
Commutative Algebra in Context Fall 2020
Homework 1 Solutions Drew Armstrong

Problem 1. Prove that a polynomial f(x) ∈ F[x] of degree d over a field F has at most d roots1

in F. [Hint: Given α ∈ F and f(α) = 0 we can divide f(x) by x−α to get f(x) = (x−α)g(x)
with g(x) ∈ F(x) of degree d−1. By induction on degree we know that g(x) has at most d−1
roots in F.]

Proof. For any polynomials f(x), h(x) ∈ F[x] where h(x) 6= 0, the division algorithm produces
polynomials g(x), r(x) ∈ D[x] such that f(x) = g(x)h(x) + r(x), where either r(x) = 0 or
deg(r) < deg(h). In the case h(x) = x−α we have f(x) = (x−α)g(x) + r(x), where r(x) = 0
or deg(r) = 0, i.e., r(x) = c for some constant c ∈ F. Then substituting x = α gives

0 = f(α) = (α− α)g(α) + c = c.

We conclude that f(x) = (x− α)g(x) for some g(x) ∈ F[x] of degree d− 1. Now let β ∈ F be
any other root of f(x), so that

0 = f(β) = (β − α)g(β).

If β 6= α then since F is a field this implies that g(β) = 0, hence β is also a root of g(x). By
induction on degree, there can be at most d − 1 such roots. Hence f(x) can have at most d
roots in F: α together with the roots of g(x) that are not equal to α. �

Problem 2. A commutative ring A is called an integral domain (or just domain) if a, b ∈
A \ {0} implies ab ∈ A \ {0}.

(a) Prove that A is a domain if and only if it is a subring of a field.

(b) If A is a domain, use (a) and Problem 1 to prove that a nonzero polynomial f(x) ∈ A[x]
has only finitely many roots in A.

Proof. (a): Let A ⊆ F be a subring of a field. If ab = 0 for some a, b ∈ A with b 6= 0 then we
have a = 0b−1 = 0, hence A is a domain. Conversely, let A be a domain and let Frac(A) be
the set of formal symbols a/b with b 6= 0 (called fractions). We define an equivalence relation
as follows:

a/b = a′/b′ ⇔ ab′ = a′b.

We define addition and multiplication of fractions as follows:

a/b+ c/d = (ad+ bc)/(bd) and (a/b)(c/d) = (ad)/(bd).

1Distinct, or counted with multiplicity.



The fractions on the right are defined because b, d 6= 0 implies bd 6= 0. We observe that
addition and multiplication are well-defined with respect to equivalence. Indeed, suppose that
a/b = a′/b′ (i.e., ab′ = a′b) and c/d = c′/d′ (i.e., cd′ = c′d). Then we have

(ad+ bc)(b′d′) = (ab′)(dd′) + (cd′)(bb′) = (a′b)(dd′) + (c′d)(bb′) = (a′d′ + b′c′)(bd)

and
(ad)(b′c′) = (ab′)(c′d) = (a′b)(cd′) = (a′d′)(bc),

as desired. Next one can check that these operations define a field structure on Frac(A).
The key point is that a “nonzero fraction” a/b has a 6= 0, hence there exists an “inverse
fraction” (a/b)−1 = b/a. Finally, we observe that the the function ϕ : A → Frac(A) defined
by a 7→ a/1 is an injective ring homomorphism. In this sense we can regard A as a subring of
its field of fractions Frac(A).

(b): Let A be a domain and let f(x) ∈ A[x] be nonzero, of degree d. From part (a) we can
regard f(x) as an element of Frac(A)[x]. Then from Problem 1 we know that f(x) has finitely
many (at most d) roots in Frac(A) and it follows that f(x) has finitely many roots in A. �

Problem 3. Let A be an infinite domain and suppose that f(x), g(x) ∈ A[x] satisfy f(α) =
g(α) for infinitely many α ∈ A. In this case prove that f(x) = g(x) as polynomials (i.e., they
have the same coefficients).

Proof. Consider the polynomial f(x) − g(x) ∈ A[x]. By assumption this polynomial has
infinitely many roots α ∈ A, hence it follows from Problem 2(b) that f(x) − g(x) is the zero
polynomial. �

Problem 4. Let x = (x1, . . . , xn) be vector of independent variables and let A be a domain.
Define the degree function A[x]\{0} → N and prove that it satisfies deg(fg) = deg(f)+deg(g).
In particular, this implies that A[x] is also a domain.

Proof. Let I = (i1, . . . , in) ∈ Nn be a vector of exponents. By definition, any monomial axI =
axi11 · · ·xinn ∈ A[x] with a 6= 0 has degree

∑
I = i1 + · · · + in. For any two vectors I, J ∈ Nn

the product of monomials m(x) = axI and n(x) = bxJ with a, b 6= 0 is m(x)n(x) = (ab)xI+J .
Since A is a domain we have ab 6= 0 and hence

deg(mn) =
∑

(I + J) =
∑

I +
∑

J = deg(m) + deg(n).

Now we define the degree of a polynomial f(x) ∈ A[x] as the highest degree of a monomial that
it contains. To complete the proof, consider any two nonzero polynomials f(x), g(x) ∈ A[x]
with (possibly non-unique) leading monomials m(x) and n(x). To complete the proof, I claim
that m(x)n(x) is a leading monomial in the product f(x)g(x). To see this, we observe that
every monomial in f(x)g(x) has the form m′(x)n′(x) for some monomials m′(x) and n′(x)



from f(x) and g(x). Then by assumption we have deg(m′) ≤ deg(m) and deg(n′) ≤ deg(n),
hence

deg(m′n′) = deg(m′) + deg(n′) ≤ deg(m) + deg(n) = deg(mn).

Finally, sincem(x)n(x) is a leading monomial in f(x)g(x) it follows that deg(fg) = deg(mn) =
deg(m) + deg(n) = deg(f) + deg(g), as desired. �

Problem 5. Let A be a commutative ring and let F (x) ∈ A[x] be a polynomial in some finite
list of variables x = (x1, . . . , xn). Consider the following conditions:

(H1) Every term of F (x) has the form axi11 x
i2
2 · · ·xinn where i1 + · · ·+ in = d and 0 6= a ∈ A.

(H2) We have F (λx) = λdF (x) for all scalars λ ∈ A.

Polynomials satisfying (H1) are called homogeneous of degree d. Prove we always have
(H1)⇒(H2). If A is an infinite domain prove that we also have (H2)⇒(H1). [Hint for
(H2)⇒(H1): For any polynomial F (x) ∈ A[x] and variable y note that F (yx) =

∑
k≥0 y

kF (k)(x) ∈
A[x][y], where the sum has finitely many terms and F (k)(x) is homogeneous of degree k in the
sense of (H1). Use Problems 3 and 4 to show that F (x) = F (d)(x).]

Proof. (H1)⇒(H2): The monomial m(x) = axi11 x
i2
2 · · ·xinn satisfies

m(λx) = a(λx1)
i1(λx2)

i2 · · · (λxn)in

= λi1+i2+···+inaxi11 x
i2
2 · · ·x

in
n = λdm(x).

The same holds for any A-linear combination of monomials, i.e., for any polynomial.

(H2)⇒(H1): Let F (x) ∈ A[x] be any polynomial satisfying F (λx) = λdF (x) for all λ ∈ A.
Note that any monomial m(x) = axI in F (x) satisfies m(yx) = y

∑
Im(x), where y is another

variable. Thus we can write G(x, y) := F (yx) =
∑

k≥0 y
kF (k)(x) ∈ A[x][y] as a polynomial in

y with coefficients from the ring A[x]. On the other hand, let H(x, y) := ydF (x) ∈ A[x][y].
By assumption we know that G(x, λ) = H(x, λ) = 0 ∈ A[x] for all λ ∈ A ⊆ A[x]. If A is
an infinite domain then this holds for infinitely many λ in the domain A[x], hence it follows
from Problem 3 that G(x, y) = H(x, y) as elements of A[x][y]. By comparing coefficients this
means that F (k)(x) = 0 for all k 6= d and F (d)(x) = F (x), as desired. �

6. Let A be an infinite domain and consider an invertible matrix Φ ∈ GLn(A). Let F (x) ∈
A[x] be homogeneous of degree d. In this case prove that G(x) := F (Φx) ∈ A[x] is also
homogeneous of degree d. [Hint: Use Problem 5.]

Proof. We will verify condition (2) of Problem 5, which will imply condition (1) because A is
an infinite domain. Consider the vector of polynomials u = Φx ∈ A[x]n. By evaluating the
equation F (λx) = λdF (x) at x = u we obtain the equation F (λu) = λdF (u) in the ring A[x].
Then since x 7→ Φx is a linear function we have

G(λx) = F (Φλx) = F (λΦx) = λdF (Φx) = λdG(x)



for all λ ∈ A, as desired. �

7. For any ring A, the A-linear function Dx : A[x]→ A[x] is defined by

Dx(xk) :=

{
kxk−1 k > 0,

0 k = 0.

Prove that the following properties are satisfied for all f(x), g(x) ∈ A[x]:

(a) Dx(fg) = Dx(f)g + fDx(g),

(b) Dx(gk) = kgk−1Dx(g),

(c) Dx(f ◦ g) = (Dx(f) ◦ g)Dx(g).

Proof. (a): The left and right sides of the equation are A-bilinear functions of f and g. Thus
it suffices to prove the statement when f(x) = xm and g(x) = xn. In this case we have

Dx(f)g + fDx(g) = mxm−1xn + xmnxn−1 = (m+ n)xm+n−1 = Dx(fg).

(b): We observe that the statement is true for k = 0. Now assume that Dx(gk) = kgk−1Dx(g)
for some k ≥ 0. Then from part (a) we have

Dx(gk+1) = Dx(ggk) = Dx(g)gk + gkgk−1Dx(g) = (k + 1)gkDx(g)

as desired.

(c): Let f(x) =
∑
akx

k so that f ◦ g =
∑
akg

k. Then it follows from (b) that

Dx(f ◦ g) =
∑

akDx(gk) =
(∑

akkg
k−1
)
Dx(g) = (Dx(f) ◦ g)Dx(g).

�

8. Euler’s Formula. Let x = (x1, . . . , xn). We define the function Dxi : A[x] → A[x] as
in Problem 5 by thinking of A[x] = Ai[xi] as the ring of polynomials in xi with coefficients
from Ai := A[x1, . . . , xi−1, xi+1, . . . , xn]. Now fix some F (x) ∈ A[x] and d ≥ 0 and consider
the following condition:

(H3)
∑

i xiDi(F ) = dF

Prove that (H1)⇒(H3) for any ring. IfA is a domain of characteristic zero (necessarily infinite),
prove that we also have (H3)⇒(H1). [Hint for (H3)⇒(H1): Write F (x) =

∑
k F

(k)(x) where
each F (k)(x) is a sum of monomials of degree k. Then since the operator

∑
i xiDxi is linear

we have dF =
∑

i xiDxi(F ) =
∑

k

∑
i xiDxi(F

(k)).]

Proof. (H1)⇒(H3): For any monomial m(x) = axe11 · · ·xenn we have

xiDxi(m) = xiaeix
e1
1 · · ·x

ei−1

i1
xei−1i x

ei+1

i+1 · · ·x
en
n = eiax

e1
1 · · ·x

en
n = eim(x),



so that ∑
xiDxi(m) = (e1 + · · ·+ en)m(x) = deg(m)m(x).

But note that the operator
∑
xiDxi is A-linear. Thus if every monomial in F (x) has degree

d then we conclude that
∑
xiDxi(F ) = dF .

(H3)⇒(H1): Let us assume that
∑
xiDxi(F ) = dF for some polynomial F (x) ∈ A[x], and let

us write F (x) =
∑
F (k)(x) where each F (k)(x) is a sum of monomials of degree k. Our goal

is to show that F (x) = F (d)(x). Then from the first part of the proof we obtain∑
xiDxi(F ) = dF∑

i

xiDxi

(∑
k

F (k)

)
= dF∑

k

∑
i

xiDxi(F
(k)) = dF∑

k

kF (k)(x) = d
∑
k

F (k)(x).

Now let y be another variable and substitute x 7→ yx to obtain∑
k

kF (k)(yx) = d
∑
k

F (k)(yx)∑
k

kykF (k)(x) = d
∑
k

ykF (k)(x)∑
k

kykF (k)(x) =
∑
k

dykF (k)(x).

We can regard this as an identity of polynomials in the ring A[x][y], hence the coefficient of
yk is the same on each side:

kF (k)(x) = dF (k)(x)

(k − d)F (k)(x) = 0.

Finally, since A is a domain of characteristic zero, we see that k 6= d implies F (k)(x) = 0 ∈ A[x],
and hence F (x) = F (d)(x) as desired. �


