 ∈ V

necessarily implies that a1 = a2 = · · · = am = 0 ∈ K.

We now prove the fundamental lemma of Steinitz. This lemma is the irreducible core
of linear algebra and we take it to motivate the definitions.

Steinitz’ Exchange Lemma (1910): Let V be a finitely generated vector space, let
IND ⊆ V be any independent set, and let GEN ⊆ V be any finite generating set (we
assume that V is finitely generated). Then IND is finite, and moreover we have

|IND| ≤ |GEN|.

Proof: Let IND = {u1,u2, . . . ,um} be an independent set (assume m > 1, so that ui 6= 0
for all i) and let GEN = {v1,v2, . . . ,vn} be a generating set for V . Assume for contradiction
that m > n.

Since GEN is generating, we can write

u1 = r1v1 + r2v2 + · · ·+ rnvn

for some scalars r1, . . . , rn ∈ K. Since u1 6= 0, not all of the coefficients are zero. Without
loss, assume that r1 6= 0. Thus we can write

v1 =
1

r1
u1 −

r2
r1

v2 − · · · −
rn
r1

vn

and it follows that {u1,v2, . . . ,vn−1,vn} is also a generating set for V . Now suppose (for
induction) we have shown that {u1,u2, . . . ,ui,vi+1, . . . ,vn} is a generating set for some
1 ≤ i < n. In this case we can write

ui+1 = s1u1 + s2u2 + · · ·+ siui + si+1vi+1 + · · ·+ snvn

for some scalars s1, . . . , sn ∈ K. Since IND is independent we can assume that the coeffi-
cients si+1, si+2, . . . , sn are not all zero. Without loss, assume that si+1 6= 0. Thus we can
write

vi+1 = − s1
si+1

u1 − · · · −
si
si+1

ui +
1

si+1
ui+1 −

si+2

si+1
vi+2 − · · · −
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vn

and it follows that {u1,u2, . . . ,ui+1,vi+2, . . . ,vn} is a generating set. By induction we
conclude that {u1,u2, . . . ,un} is a generating set for V . But, if so, we can write

un+1 = t1u1 + t2u2 + · · ·+ tnun.

for some scalars t1, . . . , tn ∈ K, which contradicts the fact that IND is independent. We
conclude that m ≤ n. �

Why do we care? Steinitz’ Lemma is fundamental in that it allows us to define the
concept of “dimension”, a concept that any good “space” should have.

Let V be a finitely generated vector space. We say that B ⊆ V is a basis if

• B is independent,
• B is a generating set for V .



First note that bases exist. Indeed, if v1,v2, . . . ,vn ∈ V is a generating set that is not
independent then there exists a relation

a1v1 + a2v2 + · · ·+ anvn = 0

with, say, an 6= 0. Thus we can express vn as

vn = −a1
an

v1 − · · · −
an−1
an

vn−1,

which implies that V = K(v1,v2, . . . ,vn) = K(v1,v2, . . . ,vn−1). Continue to throw away
redundant generators until a basis is reached.

Corollary to Steinitz: All bases have the same size.

Proof: Let B1 and B2 be two bases. Applying Steinitz one way gives |B1| ≤ |B2| and
applying it the other way gives |B2| ≤ |B1|. Hence |B1| = |B2|. �

We define the dimension dim(V ) of a finitely generated vector space V to be the com-
mon size of any basis.

Exercise: Show that the dimension of a vector space V coincides with the length of any
unrefinable chain of subspaces:

{0} < V1 < V2 < · · · < Vdim(V ) = V.

This is the prototype for the concept of “dimension” in any branch of geometry, and many
people assume that it is trivial. (After all, don’t we teach this to freshmen?) As you see, it
is not trivial, and relies on a subtle interplay of the vector space axioms. Hassler Whitney
(1935) abstracted the Steinitz Exchange Property (even further) to define the notion of a
matroid (a generalization of “matrix”), which is still an active topic of research.

(2.D) Since this is a book about classification, we will now attempt to classify finitely
generated vector spaces. The first step is easy.

Given a field K and a positive integer n ∈ N, we construct the Cartesian space

Kn :=



u1
u2
...
un

 : u1, u2, . . . , un ∈ K

 ,

with “componentwise” addition and scalar multiplication:
u1
u2
...
un

+


v1
v2
...
vn

 :=


u1 + v1
u2 + v2

...
un + vn

 and a ·


u1
u2
...
un

 :=


au1
au2

...
aun

 .

Exercise: Show that (Kn,K) is a vector space, and observe that the “standard basis
vectors”

e1 =



1
0
0
...
0
0


, e2 =



0
1
0
...
0
0


, . . . , en =



0
0
0
...
0
1





are indeed a basis for Kn, hence Kn is n-dimensional. It turns out that this is the only
n-dimensional vector space over the field K.

Classification Theorem: If the vector space (V,K) has dimension n, then

(V,K) ≈ Kn.

Proof (Choose Coordinates): The symbol “≈” of course means the existence of a
bijection V ←→ Kn that preserves vector space structure. We will construct such a map
by “choosing coordinates”.

Let b1,b2, . . . ,bn ∈ V be any basis for V . We define a function ϕ : V → Kn on the
basis by setting ϕ(bi) := ei and we extend this (“linearly”) to all of V by setting

ϕ(a1b1 + a2b2 + · · ·+ anbn) := a1ϕ(b1) + a2ϕ(b2) + · · ·+ anϕ(bn)

= a1e1 + a2e2 + · · ·+ anen

= a1


1
0
...
0

+ a2


0
1
...
0

+ · · ·+ an


0
0
...
1



=


a1
a2
...
an

 .

Clearly ϕ is a bijection, with ϕ−1(ei) = bi. It is also true (but too boring for a human to
check) that ϕ preserves vector space structure. �

Also note that there is a unique 0-dimensional vector space over K consisting of a single
vector, which we might as well call 0. We could extend notation by referring to this space
as K0 (consisting of the unique 0-tuple of numbers). [Highbrow Remark: The vector space
K0 is the zero object in the category of vector spaces over K.] This allows us to say the
following:

a finitely generated vector space ≡ (a field, a natural number).

And if the field is understood, we can say:

a finitely generated vector space ≡ a natural number (!)

So, maybe the axiomatic definition of vector spaces was overkill? To complete the classi-
fication of finitely generated vector spaces, we must try to classify fields.

(2.E) Is it possible to classify fields? Not really. But I will at least shine a light on
the terrain. The basic framework for this discussion was set down by Steinitz (1910).
Unfortunately I will have to utter the word “ring”. Just as a field is something like Q, a
ring is something like Z:

A (commutative) ring R (with 1) satisfies all of the field axioms, except

• ∀ 0 6= a ∈ R,∃ b ∈ R, ab = 1.



That is, in a ring we can add, subtract, and multiply; but not necessarily divide. As
a word of warning: rings are infinitely more complicated/interesting than fields. The
prototypical ring is Z, and it satisfies a special property.

Special Property of Z: Let R be any ring (commutative with 1, of course). Then there
exists a unique ring map from Z to R. Indeed, if ϕ : Z → R is any map preserving ring
structure then we must have ϕ(0Z) = 0R and ϕ(1Z) = 1R. It follows that

ϕ(n) = ϕ(1Z + · · ·+ 1Z) = ϕ(1Z) + · · ·+ ϕ(1Z) = 1R + · · ·+ 1R,

and
ϕ(−n) = −ϕ(n) = −(1R + 1R + · · ·+ 1R),

and now the map is determined. [Highbrow Translation: Z is the initial object in the
category of rings.]

Now let R = K be a field and consider the unique ring map ϕ : Z→ K. The kernel of
this map has the form kerϕ = nZ = {na : a ∈ Z} for some n ∈ N (see Exercise (2.3)). By
the Dedekind-Noether-First Isomorphism Theorem (see McLarty (2006)) we have

Z/nZ ≈ imϕ ⊆ K.
Since imϕ is a subring of a field it is a domain (has no zero divisors), hence nZ is a prime
ideal of Z. We conclude that n = 0 or n = p for some prime p ∈ N.

We say that char(K) := n (either prime or zero) is the characteristic of the field K.

Exercise: Does there exist a field of characteristic 1? If you didn’t understand any of
that, you can take char(K) to be the smallest positive integer n such that ϕ(n) = 0 in
K, and char(K) = 0 if no such n exists. (But that’s much less elegant, don’t you think?)
Now here is the key definition of the present subsection:

We say that a field is prime if it has no proper subfield.

The following result of Steinitz (1910) is the foundation for any possible classification
of fields.

Classification of Prime Fields: Every prime field is isomorphic to

Q or Fp := Z/pZ for some prime p ∈ N.

Proof: Let K be a prime field and consider the unique ring map ϕ : Z→ K. If char(K) =
p > 0 then we have

Fp = Z/pZ ≈ imϕ ⊆ K.
Since Fp is a field (Euclid) we conclude that Fp ≈ imϕ is a subfield of K. But K has no
proper subfields, hence Fp ≈ imϕ = K. If char(K) = 0 then we have

Z ≈ Z/0Z ≈ imϕ ⊆ K.
Then the smallest subfield of K containing imϕ (≈ Z) is isomorphic to Q. But K has no
proper subfields, hence Q ≈ K. �

Thus “prime” is a reasonable name for these fields. Having classified the prime fields,
we will try to reduce the study of general fields to the study of primes. Let K be a general
field.

The intersection of all subfields of K is called the prime subfield of K.



Clearly the prime subfield of K is prime, hence it is isomorphic to Q or Fp, depending
on the characteristic of K. We will thus be done if we can classify all field extensions of Q
and Fp. This problem is far too difficult, so I will merely offer a definition. This definition
is my own since I couldn’t find any comparable idea on the internet. Feel free to use it.

We say that a field is numeric if it is algebraic over a topological completion of its
prime subfield.

To say that a field K is “algebraic” over a subfield k means that each element of K
satisfies a polynomial equation with coefficients in k, i.e., each element of K is “algebraic”
over k. Examples of numeric fields are: Fp, Q, Q[

√
d], Qp, R, C. An example of a non-

numeric field is the field of rational functions in one variable:

K(x) :=

{
f(x)

g(x)
: f(x), g(x) ∈ K[x], g(x) 6≡ 0

}
.

The non-algebraic element here is the “variable” x ∈ K(x); it is called “transcendental”.
Non-numeric fields (also called function fields) lie in the domain of “algebraic geometry”,
which is quite different from “geometric algebra”. Algebraic geometry is also quite inter-
esting, but I will have nothing to say about it in this book. Please consult Jean Dieudonné
(1972).

Exercises

I should note that, while the classification of general fields is too difficult, finite fields
can be classified. This classification was known to Galois (1830) and was one of the earliest
motivations for the abstract field concept.

(2.1) Let k be a subfield of K. Show that the action of k on K by multiplication defines
a vector space structure (K, k). Let [K : k] denote the dimension of this vector space.

(2.2) Let K be a finite field, so that its prime subfield is Fp for some prime p > 0. Show
that K is finitely generated as a vector space over Fp, and hence K ≈ Fnp for some n ∈ N.
Conclude that

|K| = |Fnp | = |Fp|n = pn.

Thus every finite field has size the power of a prime. Conversely, for each prime p and
for each n ∈ N you will show that there exists a field of size pn.

(2.3) Let K be a field and consider the ring of polynomials K[x]. We say that I ⊆ K[x]
is an ideal if

• (I,+, 0) is a subgroup of (K[x],+, 0),
• ∀ f(x) ∈ I, ∀ g(x) ∈ K[x], f(x)g(x) ∈ I.

Prove that every ideal I of K[x] is principal in the sense that

I = (f(x)) := {f(x)g(x) : g(x) ∈ K[x]}

for some f(x) ∈ K[x]. [Hint: Choose 0 6≡ f(x) ∈ I with minimum degree and consider any
g(x) ∈ I. Divide g(x) by f(x) to obtain q(x), r(x) ∈ K[x] such that g(x) = q(x)f(x) +
r(x) where r(x) is either zero or deg(r) < deg(f). Show that deg(r) < deg(f) leads to a
contradiction because r(x) ∈ I.]



We say that a polynomial f(x) ∈ K[x] is irreducible if f(x) = g(x)h(x) implies that
at least one of g(x) or h(x) is an invertible element of K[x] (i.e., a nonzero constant).

(2.4) Let f(x) ∈ K[x] be an irreducible polynomial and show that the principal ideal
(f(x)) is maximal in the sense that (f(x)) < I ≤ K[x] implies I = K[x]. [Hint: By (2.3)
we know that I = (g(x)) for some g(x) ∈ K[x]. If (f(x)) < (g(x)) < K[x], then we find that
g(x) is a nontrivial divisor of f(x).]

(2.5) Let m be a maximal ideal in a ring R and define the quotient ring

R/m := {a+ m : a ∈ R}

with addition (a+ m) + (b+ m) := (a+ b) + m, multiplication (a+ m)(b+ m) := ab+ m,
and equality a + m = b + m ⇔ a − b ∈ m. Prove that R/m is a field. [Hint: Consider a
nonzero element a + m 6= 0 + m. Since a 6∈ m we get a strictly larger ideal m < (a) + m.
Since m is maximal we have 1 ∈ R = (a) + m, hence 1 = ab+ u for some b ∈ R and u ∈m.
But then (a+ m)(b+ m) = 1 + m.]

(2.6) Now let f(x) ∈ Fp[x] be an irreducible polynomial of degree n with coefficients in
Fp. By (2.4) and (2.5) we know that Fp[x]/(f(x)) is a field. Consider the natural ring
map ϕ : Fp[x] → Fp[x]/(f(x)) defined by g(x) 7→ g(x) + (f(x)). If we identify Fp ⊆ Fp[x]
with the constant polynomials, show that ϕ(Fp) is a subfield of Fp[x]/(f(x)) isomorphic to
Fp. Furthermore, show that ϕ(1), ϕ(x), . . . , ϕ(xn−1) is a basis for Fp[x]/(f(x)) as a vector
space over ϕ(Fp) ≈ Fp. Conclude that∣∣∣∣ Fp[x]

(f(x))

∣∣∣∣ = |Fnp | = |Fp|n = pn.

It remains only to show that irreducible polynomials of all degrees exist in Fp[x]. This
was first proved by Gauss (1889), pages 602–629, using generating functions. You will
follow a less combinatorial and more algebraic method.

(2.7) Let p be prime and let n ∈ N. Consider the special polynomial xp
n − x ∈ Fp[x]. If

f(x) ∈ Fp[x] is irreducible of degree d, show that

f(x) divides (xp
n − x) ⇐⇒ d divides n.

[Hint: The multiplicative group of the finite field Fp[x]/(f(x)) has size pd − 1, hence we have

cp
d−1 = 1 (and cp

d−1 = c) for all c ∈ Fp[x]/(f(x)). If moreover we let n = dk, then raising
to the pd-th power k times gives

c = cp
d

= cp
2d

= · · · = cp
kd

= cp
n

for all c ∈ Fp[x]/(f(x)). In particular we have xp
n

+(f(x)) = x+(f(x)). Conversely, suppose
that xp

n − x ∈ (f(x)) and write n = qd + r with 0 ≤ r < d. Since d divides qd we already

know that xp
qd

= x mod f(x). Hence

x = xp
n

= (xp
qd

)p
r

= xp
r

mod f(x).

Recall the Freshman’s Binomial Theorem, which say that (a+ b)p = ap + bp mod p for a, b in
any ring. It follows that g(x)p

r
= g(x) mod f(x) for any polynomial g(x) ∈ Fp[x]. Thus every

element of the field Fp[x]/(f(x)) is a root of the polynomial T p
r − T ∈ Fp[x]/(f(x))[T ]. If

r 6= 0 then by (1.2) and (2.6) we conclude that pd ≤ pr, hence d ≤ r. Contradiction.]



(2.8) We have seen that the irreducible factors of xp
n − x in Fp[x] are precisely those

irreducible polynomials with degree d dividing n. Show that each of these factors occurs
with multiplicity 1. [Hint: If xp

n − x has a repeated factor then it must share this factor
with its formal derivative. But the formal derivative is pnxp

n−1 − 1 = 0xp
n−1 − 1 = −1,

which has no factors. Recall that Fp[x] has unique prime factorization (Euclid).]

Finally, let Np(n) be the number of irreducible polynomials in Fp[x] with degree n and
leading coefficient 1 (i.e., monic). Dividing through by leading coefficients and using (2.7)
and (2.8), we can write xp

n − x as the product of all monic irreducibles with degrees
dividing n. Comparing degrees on both sides gives Gauss’ formula:

pn =
∑
d|n

dNp(d). (?)

(2.9) Let a, b, c ∈ N be prime. Use (?) to show that for all α, β, γ ∈ N we have:

• aαNp(a
α) = pa

α − paα−1

• aαbβNp(a
αbβ) = pa

αbβ − paα−1bβ − paαbβ−1
+ pa

α−1bβ−1

• aαbβcγNp(a
αbβcγ) =


pa

αbβcγ

−paα−1bβcγ −paαbβ−1cγ −paαbβcγ−1

+pa
α−1bβ−1cγ +pa

α−1bβcγ−1
+pa

αbβ−1cγ−1

−paα−1bβ−1cγ−1


(2.10) Use (2.9) to show that Np(n) > 0 for all n ∈ N, and hence by (2.6) that finite
fields exist of all sizes pn. [Hint: We have

nNp(n) = pn +
∑

distinct smaller powers of p with coefficients from {+1,−1, 0}.

The sum on the right is no less than∑
0≤i<n

−pi = −1− p− p2 − · · · − pn−1 = −
(
pn − 1

p− 1

)
> −(pn − 1) > −pn.]

It turns out that the field of size pn is unique up to isomorphism (and we will denote it
by Fpn). We won’t prove this because you’re probably tired of exercises. Google “existence
and uniqueness of splitting fields” if you like.

(2.11)* A consequence of (2.10) is that there exist infinitely many irreducible polynomials
in Fp[x]. We may wish to examine their distribution. As n→∞ we have

Np(n) ∼ pn

n
,

and substituting X = pn gives

Np(n) ∼ X

logpX
.

Does this have a precise relationship to the Prime Number Theorem?



Notes

Following the pioneering work of Évariste Galois and Richard Dedekind, the axiomatic
definition of a field was first stated by Heinrich Weber (1893). The study of fields for their
own sake began with the highly influential work of Ernst Steinitz (1910). Perhaps you
think that the field concept has too many axioms? David Hilbert (1899) showed that it
can be done with four axioms. Namely, he used a construction of von Staudt to show that

a field ≡ a projective plane in which Pappus’ Theorem holds.

Warning: He attributed Pappus’ Theorem incorrectly to Pascal (you know, the one with
the “mystic hexagram”).

As I mentioned earlier, an axiomatization of vector space was first given by Giuseppe
Peano (1888). However, its level of abstraction was premature and it was not very influ-
ential. The axiomatic theory of vector spaces did not really take off until Stefan Banach’s
work in the 1920s and 1930s on infinite dimensional normed spaces (perhaps finite dimen-
sional spaces were too simple to require an axiomatization). For the full story see Gregory
Moore (1995).

I have proposed “vector space” as the mathematically most fundamental version of
“space”, but this is just my opinion. Pierre Cartier (2001) presents a fascinating discussion
on the evolution of the concept of “space” and its role in the history of mathematics.
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Moore, Gregory H. (1995). The axiomatization of linear algebra: 1875–1940. Historia
Mathematica, 22, 262–303.



Peano, Giuseppe (1888). Calcolo geometrico secondo l’Ausdehnungslehre di H. Grass-
mann, preceduto dalle operazioni della Iogica deduttiva. Bocca, Turin.

Steinitz, Ernst (1910). Algebraische Theorie der Körper. Journal für die reine und ange-
wandte Mathematik, 137, 167–309.

Weber, Heinrich (1893). Die allgemeinen Grundlagen der Galois’schen Gleichungstheorie.
Mathematische Annalen, 43, 521–549.

Whitney, Hassler (1935). On the Abstract Properties of Linear Dependence. American
Journal of Mathematics, 57, 509–533.


	Exercises
	Notes
	Bibliography

