Commutative Algebra in Context Fall 2020
Homework 1 Solutions Drew Armstrong

Problem 1. Prove that a polynomial f(x) € F[x] of degree d over a field F has at most d rootsE]
in F. [Hint: Given a € F and f(a) = 0 we can divide f(z) by x — a to get f(z) = (z — a)g(x)
with g(z) € F(x) of degree d —1. By induction on degree we know that g(x) has at most d —1
roots in F.]

Proof. For any polynomials f(x), h(z) € Flx] where h(x) # 0, the division algorithm produces
polynomials g(z),r(x) € D[z] such that f(z) = g(z)h(z) + r(x), where either r(x) = 0 or
deg(r) < deg(h). In the case h(z) = x — a we have f(x) = (z — a)g(z) + r(x), where r(z) =0
or deg(r) =0, i.e., r(x) = ¢ for some constant ¢ € F. Then substituting * = « gives

0= f(a)=(a—a)g(a)+c=c.
We conclude that f(z) = (x — a)g(z) for some g(z) € F[z] of degree d — 1. Now let 8 € F be
any other root of f(x), so that
0= f(8) =(B—a)g(B)

If B # « then since F is a field this implies that g(5) = 0, hence (3 is also a root of g(x). By
induction on degree, there can be at most d — 1 such roots. Hence f(x) can have at most d
roots in F: a together with the roots of g(x) that are not equal to «a. O

Problem 2. A commutative ring A is called an integral domain (or just domain) if a,b €
A\ {0} implies ab € A\ {0}.

(a) Prove that A is a domain if and only if it is a subring of a field.

(b) If A is a domain, use (a) and Problem 1 to prove that a nonzero polynomial f(z) € A[z]
has only finitely many roots in A.

Proof. (a): Let A C F be a subring of a field. If ab = 0 for some a,b € A with b # 0 then we
have a = 0b~! = 0, hence A is a domain. Conversely, let A be a domain and let Frac(A) be
the set of formal symbols a/b with b # 0 (called fractions). We define an equivalence relation
as follows:

a/b=d /b & ab =db.

We define addition and multiplication of fractions as follows:

a/b+c/d=(ad+bc)/(bd) and (a/b)(c/d) = (ad)/(bd).

!Distinct, or counted with multiplicity.



The fractions on the right are defined because b,d # 0 implies bd # 0. We observe that
addition and multiplication are well-defined with respect to equivalence. Indeed, suppose that
a/b=2d /¥ (ie., ab =a'b) and ¢/d = /d' (i.e., cd' = ¢/d). Then we have

(ad + be)(V'd') = (abl)(dd') + (cd')(BY) = (d'b)(dd') + (d)(bb) = (a'd’ + b'c)(bd)

and
(ad)(H/¢) = (ab)(dd) = (a'b)(cd’) = (') (be),

as desired. Next one can check that these operations define a field structure on Frac(A).
The key point is that a “nonzero fraction” a/b has a # 0, hence there exists an “inverse
fraction” (a/b)~! = b/a. Finally, we observe that the the function ¢ : A — Frac(A) defined
by a + a/1 is an injective ring homomorphism. In this sense we can regard A as a subring of
its field of fractions Frac(A).

(b): Let A be a domain and let f(x) € A[z] be nonzero, of degree d. From part (a) we can
regard f(x) as an element of Frac(A)[z]. Then from Problem 1 we know that f(x) has finitely
many (at most d) roots in Frac(A) and it follows that f(x) has finitely many roots in A. [

Problem 3. Let A be an infinite domain and suppose that f(x), g(z) € A[z] satisfy f(a) =
g(«) for infinitely many o € A. In this case prove that f(z) = g(z) as polynomials (i.e., they
have the same coefficients).

Proof. Consider the polynomial f(x) — g(z) € A[x]. By assumption this polynomial has
infinitely many roots a € A, hence it follows from Problem 2(b) that f(xz) — g(x) is the zero
polynomial. O

Problem 4. Let x = (x1,...,2,) be vector of independent variables and let A be a domain.
Define the degree function A[x]\{0} — N and prove that it satisfies deg(fg) = deg(f)+deg(g).
In particular, this implies that A[x] is also a domain.

Proof. Let I = (i1,...,i,) € N” be a vector of exponents. By definition, any monomial ax’ =
az’' - xin € Alx] with a # 0 has degree ST =4j + --- + i,,. For any two vectors I,.J € N”
the product of monomials m(x) = ax! and n(x) = bx”’ with a,b # 0 is m(x)n(x) = (ab)x'*7.
Since A is a domain we have ab # 0 and hence

deg(mn) = Z(I +J)= ZI + Z J = deg(m) + deg(n).

Now we define the degree of a polynomial f(x) € A[x] as the highest degree of a monomial that
it contains. To complete the proof, consider any two nonzero polynomials f(x),g(x) € A[x]
with (possibly non-unique) leading monomials m(x) and n(x). To complete the proof, I claim
that m(x)n(x) is a leading monomial in the product f(x)g(x). To see this, we observe that
every monomial in f(x)g(x) has the form m/(x)n’(x) for some monomials m'(x) and n'(x)



from f(x) and g(x). Then by assumption we have deg(m’) < deg(m) and deg(n') < deg(n),
hence
deg(m/n’) = deg(m') + deg(n’) < deg(m) + deg(n) = deg(mn).

Finally, since m(x)n(x) is a leading monomial in f(x)g(x) it follows that deg(fg) = deg(mn) =
deg(m) + deg(n) = deg(f) + deg(g), as desired. O

Problem 5. Let A be a commutative ring and let F(x) € A[x] be a polynomial in some finite
list of variables x = (z1,...,2,). Consider the following conditions:

H1) Every term of F(x) has the form azz? ... xin where iy + -+ i, =d and 0 # a € A.
)

n

(H2) We have F(Ax) = A\?F(x) for all scalars A € A.

Polynomials satisfying (H1) are called homogeneous of degree d. Prove we always have
(H1)=(H2). If A is an infinite domain prove that we also have (H2)=-(H1). [Hint for
(H2)=-(H1): For any polynomial F'(x) € A[x] and variable y note that F(yx) = >, -, ¥*F¥) (x) €
A[x][y], where the sum has finitely many terms and F(¥)(x) is homogeneous of degree k in the
sense of (H1). Use Problems 3 and 4 to show that F(x) = F(9(x).]

Proof. (H1)=(H2): The monomial m(x) = az’'z2 - - -z’ satisfies

m(Ax) = a(Az1)" (Azo)2 - - (Azy,)n

_ \i1t+io++i 11,12 in _ \d
=A maxy xy - xr = Am(x).

The same holds for any A-linear combination of monomials, i.e., for any polynomial.

(H2)=(H1): Let F(x) € A[x] be any polynomial satisfying F'(Ax) = AF(x) for all A € A.
Note that any monomial m(x) = ax! in F(x) satisfies m(yx) = y2=m(x), where y is another
variable. Thus we can write G(x,y) := F(yx) = 350 ¥*F¥)(x) € A[x][y] as a polynomial in
y with coefficients from the ring A[x]. On the other hand, let H(x,y) := y?F(x) € A[x][y].
By assumption we know that G(x,\) = H(x,\) = 0 € A[x]| for all A € A C A[x]. If Ais
an infinite domain then this holds for infinitely many A in the domain A[x], hence it follows
from Problem 3 that G(x,y) = H(x,y) as elements of A[x][y]. By comparing coefficients this
means that F(¥)(x) =0 for all k # d and F(9(x) = F(x), as desired. O

6. Let A be an infinite domain and consider an invertible matrix ® € GL,(A). Let F(x) €
A[x] be homogeneous of degree d. In this case prove that G(x) := F(Px) € A[x] is also
homogeneous of degree d. [Hint: Use Problem 5.]

Proof. We will verify condition (2) of Problem 5, which will imply condition (1) because A is
an infinite domain. Consider the vector of polynomials u = &x € A[x]". By evaluating the
equation F'(Ax) = AYF(x) at x = u we obtain the equation F(Au) = AYF(u) in the ring A[x].
Then since x — ®x is a linear function we have

G(\x) = F(®Ax) = F(A\Px) = MF(®x) = MG(x)



for all A € A, as desired. O

7. For any ring A, the A-linear function D, : A[x] — A|z] is defined by

kzF=t k>0
Dy(at) =00 7
0 k=0.
Prove that the following properties are satisfied for all f(x), g(x) € Alz]:

(a) Dcc(fg) - Dcc(f)g + fDI(g)v
(b) Dy(g") = kg ' D.(g),

(C) Dx(f o g) = (Da:(f) Og)Dx(g)‘
Proof. (a): The left and right sides of the equation are A-bilinear functions of f and g. Thus
it suffices to prove the statement when f(z) = 2™ and g(x) = 2™. In this case we have
Dy(f)g + fDu(g) = ma™ 2" + 2™na" " = (m +n)a™ " = Du(fg).

(b): We observe that the statement is true for k = 0. Now assume that D,(g*) = kg*"1D,(g)
for some k& > 0. Then from part (a) we have

D, (g"*") = D.(99") = Du(9)g" + gkg" ™ D.(9) = (k +1)g* D, (9)
as desired.

(c): Let f(x) = apa® so that fog=>arg®. Then it follows from (b) that

D,(fog) =Y arDu(g") = (3 arkg" ™) Dulg) = (Dalf) 0 9)Dalo).

O
8. Euler’s Formula. Let x = (21,...,%,). We define the function D,, : A[x] — A[x] as
in Problem 5 by thinking of A[x] = Aj;[z;] as the ring of polynomials in x; with coefficients
from A; := Alxy,...,%i-1,%it1,. .., 2Tp]. Now fix some F(x) € A[x] and d > 0 and consider

the following condition:

Prove that (H1)=-(H3) for any ring. If A is a domain of characteristic zero (necessarily infinite),
prove that we also have (H3)=(H1). [Hint for (H3)=(H1): Write F(x) = >_, F*)(x) where
each F*)(x) is a sum of monomials of degree k. Then since the operator > Dy, is linear
we have dF = Y, 2;Dy,(F) = Y. 3, 2Dy, (F) ]

Proof. (H1)=-(H3): For any monomial m(x) = az{' - -z we have

. = giaextl .. pfiT gl Gl e o €1 e o
2Dy, (M) = ziae;x(' - xy ad T wapt = ejaxy -t = emi(x),



so that

Z z; Dy, ( (e1 4+ -+ en)m(x) = deg(m)m(x).

But note that the operator Z% z; i1s A-linear. Thus if every monomial in F'(x) has degree
d then we conclude that ) z; D, (F) = dF.

(H3)=(H1): Let us assume that ) x;D,,(F) = dF for some polynomial F'(x) € A[x], and let
us write F(x) = 3 F(*)(x) where each F*)(x) is a sum of monomials of degree k. Our goal
is to show that F(x) = F(@(x). Then from the first part of the proof we obtain

> @Dy (F) =
¥, (z F<k>)
2.2 iDa(FE)
> kPP (x) =a)  FM(x)
k k
Now let y be another variable and substitute x — yx to obtain
Z kF® (yx) = d Z F® (yx)
Zkku —dZku k) (x
Z ky*F®) (x Z dy"F® (x

We can regard this as an identity of polynomials in the ring A[x][y], hence the coefficient of
y* is the same on each side:

(k —d)F®(x) = 0.

Finally, since A is a domain of characteristic zero, we see that k # d implies F' (k) (x) =0 € Alx],
and hence F(x) = F(9(x) as desired. O



