Complete 1 problem before October 9.

Problem 1. Gauss' Lemma. Let R be a UFD, so that greatest common divisors exist and irreducible elements are prime. To be precise, we write $gcd(a_1, \ldots, a_n) = d$ to mean that dR is the unique smallest principal ideal containing the ideal $a_1R + \cdots + a_nR$ (which might not be principal). Thus the greatest common divisor is unique up to multiplication by units.

- (a) Let $gcd(a_1, ..., a_n) = d$ with $a_i = da'_i$ for some $a_i, d, a'_i \in R$. In this case show that $gcd(a'_1, ..., a'_n) = 1$. It follows that any nonzero polynomial $f(x) \in R[x]$ can be expressed uniquely as f(x) = c(f)f'(x) where c(f) is the gcd of the coefficients (called the *content* of f) and c(f') = 1. In this case we say that $f'(x) \in R[x]$ is a primitive polynomial.
- (b) If c(f) = c(g) = 1 prove that c(fg) = 1. [Hint: For any irreducible/prime $p \in R$ we have a ring homomorphism $R[x] \to (R/pR)[x]$ denoted by $f(x) \mapsto f_p(x)$. Observe that c(f) = 1 if and only if $f_p(x) \neq 0(x)$ for all prime $p \in R$.]
- (c) Prove that c(fg) = c(f)c(g) for all nonzero $f(x), g(x) \in R[x]$. [Hint: Use (a) and (b).]
- (d) Let $\mathbb{F} = \operatorname{Frac}(R)$. Show that any nonzero $f(x) \in \mathbb{F}[x]$ can be expressed uniquely as $f(x) = \alpha f'(x)$ where $\alpha \in \mathbb{F} \setminus 0$ and $f'(x) \in R[x]$ is primitive. [Hint: Choose $a \in R$ such that $af(x) \in R[x]$ and let $\alpha = c(af)$.]
- (e) If $f(x) = \prod g_i(x)$ for some $f(x), g_i(x) \in \mathbb{F}[x]$, prove that $f'(x) = \prod g'_i(x)$, where $f'(x), g'_i(x) \in R[x]$ are the unique primitive factors. [Hint: We have $f(x) = \alpha f'(x)$ and $g_i = \beta_i g'_i(x)$ for some $\alpha, \beta_i \in \mathbb{F} \setminus 0$, so that $\alpha f' = (\prod \beta_i)(\prod g'_i)$. Multiply both sides by $a \in R$ such that $a\alpha \in R$ and $a(\prod \beta_i) \in R$, then compute the content of each side.]
- (f) Prove that an irreducible polynomial $f(x) \in R[x]$ is still irreducible in $\mathbb{F}[x]$. [Hint: An irreducible polynomial in R[x] must be primitive. Use part (e).]
- (g) Prove that coprime polynomials $f(x), g(x) \in R[x]$ are still coprime in $\mathbb{F}[x]$ [Hint: If p|f and p|g in $\mathbb{F}[x]$ then part (e) says that p'|f' and p'|g' in R[x].]

Problem 2. R **UFD** $\Rightarrow R[x]$ **UFD.** Let R be a UFD and $\mathbb{F} = \operatorname{Frac}(R)$.

- (a) Prove that any nonzero $f(x) \in R[x]$ can be factored as $f(x) = up_1 \cdots p_k q_1(x) \cdots q_\ell(x)$, where $u \in R$ is a unit, $p_i \in R$ are irreducible/prime in R and $q_j(x) \in R[x]$ are irreducible in R[x] (hence also primitive). [Hint: Use 1(e) and the fact that $\mathbb{F}[x]$ is Noetherian.]
- (b) Prove that every irreducible/prime $p \in R$ is prime in R[x]. [Hint: Consider the homomorphism $R[x] \to (R/pR)[x]$ from the proof of 1(b).]
- (c) Prove that any irreducible (hence also primitive) $q(x) \in R[x]$ is prime in R[x]. [Hint: Suppose that q|fg in R[x], hence also in $\mathbb{F}[x]$. Since $q(x) \in \mathbb{F}[x]$ is irreducible by 1(f)

and since $\mathbb{F}[x]$ is a PID, we see that $f(x) \in \mathbb{F}[x]$ is prime, hence q|f or q|g in $\mathbb{F}[x]$. But then from 1(e) we have q|f' or q|g' in R[x].

(d) Combine (a),(b),(c) to prove that R[x] is a UFD.

Remark: By induction it follows that $R[\mathbf{x}]$ is a UFD for any finite set of variables \mathbf{x} .

Problem 3. Study's Lemma. If \mathbb{F} is a field then it follows from Problem 2 that $\mathbb{F}[x,y]$ is a UFD. Consider any polynomials $f,g\in\mathbb{F}[x,y]$ where f is irreducible and $f\nmid g$, which implies that f and g have no common prime factor.

(a) Prove that there exist polynomials $a(x,y), b(x,y) \in \mathbb{F}[x,y]$ and $c(x) \in \mathbb{F}[x]$ such that

$$f(x,y)a(x,y) + g(x,y)b(x,y) = c(x).$$

[Hint: Let $\mathbb{F}(x)$ be the fraction field of $\mathbb{F}[x]$ and consider f, g as elements of the larger ring $R = \mathbb{F}(x)[y]$. From 1(f) we know that f is irreducible in R and from 1(g) we know that f, g are coprime in R. Now use the fact that R is a PID to show that fR + gR = R.]

(b) Consider the curves $C_f: f(x,y) = 0$ and $C_g: g(x,y) = 0$ in the plane \mathbb{F}^2 . Use part (a) to show that the intersection $C_f \cap C_g$ consists of finitely many points.

Problem 4. Prime Ideals of R[x] **when** R **is a PID.** Let R be a PID. We will show that every prime ideal of R[x] has one of the following three forms:

- The zero ideal.
- Principal prime ideals. These are not maximal.
- Ideals of the form pR[x] + f(x)R[x] where $p \in R$ is prime and the image of f(x) is irreducible in the quotient ring (R/pR)[x]. These are the maximal ideals.
- (a) Let $P \subseteq R[x]$ be a **non-principal** prime ideal. Show that P contains two coprime elements $f_1, f_2 \in R[x]$. [Hint: Show that P contains an irreducible element f_1 . Then show that any $f_2 \in P \setminus f_1R[x]$ is coprime to f_1 .]
- (b) It follows from Problem 1(g) that f_1, f_2 are coprime in $\mathbb{F}[x]$ where $\mathbb{F} = \operatorname{Frac}(R)$. Use this to show that $P \cap R = pR$ for some nonzero prime $p \in R$. [Hint: The hard part is to show that $P \cap R \neq 0$. Use the fact that $\mathbb{F}[x]$ is a PID to show that $f_1a + f_2b = c$ for some $a, b, c \in R$ with $c \neq 0$. This is similar to Problem 3(a).]
- (c) Now let $f(x) \mapsto f_p(x)$ denote the ring homomorphism $\varphi : R[x] \to (R/pR)[x]$ defined by reducing each coefficient mod p. Show that $\varphi[P] = f_p(x)(R/pR)[x]$ for some $f(x) \in R[x]$ such that $f_p(x) \in (R/pR)[x]$ is irreducible, and conclude that P = pR[x] + f(x)R[x]. [Hint: Since R/pR is a field we know that (R/pR)[x] is a PID.]
- (d) Show that P = pR[x] + f(x)R[x] is maximal. [Hint: Show that the quotient R[x]/P is isomorphic to the quotient $(R/pR)[x]/f_p(x)(R/pR)[x]$, which is a field.]

(e) Finally, show that principal prime ideals of R[x] are not maximal. [Hint: Every principal prime has the form pR[x] for prime $p \in R$ or f(x)R[x] for irreducible $f(x) \in R[x]$. In the first case, consider pR[x] + xR[x]. In the second case, consider pR[x] + f(x)R[x] where p does not divide the leading coefficient of f(x).]

Problem 5. Nullstellensatz for Curves in the Plane. In this problem we assume that \mathbb{F} is algebraically closed. We say that $C \subseteq \mathbb{F}^2$ is an algebraic curve if it has the form $C_f: f(x,y) = 0$ for some nonzero polynomial $f(x,y) \in \mathbb{F}[x,y]$.

- (a) Prove that \mathbb{F} is infinite. Use this to show that for any polynomial $f(x,y) \in \mathbb{F}[x,y]$ the curve $C_f: f(x,y) = 0$ has infinitely many points in \mathbb{F}^2 . [Hint: Assume for contradiction that \mathbb{F} is finite and consider the polynomial $1 + \prod_{a \in \mathbb{F}} (x-a)$.]
- (b) For any $f, g \in \mathbb{F}[x, y]$ with f irreducible, show that $C_f \subseteq C_g$ implies f|g. [Hint: Use part (a) and Study's Lemma.]
- (c) We say that a curve C is *irreducible* if it cannot be expressed as a union of curves. Show that there is a bijection between irreducible curves $C \subseteq \mathbb{F}^2$ and principal prime ideals of $\mathbb{F}[x,y]$. [Hint: If f=gh is reducible then $C_f=C_g\cup C_g$ is reducible. Conversely, if $C_f=C_g\cup C_h$ is reducible, let p be a prime factor of g. Then part (b) implies that p|f, hence f is reducible. Finally, if $f,g\in\mathbb{F}[x,y]$ are both irreducible, use part (b) to show that $C_f=C_g$ if and only if $f(x)\mathbb{F}[x,y]=g(x)\mathbb{F}[x,y]$.
- (d) Show that there is a bijection between points of \mathbb{F}^2 and maximal prime ideals of $\mathbb{F}[x,y]$. [Hint: For any point $(a,b) \in \mathbb{F}^2$, let $\mathfrak{m}_{a,b} \subseteq \mathbb{F}[x,y]$ be the kernel of the evaluation homomorphism $f(x,y) \mapsto f(a,b)$, which is maximal because evaluation is surjective onto \mathbb{F} . Show that $\mathfrak{m}_{a,b} = (x-a)\mathbb{F}[x,y] + (y-b)\mathbb{F}[x,y]$. Conversely, use Problem 4 and the fact that \mathbb{F} is algebraically closed to show that every maximal ideal of $\mathbb{F}[x,y]$ has the form $\mathfrak{m}_{a,b}$ for some point $(a,b) \in \mathbb{F}^2$.]
- (e) **Strong Nullstellensatz.** Show that every prime ideal of $\mathbb{F}[x,y]$ is equal to the intersection of the maximal ideals that contain it. Geometric meaning:

A curve is determined by its points.

Of course this statement is geometrically obvious, but it takes a lot of work to establish that the algebra matches the geometry.

[Hint: This is vacuously true for maximal primes. The intersection of all maximal ideals $\cap \mathfrak{m}_{a,b}$ is the set polynomials that vanish at all points $(a,b) \in \mathbb{F}^2$, i.e., just the zero polynomial. Now let $P \subseteq \mathbb{F}[x,y]$ be a nonzero, nonmaximal prime. From Problem 4 we know that $P = f(x)\mathbb{F}[x,y]$ for some irreducible f. Let C_f be the corresponding irreducible curve and let I_f be the intersection of the maximal ideals $\mathfrak{m}_{a,b}$ for all points $(a,b) \in C_f$. Thus I_f consists of polynomials that vanish at all points of C_f . Certainly $f(x)\mathbb{F}[x,y] \subseteq I_f$. Conversely, if $g \in I_f$ then use part (b) to show that $g \in f(x)\mathbb{F}[x,y]$.]