Problem 1. Prove that a polynomial $f(x) \in \mathbb{F}[x]$ of degree d over a field \mathbb{F} has at most d roots \mathbb{S}^{1} in \mathbb{F}. [Hint: Given $\alpha \in \mathbb{F}$ and $f(\alpha)=0$ we can divide $f(x)$ by $x-\alpha$ to get $f(x)=(x-\alpha) g(x)$ with $g(x) \in \mathbb{F}(x)$ of degree $d-1$. By induction on degree we know that $g(x)$ has at most $d-1$ roots in \mathbb{F}.]

Proof. For any polynomials $f(x), h(x) \in \mathbb{F}[x]$ where $h(x) \neq 0$, the division algorithm produces polynomials $g(x), r(x) \in \mathbb{D}[x]$ such that $f(x)=g(x) h(x)+r(x)$, where either $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(h)$. In the case $h(x)=x-\alpha$ we have $f(x)=(x-\alpha) g(x)+r(x)$, where $r(x)=0$ or $\operatorname{deg}(r)=0$, i.e., $r(x)=c$ for some constant $c \in \mathbb{F}$. Then substituting $x=\alpha$ gives

$$
0=f(\alpha)=(\alpha-\alpha) g(\alpha)+c=c .
$$

We conclude that $f(x)=(x-\alpha) g(x)$ for some $g(x) \in \mathbb{F}[x]$ of degree $d-1$. Now let $\beta \in \mathbb{F}$ be any other root of $f(x)$, so that

$$
0=f(\beta)=(\beta-\alpha) g(\beta)
$$

If $\beta \neq \alpha$ then since \mathbb{F} is a field this implies that $g(\beta)=0$, hence β is also a root of $g(x)$. By induction on degree, there can be at most $d-1$ such roots. Hence $f(x)$ can have at most d roots in $\mathbb{F}: \alpha$ together with the roots of $g(x)$ that are not equal to α.

Problem 2. A commutative ring A is called an integral domain (or just domain) if $a, b \in$ $A \backslash\{0\}$ implies $a b \in A \backslash\{0\}$.
(a) Prove that A is a domain if and only if it is a subring of a field.
(b) If A is a domain, use (a) and Problem 1 to prove that a nonzero polynomial $f(x) \in A[x]$ has only finitely many roots in A.

Proof. (a): Let $A \subseteq \mathbb{F}$ be a subring of a field. If $a b=0$ for some $a, b \in A$ with $b \neq 0$ then we have $a=0 b^{-1}=0$, hence A is a domain. Conversely, let A be a domain and let $\operatorname{Frac}(A)$ be the set of formal symbols a / b with $b \neq 0$ (called fractions). We define an equivalence relation as follows:

$$
a / b=a^{\prime} / b^{\prime} \quad \Leftrightarrow \quad a b^{\prime}=a^{\prime} b .
$$

We define addition and multiplication of fractions as follows:

$$
a / b+c / d=(a d+b c) /(b d) \quad \text { and } \quad(a / b)(c / d)=(a d) /(b d) .
$$

[^0]The fractions on the right are defined because $b, d \neq 0$ implies $b d \neq 0$. We observe that addition and multiplication are well-defined with respect to equivalence. Indeed, suppose that $a / b=a^{\prime} / b^{\prime}$ (i.e., $a b^{\prime}=a^{\prime} b$) and $c / d=c^{\prime} / d^{\prime}$ (i.e., $c d^{\prime}=c^{\prime} d$). Then we have

$$
(a d+b c)\left(b^{\prime} d^{\prime}\right)=\left(a b^{\prime}\right)\left(d d^{\prime}\right)+\left(c d^{\prime}\right)\left(b b^{\prime}\right)=\left(a^{\prime} b\right)\left(d d^{\prime}\right)+\left(c^{\prime} d\right)\left(b b^{\prime}\right)=\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)(b d)
$$

and

$$
(a d)\left(b^{\prime} c^{\prime}\right)=\left(a b^{\prime}\right)\left(c^{\prime} d\right)=\left(a^{\prime} b\right)\left(c d^{\prime}\right)=\left(a^{\prime} d^{\prime}\right)(b c)
$$

as desired. Next one can check that these operations define a field structure on $\operatorname{Frac}(A)$. The key point is that a "nonzero fraction" a / b has $a \neq 0$, hence there exists an "inverse fraction" $(a / b)^{-1}=b / a$. Finally, we observe that the the function $\varphi: A \rightarrow \operatorname{Frac}(A)$ defined by $a \mapsto a / 1$ is an injective ring homomorphism. In this sense we can regard A as a subring of its field of fractions $\operatorname{Frac}(A)$.
(b): Let A be a domain and let $f(x) \in A[x]$ be nonzero, of degree d. From part (a) we can regard $f(x)$ as an element of $\operatorname{Frac}(A)[x]$. Then from Problem 1 we know that $f(x)$ has finitely many (at most d) roots in $\operatorname{Frac}(A)$ and it follows that $f(x)$ has finitely many roots in A.

Problem 3. Let A be an infinite domain and suppose that $f(x), g(x) \in A[x]$ satisfy $f(\alpha)=$ $g(\alpha)$ for infinitely many $\alpha \in A$. In this case prove that $f(x)=g(x)$ as polynomials (i.e., they have the same coefficients).

Proof. Consider the polynomial $f(x)-g(x) \in A[x]$. By assumption this polynomial has infinitely many roots $\alpha \in A$, hence it follows from Problem 2(b) that $f(x)-g(x)$ is the zero polynomial.

Problem 4. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be vector of independent variables and let A be a domain. Define the degree function $A[\mathbf{x}] \backslash\{0\} \rightarrow \mathbb{N}$ and prove that it satisfies $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. In particular, this implies that $A[\mathbf{x}]$ is also a domain.

Proof. Let $I=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ be a vector of exponents. By definition, any monomial $a \mathbf{x}^{I}=$ $a x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \in A[\mathbf{x}]$ with $a \neq 0$ has degree $\sum I=i_{1}+\cdots+i_{n}$. For any two vectors $I, J \in \mathbb{N}^{n}$ the product of monomials $m(\mathbf{x})=a \mathbf{x}^{I}$ and $n(\mathbf{x})=b \mathbf{x}^{J}$ with $a, b \neq 0$ is $m(\mathbf{x}) n(\mathbf{x})=(a b) \mathbf{x}^{I+J}$. Since A is a domain we have $a b \neq 0$ and hence

$$
\operatorname{deg}(m n)=\sum(I+J)=\sum I+\sum J=\operatorname{deg}(m)+\operatorname{deg}(n) .
$$

Now we define the degree of a polynomial $f(\mathbf{x}) \in A[\mathbf{x}]$ as the highest degree of a monomial that it contains. To complete the proof, consider any two nonzero polynomials $f(\mathbf{x}), g(\mathbf{x}) \in A[\mathbf{x}]$ with (possibly non-unique) leading monomials $m(\mathbf{x})$ and $n(\mathbf{x})$. To complete the proof, I claim that $m(\mathbf{x}) n(\mathbf{x})$ is a leading monomial in the product $f(\mathbf{x}) g(\mathbf{x})$. To see this, we observe that every monomial in $f(\mathbf{x}) g(\mathbf{x})$ has the form $m^{\prime}(\mathbf{x}) n^{\prime}(\mathbf{x})$ for some monomials $m^{\prime}(\mathbf{x})$ and $n^{\prime}(\mathbf{x})$
from $f(\mathbf{x})$ and $g(\mathbf{x})$. Then by assumption we have $\operatorname{deg}\left(m^{\prime}\right) \leq \operatorname{deg}(m)$ and $\operatorname{deg}\left(n^{\prime}\right) \leq \operatorname{deg}(n)$, hence

$$
\operatorname{deg}\left(m^{\prime} n^{\prime}\right)=\operatorname{deg}\left(m^{\prime}\right)+\operatorname{deg}\left(n^{\prime}\right) \leq \operatorname{deg}(m)+\operatorname{deg}(n)=\operatorname{deg}(m n) .
$$

Finally, since $m(\mathbf{x}) n(\mathbf{x})$ is a leading monomial in $f(\mathbf{x}) g(\mathbf{x})$ it follows that $\operatorname{deg}(f g)=\operatorname{deg}(m n)=$ $\operatorname{deg}(m)+\operatorname{deg}(n)=\operatorname{deg}(f)+\operatorname{deg}(g)$, as desired.

Problem 5. Let A be a commutative ring and let $F(\mathbf{x}) \in A[\mathbf{x}]$ be a polynomial in some finite list of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Consider the following conditions:
(H1) Every term of $F(\mathbf{x})$ has the form $a x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ where $i_{1}+\cdots+i_{n}=d$ and $0 \neq a \in A$.
(H2) We have $F(\lambda \mathbf{x})=\lambda^{d} F(\mathbf{x})$ for all scalars $\lambda \in A$.
Polynomials satisfying (H1) are called homogeneous of degree d. Prove we always have $(\mathrm{H} 1) \Rightarrow(\mathrm{H} 2)$. If A is an infinite domain prove that we also have $(\mathrm{H} 2) \Rightarrow(\mathrm{H} 1)$. [Hint for $(\mathrm{H} 2) \Rightarrow(\mathrm{H} 1)$: For any polynomial $F(\mathbf{x}) \in A[\mathbf{x}]$ and variable y note that $F(y \mathbf{x})=\sum_{k \geq 0} y^{k} F^{(k)}(\mathbf{x}) \in$ $A[\mathbf{x}][y]$, where the sum has finitely many terms and $F^{(k)}(\mathbf{x})$ is homogeneous of degree k in the sense of (H1). Use Problems 3 and 4 to show that $F(\mathbf{x})=F^{(d)}(\mathbf{x})$.]

Proof. (H1) $\Rightarrow(\mathrm{H} 2)$: The monomial $m(\mathbf{x})=a x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ satisfies

$$
\begin{aligned}
m(\lambda \mathbf{x}) & =a\left(\lambda x_{1}\right)^{i_{1}}\left(\lambda x_{2}\right)^{i_{2}} \cdots\left(\lambda x_{n}\right)^{i_{n}} \\
& =\lambda^{i_{1}+i_{2}+\cdots+i_{n}} a x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}=\lambda^{d} m(\mathbf{x}) .
\end{aligned}
$$

The same holds for any A-linear combination of monomials, i.e., for any polynomial.
$(\mathrm{H} 2) \Rightarrow(\mathrm{H} 1)$: Let $F(\mathbf{x}) \in A[\mathbf{x}]$ be any polynomial satisfying $F(\lambda \mathbf{x})=\lambda^{d} F(\mathbf{x})$ for all $\lambda \in A$. Note that any monomial $m(\mathbf{x})=a \mathbf{x}^{I}$ in $F(\mathbf{x})$ satisfies $m(y \mathbf{x})=y^{\sum I} m(\mathbf{x})$, where y is another variable. Thus we can write $G(\mathbf{x}, y):=F(y \mathbf{x})=\sum_{k \geq 0} y^{k} F^{(k)}(\mathbf{x}) \in A[\mathbf{x}][y]$ as a polynomial in y with coefficients from the ring $A[\mathbf{x}]$. On the other hand, let $H(\mathbf{x}, y):=y^{d} F(\mathbf{x}) \in A[\mathbf{x}][y]$. By assumption we know that $G(\mathbf{x}, \lambda)=H(\mathbf{x}, \lambda)=0 \in A[\mathbf{x}]$ for all $\lambda \in A \subseteq A[\mathbf{x}]$. If A is an infinite domain then this holds for infinitely many λ in the domain $A[\mathbf{x}]$, hence it follows from Problem 3 that $G(\mathbf{x}, y)=H(\mathbf{x}, y)$ as elements of $A[\mathbf{x}][y]$. By comparing coefficients this means that $F^{(k)}(\mathbf{x})=0$ for all $k \neq d$ and $F^{(d)}(\mathbf{x})=F(\mathbf{x})$, as desired.
6. Let A be an infinite domain and consider an invertible matrix $\Phi \in \mathrm{GL}_{n}(A)$. Let $F(\mathbf{x}) \in$ $A[\mathbf{x}]$ be homogeneous of degree d. In this case prove that $G(\mathbf{x}):=F(\Phi \mathbf{x}) \in A[\mathbf{x}]$ is also homogeneous of degree d. [Hint: Use Problem 5.]

Proof. We will verify condition (2) of Problem 5, which will imply condition (1) because A is an infinite domain. Consider the vector of polynomials $\mathbf{u}=\Phi \mathbf{x} \in A[\mathbf{x}]^{n}$. By evaluating the equation $F(\lambda \mathbf{x})=\lambda^{d} F(\mathbf{x})$ at $\mathbf{x}=\mathbf{u}$ we obtain the equation $F(\lambda \mathbf{u})=\lambda^{d} F(\mathbf{u})$ in the ring $A[\mathbf{x}]$. Then since $\mathbf{x} \mapsto \Phi \mathbf{x}$ is a linear function we have

$$
G(\lambda \mathbf{x})=F(\Phi \lambda \mathbf{x})=F(\lambda \Phi \mathbf{x})=\lambda^{d} F(\Phi \mathbf{x})=\lambda^{d} G(\mathbf{x})
$$

for all $\lambda \in A$, as desired.
7. For any ring A, the A-linear function $D_{x}: A[x] \rightarrow A[x]$ is defined by

$$
D_{x}\left(x^{k}\right):= \begin{cases}k x^{k-1} & k>0 \\ 0 & k=0\end{cases}
$$

Prove that the following properties are satisfied for all $f(x), g(x) \in A[x]$:
(a) $D_{x}(f g)=D_{x}(f) g+f D_{x}(g)$,
(b) $D_{x}\left(g^{k}\right)=k g^{k-1} D_{x}(g)$,
(c) $D_{x}(f \circ g)=\left(D_{x}(f) \circ g\right) D_{x}(g)$.

Proof. (a): The left and right sides of the equation are A-bilinear functions of f and g. Thus it suffices to prove the statement when $f(x)=x^{m}$ and $g(x)=x^{n}$. In this case we have

$$
D_{x}(f) g+f D_{x}(g)=m x^{m-1} x^{n}+x^{m} n x^{n-1}=(m+n) x^{m+n-1}=D_{x}(f g)
$$

(b): We observe that the statement is true for $k=0$. Now assume that $D_{x}\left(g^{k}\right)=k g^{k-1} D_{x}(g)$ for some $k \geq 0$. Then from part (a) we have

$$
D_{x}\left(g^{k+1}\right)=D_{x}\left(g g^{k}\right)=D_{x}(g) g^{k}+g k g^{k-1} D_{x}(g)=(k+1) g^{k} D_{x}(g)
$$

as desired.
(c): Let $f(x)=\sum a_{k} x^{k}$ so that $f \circ g=\sum a_{k} g^{k}$. Then it follows from (b) that

$$
D_{x}(f \circ g)=\sum a_{k} D_{x}\left(g^{k}\right)=\left(\sum a_{k} k g^{k-1}\right) D_{x}(g)=\left(D_{x}(f) \circ g\right) D_{x}(g)
$$

8. Euler's Formula. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. We define the function $D_{x_{i}}: A[\mathbf{x}] \rightarrow A[\mathbf{x}]$ as in Problem 5 by thinking of $A[\mathbf{x}]=A_{i}\left[x_{i}\right]$ as the ring of polynomials in x_{i} with coefficients from $A_{i}:=A\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$. Now fix some $F(\mathbf{x}) \in A[\mathbf{x}]$ and $d \geq 0$ and consider the following condition:
(H3) $\sum_{i} x_{i} D_{i}(F)=d F$
Prove that $(\mathrm{H} 1) \Rightarrow(\mathrm{H} 3)$ for any ring. If A is a domain of characteristic zero (necessarily infinite), prove that we also have $(\mathrm{H} 3) \Rightarrow(\mathrm{H} 1)$. [Hint for $(\mathrm{H} 3) \Rightarrow(\mathrm{H} 1)$: Write $F(\mathbf{x})=\sum_{k} F^{(k)}(\mathbf{x})$ where each $F^{(k)}(\mathbf{x})$ is a sum of monomials of degree k. Then since the operator $\sum_{i} x_{i} D_{x_{i}}$ is linear we have $d F=\sum_{i} x_{i} D_{x_{i}}(F)=\sum_{k} \sum_{i} x_{i} D_{x_{i}}\left(F^{(k)}\right)$.]

Proof. $(\mathrm{H} 1) \Rightarrow(\mathrm{H} 3)$: For any monomial $m(\mathbf{x})=a x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$ we have

$$
x_{i} D_{x_{i}}(m)=x_{i} a e_{i} x_{1}^{e_{1}} \cdots x_{i_{1}}^{e_{i-1}} x_{i}^{e_{i}-1} x_{i+1}^{e_{i+1}} \cdots x_{n}^{e_{n}}=e_{i} a x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}=e_{i} m(\mathbf{x})
$$

so that

$$
\sum x_{i} D_{x_{i}}(m)=\left(e_{1}+\cdots+e_{n}\right) m(\mathbf{x})=\operatorname{deg}(m) m(\mathbf{x})
$$

But note that the operator $\sum x_{i} D_{x_{i}}$ is A-linear. Thus if every monomial in $F(\mathbf{x})$ has degree d then we conclude that $\sum x_{i} D_{x_{i}}(F)=d F$.
$(\mathrm{H} 3) \Rightarrow(\mathrm{H} 1)$: Let us assume that $\sum x_{i} D_{x_{i}}(F)=d F$ for some polynomial $F(\mathbf{x}) \in A[\mathbf{x}]$, and let us write $F(\mathbf{x})=\sum F^{(k)}(\mathbf{x})$ where each $F^{(k)}(\mathbf{x})$ is a sum of monomials of degree k. Our goal is to show that $F(\mathbf{x})=F^{(d)}(\mathbf{x})$. Then from the first part of the proof we obtain

$$
\begin{aligned}
\sum x_{i} D_{x_{i}}(F) & =d F \\
\sum_{i} x_{i} D_{x_{i}}\left(\sum_{k} F^{(k)}\right) & =d F \\
\sum_{k} \sum_{i} x_{i} D_{x_{i}}\left(F^{(k)}\right) & =d F \\
\sum_{k} k F^{(k)}(\mathbf{x}) & =d \sum_{k} F^{(k)}(\mathbf{x}) .
\end{aligned}
$$

Now let y be another variable and substitute $\mathbf{x} \mapsto y \mathbf{x}$ to obtain

$$
\begin{aligned}
\sum_{k} k F^{(k)}(y \mathbf{x}) & =d \sum_{k} F^{(k)}(y \mathbf{x}) \\
\sum_{k} k y^{k} F^{(k)}(\mathbf{x}) & =d \sum_{k} y^{k} F^{(k)}(\mathbf{x}) \\
\sum_{k} k y^{k} F^{(k)}(\mathbf{x}) & =\sum_{k} d y^{k} F^{(k)}(\mathbf{x}) .
\end{aligned}
$$

We can regard this as an identity of polynomials in the ring $A[\mathbf{x}][y]$, hence the coefficient of y^{k} is the same on each side:

$$
\begin{aligned}
k F^{(k)}(\mathbf{x}) & =d F^{(k)}(\mathbf{x}) \\
(k-d) F^{(k)}(\mathbf{x}) & =0 .
\end{aligned}
$$

Finally, since A is a domain of characteristic zero, we see that $k \neq d$ implies $F^{(k)}(\mathbf{x})=0 \in A[\mathbf{x}]$, and hence $F(\mathbf{x})=F^{(d)}(\mathbf{x})$ as desired.

[^0]: ${ }^{1}$ Distinct, or counted with multiplicity.

