Turn in any 3 problems by Mon, Sept 14.

Problem 1. Prove that a polynomial $f(x) \in \mathbb{F}[x]$ of degree d over a field \mathbb{F} has at most d roots \mathbb{S}^{1} in \mathbb{F}. [Hint: Given $\alpha \in \mathbb{F}$ and $f(\alpha)=0$ we can divide $f(x)$ by $x-\alpha$ to get $f(x)=(x-\alpha) g(x)$ with $g(x) \in \mathbb{F}(x)$ of degree $d-1$. By induction on degree we know that $g(x)$ has at most $d-1$ roots in \mathbb{F}.]

Problem 2. A commutative ring A is called an integral domain (or just domain) if $a, b \in$ $A \backslash\{0\}$ implies $a b \in A \backslash\{0\}$.
(a) Prove that A is a domain if and only if it is a subring of a field.
(b) If A is a domain, use (a) and Problem 1 to prove that a nonzero polynomial $f(x) \in A[x]$ has only finitely many roots in A.

Problem 3. Let A be an infinite domain and suppose that $f(x), g(x) \in A[x]$ satisfy $f(\alpha)=$ $g(\alpha)$ for infinitely many $\alpha \in A$. In this case prove that $f(x)=g(x)$ as polynomials (i.e., they have the same coefficients).

Problem 4. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be vector of independent variables and let A be a domain. Define the degree function $A[\mathbf{x}] \backslash\{0\} \rightarrow \mathbb{N}$ and prove that it satisfies $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. In particular, this implies that $A[\mathbf{x}]$ is also a domain.

Problem 5. Let A be a commutative ring and let $F(\mathbf{x}) \in A[\mathbf{x}]$ be a polynomial in some finite list of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Consider the following conditions:
(H1) Every term of $F(\mathbf{x})$ has the form $a x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ where $i_{1}+\cdots+i_{n}=d$ and $0 \neq a \in A$. (H2) We have $F(\lambda \mathbf{x})=\lambda^{d} F(\mathbf{x})$ for all scalars $\lambda \in A$.

Polynomials satisfying (H1) are called homogeneous of degree d. Prove we always have $(\mathrm{H} 1) \Rightarrow(\mathrm{H} 2)$. If A is an infinite domain prove that we also have $(\mathrm{H} 2) \Rightarrow(\mathrm{H} 1)$. [Hint for $(\mathrm{H} 2) \Rightarrow(\mathrm{H} 1)$: For any polynomial $F(\mathbf{x}) \in A[\mathbf{x}]$ and variable y note that $F(y \mathbf{x})=\sum_{k \geq 0} y^{k} F^{(k)}(\mathbf{x})$, where the sum has finitely many terms and $F^{(k)}(\mathbf{x})$ is homogeneous of degree k in the sense of (H1). Use Problems 3 and 4 to show that $F(\mathbf{x})=F^{(d)}(\mathbf{x})$.]
6. Let A be an infinite domain and consider an invertible matrix $\Phi \in \mathrm{GL}_{n}(A)$. Let $F(\mathbf{x}) \in$ $A[\mathbf{x}]$ be homogeneous of degree d. In this case prove that $G(\mathbf{x}):=F(\Phi \mathbf{x}) \in A[\mathbf{x}]$ is also homogeneous of degree d. [Hint: Use Problem 5.]

[^0]7. For any ring A, the A-linear function $D_{x}: A[x] \rightarrow A[x]$ is defined by
\[

D_{x}\left(x^{k}\right):= $$
\begin{cases}k x^{k-1} & k>0 \\ 0 & k=0\end{cases}
$$
\]

Prove that the following properties are satisfied for all $f(x), g(x) \in A[x]$:
(a) $D_{x}(f g)=D_{x}(f) g+f D_{x}(g)$,
(b) $D_{x}\left(g^{k}\right)=k g^{k-1} D_{x}(g)$,
(c) $D_{x}(f \circ g)=\left(D_{x}(f) \circ g\right) D_{x}(g)$.
8. Euler's Formula. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. We define the function $D_{x_{i}}: A[\mathbf{x}] \rightarrow A[\mathbf{x}]$ as in Problem 5 by thinking of $A[\mathbf{x}]=A_{i}\left[x_{i}\right]$ as the ring of polynomials in x_{i} with coefficients from $A_{i}:=A\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right]$. Now fix some $F(\mathbf{x}) \in A[\mathbf{x}]$ and $d \geq 0$ and consider the following condition:
(H3) $\sum_{i} x_{i} D_{i}(F)=d F$
Prove that $(\mathrm{H} 1) \Rightarrow(\mathrm{H} 3)$ for any ring. If A is a domain of characteristic zero (necessarily infinite), prove that we also have (H3) $\Rightarrow(\mathrm{H} 1)$. [Hint for $(\mathrm{H} 3) \Rightarrow(\mathrm{H} 1)$: Write $F(\mathbf{x})=\sum_{k} F^{(k)}(\mathbf{x})$ where each $F^{(k)}(\mathbf{x})$ is a sum of monomials of degree k. Then since the operator $\sum_{i} x_{i} D_{x_{i}}$ is linear we have $d F=\sum_{i} x_{i} D_{x_{i}}(F)=\sum_{k} \sum_{i} x_{i} D_{x_{i}}\left(F^{(k)}\right)$.]

[^0]: ${ }^{1}$ Distinct, or counted with multiplicity.

