
Algebra Qualifying Exam University of Miami
Thurs, May 26, 2016 Drew Armstrong

There are 4 problems and 9 pages. You have 3 hours to write the exam.

1. Galois Connections. Let (P,≤) and (Q,≤) be partially ordered sets. We say that a pair
of functions ∗ : P � Q : ∗ is a Galois connection if for all p ∈ P and q ∈ Q we have

p ≤ q∗ ⇐⇒ q ≤ p∗.

Since this relation is symmetric in P and Q, you need only prove half of parts (a)-(d) below.

(a) Prove that for all p ∈ P and q ∈ Q we have

p ≤ p∗∗ and q ≤ q∗∗.

Proof. For all p ∈ P we have p∗ ≤ p∗ from the reflexivity of partial order. Then
putting q = p∗ in the definition of Galois connection gives (p∗) ≤ (p)∗ =⇒ (p) ≤
(p∗)∗ = p∗∗. �

(b) Prove that for all p1, p2 ∈ P and q1, q2 ∈ Q we have

p1 ≤ p2 =⇒ p∗2 ≤ p∗1 and q1 ≤ q2 =⇒ q∗2 ≤ q∗1.

Proof. Consider p1, p2 ∈ P such that p1 ≤ p2. By part (a) and the transitivity of
partial order we have p1 ≤ p2 ≤ p∗∗2 and then from the definition of Galois connection
we have (p1) ≤ (p∗2)

∗ =⇒ (p∗2) ≤ (p1)
∗. �

(c) Prove that for all p ∈ P and q ∈ Q we have

p∗∗∗ = p∗ and q∗∗∗ = q∗.

Proof. Consider any p ∈ P . On the one hand, part (a) tells us that (p∗) ≤ (p∗)∗∗. On
the other hand, part (a) says that p ≤ p∗∗ and then part (b) gives (p) ≤ (p∗∗) =⇒
(p∗∗)∗ ≤ (p)∗. Finally, the antisymmetry of partial order gives p∗∗∗ = p∗. �

(d) We say that an element p ∈ P (resp. q ∈ Q) is ∗∗-closed if p∗∗ = p (resp. q∗∗ = q).
Prove that the Galois connection ∗ : P � Q : ∗ restricts to an order-reversing bijection
between ∗∗-closed elements.

Proof. Let P ∗ ⊆ P and Q∗ ⊆ Q denote the images of the functions ∗ : Q → P and
∗ : P → Q, respectively. I claim that P ∗ ⊆ P is precisely the subset of ∗∗-closed
elements. Indeed, if p∗∗ = p then p = (p∗)∗ is the image of p∗. Conversely, if p = q∗ for
some q ∈ Q then by part (c) we have p∗∗ = (q∗)∗∗ = (q∗) = p. Similarly, we can show
that Q∗ ⊆ Q is the subset of ∗∗-closed elements in Q. It follows immediately that the
functions ∗ : Q∗ � P ∗ : ∗ are inverse to each other, hence they are bijections. [The
fact that they reverse order follows from (b).] �

(e) Finally, suppose that P and Q have bottom and top elements 0P , 1P ∈ P and 0Q, 1Q ∈
Q. In this case draw a picture of the bijection from part (d).



2. Image and Preimage. Let R be a ring and let ϕ : M → N be a homomorphism of (left)
R-modules with kernel kerϕ ⊆ M and image imϕ ⊆ N . For any (left) R-modules Q ⊆ P let
L (P,Q) be the lattice of submodules of P that contain Q, and let L (P ) := L (P, 0).

(a) For every submodule A ⊆ M prove that the image ϕ(A) := {n ∈ N : ∃ a ∈ A, ϕ(a) =
n} is a submodule of N .

Proof. Consider any elements n1, n2 ∈ ϕ(A) and r ∈ R. Since n1, n2 ∈ ϕ(A) there exist
a1, a2 ∈ A such that n1 = ϕ(a1) and n2 = ϕ(a2). Then since ϕ is a homomorphism of
R-modules we have

ϕ(a1 + ra2) = ϕ(a1) + rϕ(a2) = n1 + rn2.

Finally, since A ⊆ M is a submodule we have a1 + ra2 ∈ A, and it follows that
n1 + rn2 ∈ ϕ(A) as desired. �

(b) For every submodule B ⊆ N prove that the preimage ϕ−1(B) := {m ∈ M : ∃ b ∈
B, ϕ(m) = b} is a submodule of M .

Proof. Consider any elements m1,m2 ∈ ϕ−1(B) and r ∈ R. Since m1,m2 ∈ ϕ−1(B)
there exist b1, b2 ∈ B such that ϕ(m1) = b1 and ϕ(m2) = b2. Then since ϕ is a
homomorphism of R-modules we have

ϕ(m1 + rm2) = ϕ(m1) + rϕ(m2) = b1 + rb2.

Finally, since B ⊆ N is a submodule we have b1 + rb2 ∈ B, and it follows that
m1 + rm2 ∈ ϕ−1(B) as desired. �

(c) For all submodules A ⊆M and B ⊆ N prove that we have

ϕ(A) ⊆ B ⇐⇒ A ⊆ ϕ−1(B).

Proof. By definition we have

ϕ(A) ⊆ B ⇐⇒ ∀ a ∈ A, ϕ(a) ∈ B
⇐⇒ ∀ a ∈ A, ∃ b ∈ B, ϕ(a) = b

⇐⇒ ∀ a ∈ A, a ∈ ϕ−1(B)

⇐⇒ A ⊆ ϕ−1(B).

�



(d) For all submodules A ⊆M and B ⊆ N you may assume without proof that

ϕ−1(ϕ(A)) = A ∨ kerϕ and ϕ(ϕ−1(B)) = B ∧ imϕ.

Quote from Problem 1 to obtain a poset isomorphism L (M, kerϕ) ∼= L (imϕ).

Proof. From part (c) we see that ϕ : L (M)op � L (N) : ϕ−1 is a Galois connection in
the sense of Problem 1, thus from Problem 1(d) we obtain an order-reversing bijection
between the subposets of “closed submodules” in L (M)op and L (N). Equivalently,
we obtain an order-preserving bijection (i.e. a poset isomorphism) between closed
submodules in L (M) and L (N).

It remains only to determine the closed submodules. By assumption A ⊆ M is
ϕ−1ϕ-closed if and only if A = A ∨ kerϕ, and from the universal property of ∨ this is
equivalent to saying that kerϕ ⊆ A. Similarly, a submodule B ⊆ N is ϕϕ−1-closed if
and only if B = B ∧ imϕ, which is equivalent to B ⊆ imϕ. �

(e) Prove that we have an isomorphism of (left) R-modules M/ kerϕ ∼= imϕ. [Hint: Show
that the surjective homomorphism (m+ kerϕ) 7→ ϕ(m) is well-defined and injective.]

Proof. For all elements m1,m2 ∈M we have

(m1 + kerϕ) = (m2 + kerϕ)⇐⇒ (m1 −m2) ∈ kerϕ

⇐⇒ ϕ(m1 −m2) = 0

⇐⇒ ϕ(m1) = ϕ(m2).

The ⇒ direction proves that the map is well-defined and the ⇐ direction proves that
it is injective. [This result is often called the 1st Isomorphism Theorem.] �

(f) Conclude that we have an isomorphism of posets L (M, kerϕ) ∼= L (M/ kerϕ).

Proof. The R-module isomorphism imϕ ∼= M/ kerϕ from part (e) induces a poset
isomorphism L (imϕ) ∼= L (M/ kerϕ). Then combining this with part (d) gives

L (M, kerϕ) ∼= L (imϕ) ∼= L (M/ kerϕ).

[This result is often called the Correspondence Theorem. See the picture from 1(e).] �

3. Direct Product of Rings. Let CRng be the category of commutative rings and consider
R,S ∈ CRng. We define the direct product ring R × S as the Cartesian product set with
componentwise addition and multiplication. Note that it has a unit: (1R, 1S) ∈ R× S.

(a) Prove that R× S is the categorical product in CRng. [Hint: You can assume that the
Cartesian product is the categorical product in Set.]

Proof. The definition of categorical product is given by the following diagram:

R

T
ϕR×ϕS //

ϕR
//

ϕS //

R× S
πR

66

πS

((
S

By assumption we know that there exist set functions πR : R×S → R and πS : R×S →
S such that for all set functions ϕR : T → R and ϕS : T → S there exists a unique set



function ϕR × ϕS : T → R × S making the above diagram commute. Explicitly, these
functions are given by

πR(r, s) = r, πS(r, s) = s, and (ϕR × ϕS)(t) = (ϕR(t), ϕS(t)).

To lift this diagram to the category CRng, first note that πr and πS are clearly ring
homomorphisms. If T ∈ CRng and if ϕR and ϕS are ring homomorphisms then it is
also clear that the function ϕS ×ϕR defined by (ϕR×ϕS)(t) = (ϕR(t), ϕS(t)) is a ring
homomorphism. Finally, the uniqueness of the ring homomorphism ϕR × ϕS follows
from the uniqueness of the underlying set function. �

(b) If R ∼= S × T for some R,S, T ∈ CRng where neither of S or T is the zero ring, prove
that R contains a nontrivial idempotent, i.e., an element e ∈ R such that e2 = e
and e 6∈ {0R, 1R}.

Proof. Since S and T are both nonzero rings we have 0S 6= 1S and 0T 6= 1T . Now I
claim that e := (1S , 0T ) ∈ R×S is a nontrivial idempotent. Indeed, since 0S 6= 1S and
0T 6= 1T we see that e 6= (0S , 0T ) = 0R and e 6= (1S , 1T ) = 1R, hence e is nontrivial.
And e is idempotent because

e2 = (1S , 0T )(1S , 0T ) = (1S1S , 0T 0T ) = (1S , 0T ) = e.

[Note that f = (0S , 1T ) = 1R − e is another perfectly good choice.] �

(c) Given any ring R ∈ CRng and an element e ∈ R, prove that

e is a nontrivial idempotent ⇐⇒ 1R − e is a nontrivial idempotent.

Proof. First note that e 6∈ {0R, 1R} if and only if (1R − e) 6∈ {0R, 1R}. Now assume
that e2 = e. From this it follows that

(1R − e)2 = (1R)2 − e− e+ e2 = 1R − e− �e+ �e = (1R − e).

Finally, if f := (1R − e) satisfies f2 = f then the same computation shows that
e = (1R − f) satisfies e2 = e. �

(d) If e ∈ R is idempotent, prove that eR := {er : r ∈ R} is a commutative ring with unit
element e ∈ eR. But note that eR ⊆ R is (probably) not a subring.

Proof. We would usually write eR as the principal ideal (e) ⊆ R. To see that this is
indeed an ideal note that for all er1, er2 ∈ eR and r3 ∈ R we have

er1 − r3(er2) = e(r1 − r3r2) ∈ eR.

In particular we see that (eR,+, 0R) is an abelian group and that multiplication is
a commutative and associative operation eR × eR → eR that distributes over +. It
remains only to show that e ∈ eR is a unit element. To see this, observe that for all
er ∈ eR we have e(er) = e2r = er.

Finally, observe that eR ⊆ R is a subring if and only if e ∈ {0R, 1R}. �

(e) Finally, suppose that R ∈ CRng contains a nontrivial idempotent e ∈ R. In this case
prove that R is isomorphic to a direct product of nonzero rings. This is the converse
of part (b). [Hint: Use parts (c) and (d).]



Proof. Let e ∈ R be a nontrivlal idempotent, so that 1R − e ∈ R is also a nontrivial
idempotent by part (c). From part (d) we know that eR and (1R − e)R are nonzero
commutative rings. We will prove that there is a ring isomorphism R ∼= eR×(1R−e)R.

Indeed, consider the obvious ring homomorphisms R → eR and R → (1R − e)R
defined by r 7→ er and r 7→ (1R − e)r, respectively. From part (a) these define a
canonical product homomorphism ϕ(r) := (er, (1R − e)r). To prove that ϕ is injective
we will show kerϕ = {0R}. Indeed, if ϕ(r) = (er, (1R − e)r) = (0R, 0R) then we have

r = 1Rr = (e+ (1R − e))r = er + (1R − e)r = 0R + 0R = 0R

as desired. To prove that ϕ is surjective, consider a general element (er1, (1R − e)r2)
of the ring eR× (1R − e)R. Then since e(1R − e) = (1R − e)e = 0R we have

ϕ(er1 + (1R − e)r2) = (e(er1 + (1R − e)r2), (1R − e)(er1 + (1R − e)r2))
= (e2r1 +�����e(1R − e)r2,�����(1R − e)er1 + (1R − e)2r2)
= (er1 + 0Rr2, 0Rr1 + (1R − e)r2)
= (er1, (1R − e)r2).

�

4. Companion Matrices. Let K be a field.

(a) Use the fact that K[x] is a Euclidean domain to prove that K[x] is a PID. [Hint:
Consider a nonzero ideal 0 ( I ⊆ K[x] and let m(x) ∈ I be a monic polynomial of
minimal degree.]

Proof. Suppose that I ⊆ K[x] is a nonzero ideal and let m(x) ∈ I be a monic polyno-
mial of minimal degree. Note that (m(x)) ⊆ I. Now consider any polynomial f(x) ∈ I.
Since m(x) is monic we can use long division to obtain polynomials q(x), r(x) ∈ K[x]
such that f(x) = q(x)m(x) + r(x) and such that r(x) = 0 or deg(r) < deg(m).
Since I is an ideal we have r(x) = q(x)m(x) − f(x) ∈ I. Then if r(x) 6= 0 we
find that deg(r) < deg(m), which contradicts the minimality of deg(m). It follows that
r(x) = 0 and hence f(x) = q(x)m(x) ⊆ (m(x)). Since this is true for all f(x) we have
I ⊆ (m(x)), and hence I = (m(x)). �

(b) Given a monic polynomial m(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ K[x], prove that

(the images of) 1, x, x2, . . . , xn−1 are a basis for the K-vector space K[x]/(m(x)).

Proof. A general K-linear combination of the elements 1, x, . . . , xn−1 ∈ K[x]/(m(x))
is just a coset r(x) + (m(x)) where r(x) ∈ K[x] satisfies r(x) = 0 or deg(r) ≤ n−1. To
prove “spanning”, consider any element f(x) + (m(x)) ∈ K[x]/(m(x)). Dividing the
polynomial f(x) by the monic polynomial m(x) gives f(x) = q(x)m(x) + r(x) where
r(x) = 0 or deg(r) ≤ n− 1. The result now follows from the fact that f(x) + (m(x)) =
r(x) + (m(x)). To prove “independence”, assume for contradiction that there exists
a nonzero polynomial r(x) ∈ K[x] such that deg(r) ≤ n − 1 and r(x) + (m(x)) =
0 + (m(x)). The fact that r(x) ∈ (m(x)) means that we have r(x) = f(x)m(x) for
some nonzero f(x) ∈ K[x] and the fact that K is a domain implies that

n = deg(m) ≤ deg(m) + deg(f) = deg(r) ≤ n− 1,

which is the desired contradiction. �



(c) “Multiplication by x” defines a K-linear endomorphism K[x]/(m(x))→ K[x]/(m(x)).
Find the matrix of this endomorphism in terms of the basis from part (b). We will call
this matrix Cm ∈ Matn(K).

Proof. To find the matrix we just need to know what “multiplication by x” does to the
basis elements. Note that we have

x · 1 = x,

x · x = x2,

...

x · xn−2 = xn−1,

x · xn−1 = xn = −a01− a1x− · · · − an−1x
n−1,

where each polynomial is interpreted as the coset in K[x]/(m(x)) that it generates.
The corresponding matrix is

Cm =


−a0

1 −a1
1 −a2

. . .
...

1 −an−1

 ,

where we interpret the blank entries as zeroes. [This is called the companion matrix of
the monic polynomial m(x).] �

(d) You may assume without proof that m(x) is both the minimal polynomial and the
characteristic polynomial of the matrix Cm. In this case, prove that m(x) is both the
minimal and the characteristic polynomial of the transpose matrix (Cm)T .

Proof. Consider any matrix A ∈ Matn(K) and recall that the minimal polynomial
is the unique monic polynomial f(x) ∈ K[x] of minimum degree satisfying f(A) =
0 ∈ Matn(K). First note that f(A)T = f(AT ) for all polynomials f(x) ∈ K[x] and
hence we have f(A) = 0 ⇐⇒ f(AT ) = 0. It follows that A and AT have the same
minimal polynomial. Then recall that the characteristic polynomial of A is defined as
det(xIn −A) ∈ K[x]. Since

det(xIn −A) = det((xIn −A)T ) = det(xIn −AT ),

we conclude that A and AT have the same characteristic polynomial. In particular,
both of these statements are true when A = Cm. �

(e) Define a (finitely-generated and torsion) K[x]-module structure on M = Kn by letting
x act as the matrix (Cm)T . Since K[x] is a PID we know (from the FTFGMPID) that
there exist unique, monic, nonconstant polynomials f1(x)|f2(x)| · · · |fd(x) such that
M ∼= ⊕di=1K[x]/(fi(x)) as K[x]-modules. Use part (d) to compute these polyno-
mials. [Hint: You can quote results from class.]

Proof. From class we know that fd(x) is the minimal polynomial of (Cm)T and that∏d
i=1 fi(x) is the characteristic polynomial of (Cm)T . And from part (d) we know that

m(x) is the minimal and the characteristic polynomial of (Cm)T . Since the polynomials
fi(x) are nonconstant this implies that d = 1 and fd(x) = m(x). �



(f) Finally, prove that there exists an invertible matrix P ∈ GLn(K) such that

PCmP
−1 = (Cm)T .

Proof. Recall that a K[x]-module is the same as a pair (V, ϕ) where V is a K-vector
space and x acts on V by the K-linear endomorphism ϕ ∈ EndK(V ). Furthermore,
recall that a morphism of K[x]-modules (V1, ϕ1)→ (V2, ϕ2) is the same as a K-linear
function Φ : V1 → V2 satisfying Φ ◦ ϕ1 = ϕ2 ◦ Φ. Thus an isomorphism of K[x]-
modules is the same as an isomorphism of K-vector spaces Φ : V1 → V2 satisfying
Φ ◦ϕ1 ◦Φ−1 = ϕ2. After choosing bases for V1 and V2 this becomes a matrix equation:

P [ϕ1]P
−1 = [ϕ2].

Finally, consider the K[x]-modules corresponding to pairs (Kn, Cm) and (Kn, (Cm)T ).
From part (e) we know that each of these is isomorphic to K[x]/(m(x)) as a K[x]-
module, hence they are isomorphic to each other. It follows from the above observations
that there exists an invertible matrix P ∈ GLn(K) such that

PCmP
−1 = (Cm)T .

�

[Remark: This strange result would be quite difficult to prove directly. Indeed, I have no
idea how to find such a matrix P for a specific companion matrix Cm. (The situation is
easier for a Jordan block Jλ ∈ Matn(K): if P is the anti-identity matrix (with 1s on the
anti-diagonal) then we have PJλP

−1 = (Jλ)T .) Now let K be any field and consider any
matrix A ∈ Matn(K). From part (f) and the existence of Rational Canonical Form we
conclude that there exists a matrix P ∈ GLn(K) such that

PAP−1 = AT .

Strange but true!]


