
Commutative Algebra in Context Fall 2020
Homework 2 Drew Armstrong

Complete 1 problem before October 9.

Problem 1. Gauss’ Lemma. Let R be a UFD, so that greatest common divisors exist and
irreducible elements are prime. To be precise, we write gcd(a1, . . . , an) = d to mean that dR
is the unique smallest principal ideal containing the ideal a1R + · · · + anR (which might not
be principal). Thus the greatest common divisor is unique up to multiplication by units.

(a) Let gcd(a1, . . . , an) = d with ai = da′i for some ai, d, a
′
i ∈ R. In this case show that

gcd(a′1, . . . , a
′
n) = 1. It follows that any nonzero polynomial f(x) ∈ R[x] can be expressed

uniquely as f(x) = c(f)f ′(x) where c(f) is the gcd of the coefficients (called the content
of f) and c(f ′) = 1. In this case we say that f ′(x) ∈ R[x] is a primitive polynomial.

(b) If c(f) = c(g) = 1 prove that c(fg) = 1. [Hint: For any irreducible/prime p ∈ R we
have a ring homomorphism R[x] → (R/pR)[x] denoted by f(x) 7→ fp(x). Observe that
c(f) = 1 if and only if fp(x) 6= 0(x) for all prime p ∈ R.]

(c) Prove that c(fg) = c(f)c(g) for all nonzero f(x), g(x) ∈ R[x]. [Hint: Use (a) and (b).]

(d) Let F = Frac(R). Show that any nonzero f(x) ∈ F[x] can be expressed uniquely as
f(x) = αf ′(x) where α ∈ F \ 0 and f ′(x) ∈ R[x] is primitive. [Hint: Choose a ∈ R such
that af(x) ∈ R[x] and let α = c(af).]

(e) If f(x) =
∏
gi(x) for some f(x), gi(x) ∈ F[x], prove that f ′(x) =

∏
g′i(x), where

f ′(x), g′i(x) ∈ R[x] are the unique primitive factors. [Hint: We have f(x) = αf ′(x)
and gi = βig

′
i(x) for some α, βi ∈ F \ 0, so that αf ′ = (

∏
βi)(

∏
g′i). Multiply both sides

by a ∈ R such that aα ∈ R and a(
∏
βi) ∈ R, then compute the content of each side.]

(f) Prove that an irreducible polynomial f(x) ∈ R[x] is still irreducible in F[x]. [Hint: An
irreducible polynomial in R[x] must be primitive. Use part (e).]

(g) Prove that coprime polynomials f(x), g(x) ∈ R[x] are still coprime in F[x] [Hint: If p|f
and p|g in F[x] then part (e) says that p′|f ′ and p′|g′ in R[x].]

Problem 2. R UFD ⇒ R[x] UFD. Let R be a UFD and F = Frac(R).

(a) Prove that any nonzero f(x) ∈ R[x] can be factored as f(x) = up1 · · · pkq1(x) · · · q`(x),
where u ∈ R is a unit, pi ∈ R are irreducible/prime in R and qj(x) ∈ R[x] are irreducible
in R[x] (hence also primitive). [Hint: Use 1(e) and the fact that F[x] is Noetherian.]

(b) Prove that every irreducible/prime p ∈ R is prime in R[x]. [Hint: Consider the homo-
morphism R[x]→ (R/pR)[x] from the proof of 1(b).]

(c) Prove that any irreducible (hence also primitive) q(x) ∈ R[x] is prime in R[x]. [Hint:
Suppose that q|fg in R[x], hence also in F[x]. Since q(x) ∈ F[x] is irreducible by 1(f)



and since F[x] is a PID, we see that f(x) ∈ F[x] is prime, hence q|f or q|g in F[x]. But
then from 1(e) we have q|f ′ or q|g′ in R[x].]

(d) Combine (a),(b),(c) to prove that R[x] is a UFD.

Remark: By induction it follows that R[x] is a UFD for any finite set of variables x.

Problem 3. Study’s Lemma. If F is a field then it follows from Problem 2 that F[x, y] is a
UFD. Consider any polynomials f, g ∈ F[x, y] where f is irreducible and f - g, which implies
that f and g have no common prime factor.

(a) Prove that there exist polynomials a(x, y), b(x, y) ∈ F[x, y] and c(x) ∈ F[x] such that

f(x, y)a(x, y) + g(x, y)b(x, y) = c(x).

[Hint: Let F(x) be the fraction field of F[x] and consider f, g as elements of the larger
ring R = F(x)[y]. From 1(f) we know that f is irreducible in R and from 1(g) we know
that f, g are coprime in R. Now use the fact that R is a PID to show that fR+gR = R.]

(b) Consider the curves Cf : f(x, y) = 0 and Cg : g(x, y) = 0 in the plane F2. Use part (a)
to show that the intersection Cf ∩ Cg consists of finitely many points.

Problem 4. Prime Ideals of R[x] when R is a PID. Let R be a PID. We will show that
every prime ideal of R[x] has one of the following three forms:

• The zero ideal.

• Principal prime ideals. These are not maximal.

• Ideals of the form pR[x] + f(x)R[x] where p ∈ R is prime and the image of f(x) is
irreducible in the quotient ring (R/pR)[x]. These are the maximal ideals.

(a) Let P ⊆ R[x] be a non-principal prime ideal. Show that P contains two coprime
elements f1, f2 ∈ R[x]. [Hint: Show that P contains an irreducible element f1. Then
show that any f2 ∈ P \ f1R[x] is coprime to f1.]

(b) It follows from Problem 1(g) that f1, f2 are coprime in F[x] where F = Frac(R). Use
this to show that P ∩ R = pR for some nonzero prime p ∈ R. [Hint: The hard part is
to show that P ∩R 6= 0. Use the fact that F[x] is a PID to show that f1a+ f2b = c for
some a, b, c ∈ R with c 6= 0. This is similar to Problem 3(a).]

(c) Now let f(x) 7→ fp(x) denote the ring homomorphism ϕ : R[x]→ (R/pR)[x] defined by
reducing each coefficient mod p. Show that ϕ[P ] = fp(x)(R/pR)[x] for some f(x) ∈ R[x]
such that fp(x) ∈ (R/pR)[x] is irreducible, and conclude that P = pR[x] + f(x)R[x].
[Hint: Since R/pR is a field we know that (R/pR)[x] is a PID.]

(d) Show that P = pR[x] + f(x)R[x] is maximal. [Hint: Show that the quotient R[x]/P is
isomorphic to the quotient (R/pR)[x]/fp(x)(R/pR)[x], which is a field.]



(e) Finally, show that principal prime ideals of R[x] are not maximal. [Hint: Every principal
prime has the form pR[x] for prime p ∈ R or f(x)R[x] for irreducible f(x) ∈ R[x]. In the
first case, consider pR[x] + xR[x]. In the second case, consider pR[x] + f(x)R[x] where
p does not divide the leading coefficient of f(x).]

Problem 5. Nullstellensatz for Curves in the Plane. In this problem we assume
that F is algebraically closed. We say that C ⊆ F2 is an algebraic curve if it has the form
Cf : f(x, y) = 0 for some nonzero polynomial f(x, y) ∈ F[x, y].

(a) Prove that F is infinite. Use this to show that for any polynomial f(x, y) ∈ F[x, y] the
curve Cf : f(x, y) = 0 has infinitely many points in F2. [Hint: Assume for contradiction
that F is finite and consider the polynomial 1 +

∏
a∈F(x− a).]

(b) For any f, g ∈ F[x, y] with f irreducible, show that Cf ⊆ Cg implies f |g. [Hint: Use
part (a) and Study’s Lemma.]

(c) We say that a curve C is irreducible if it cannot be expressed as a union of curves. Show
that there is a bijection between irreducible curves C ⊆ F2 and principal prime ideals
of F[x, y]. [Hint: If f = gh is reducible then Cf = Cg ∪ Cg is reducible. Conversely, if
Cf = Cg ∪ Ch is reducible, let p be a prime factor of g. Then part (b) implies that p|f ,
hence f is reducible. Finally, if f, g ∈ F[x, y] are both irreducible, use part (b) to show
that Cf = Cg if and only if f(x)F[x, y] = g(x)F[x, y].

(d) Show that there is a bijection between points of F2 and maximal prime ideals of F[x, y].
[Hint: For any point (a, b) ∈ F2, let ma,b ⊆ F[x, y] be the kernel of the evaluation
homomorphism f(x, y) 7→ f(a, b), which is maximal because evaluation is surjective
onto F. Show that ma,b = (x− a)F[x, y] + (y − b)F[x, y]. Conversely, use Problem 4 and
the fact that F is algebraically closed to show that every maximal ideal of F[x, y] has
the form ma,b for some point (a, b) ∈ F2.]

(e) Strong Nullstellensatz. Show that every prime ideal of F[x, y] is equal to the inter-
section of the maximal ideals that contain it. Geometric meaning:

A curve is determined by its points.

Of course this statement is geometrically obvious, but it takes a lot of work to establish
that the algebra matches the geometry.

[Hint: This is vacuously true for maximal primes. The intersection of all maximal ideals
∩ma,b is the set polynomials that vanish at all points (a, b) ∈ F2, i.e., just the zero
polynomial. Now let P ⊆ F[x, y] be a nonzero, nonmaximal prime. From Problem 4
we know that P = f(x)F[x, y] for some irreducible f . Let Cf be the corresponding
irreducible curve and let If be the intersection of the maximal ideals ma,b for all points
(a, b) ∈ Cf . Thus If consists of polynomials that vanish at all points of Cf . Certainly
f(x)F[x, y] ⊆ If . Conversely, if g ∈ If then use part (b) to show that g ∈ f(x)F[x, y].]


