Algebra Qualifying Exam
Thurs, May 26, 2016

University of Miami
Drew Armstrong

There are 4 problems and 9 pages. You have 3 hours to write the exam.

1. Galois Connections. Let (P, \leq) and (Q, \leq) be partially ordered sets. We say that a pair of functions $*: P \rightleftarrows Q: *$ is a Galois connection if for all $p \in P$ and $q \in Q$ we have

$$
p \leq q^{*} \quad \Longleftrightarrow \quad q \leq p^{*} .
$$

Since this relation is symmetric in P and Q, you need only prove half of parts (a)-(d) below.
(a) Prove that for all $p \in P$ and $q \in Q$ we have

$$
p \leq p^{* *} \quad \text { and } \quad q \leq q^{* *}
$$

Proof. For all $p \in P$ we have $p^{*} \leq p^{*}$ from the reflexivity of partial order. Then putting $q=p^{*}$ in the definition of Galois connection gives $\left(p^{*}\right) \leq(p)^{*} \Longrightarrow(p) \leq$ $\left(p^{*}\right)^{*}=p^{* *}$.
(b) Prove that for all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ we have

$$
p_{1} \leq p_{2} \Longrightarrow p_{2}^{*} \leq p_{1}^{*} \quad \text { and } \quad q_{1} \leq q_{2} \Longrightarrow q_{2}^{*} \leq q_{1}^{*} .
$$

Proof. Consider $p_{1}, p_{2} \in P$ such that $p_{1} \leq p_{2}$. By part (a) and the transitivity of partial order we have $p_{1} \leq p_{2} \leq p_{2}^{* *}$ and then from the definition of Galois connection we have $\left(p_{1}\right) \leq\left(p_{2}^{*}\right)^{*} \Longrightarrow\left(p_{2}^{*}\right) \leq\left(p_{1}\right)^{*}$.
(c) Prove that for all $p \in P$ and $q \in Q$ we have

$$
p^{* * *}=p^{*} \quad \text { and } \quad q^{* * *}=q^{*} .
$$

Proof. Consider any $p \in P$. On the one hand, part (a) tells us that $\left(p^{*}\right) \leq\left(p^{*}\right)^{* *}$. On the other hand, part (a) says that $p \leq p^{* *}$ and then part (b) gives $(p) \leq\left(p^{* *}\right) \Longrightarrow$ $\left(p^{* *}\right)^{*} \leq(p)^{*}$. Finally, the antisymmetry of partial order gives $p^{* * *}=p^{*}$.
(d) We say that an element $p \in P$ (resp. $q \in Q$) is $* *$-closed if $p^{* *}=p$ (resp. $q^{* *}=q$). Prove that the Galois connection $*: P \rightleftarrows Q: *$ restricts to an order-reversing bijection between $* *$-closed elements.

Proof. Let $P^{*} \subseteq P$ and $Q^{*} \subseteq Q$ denote the images of the functions $*: Q \rightarrow P$ and * : $P \rightarrow Q$, respectively. I claim that $P^{*} \subseteq P$ is precisely the subset of $* *$-closed elements. Indeed, if $p^{* *}=p$ then $p=\left(p^{*}\right)^{*}$ is the image of p^{*}. Conversely, if $p=q^{*}$ for some $q \in Q$ then by part (c) we have $p^{* *}=\left(q^{*}\right)^{* *}=\left(q^{*}\right)=p$. Similarly, we can show that $Q^{*} \subseteq Q$ is the subset of $* *$-closed elements in Q. It follows immediately that the functions $*: Q^{*} \rightleftarrows P^{*}: *$ are inverse to each other, hence they are bijections. [The fact that they reverse order follows from (b).]
(e) Finally, suppose that P and Q have bottom and top elements $0_{P}, 1_{P} \in P$ and $0_{Q}, 1_{Q} \in$ Q. In this case draw a picture of the bijection from part (d).

2. Image and Preimage. Let R be a ring and let $\varphi: M \rightarrow N$ be a homomorphism of (left) R-modules with kernel $\operatorname{ker} \varphi \subseteq M$ and image $\operatorname{im} \varphi \subseteq N$. For any (left) R-modules $Q \subseteq P$ let $\mathscr{L}(P, Q)$ be the lattice of submodules of P that contain Q, and let $\mathscr{L}(P):=\mathscr{L}(P, 0)$.
(a) For every submodule $A \subseteq M$ prove that the image $\varphi(A):=\{n \in N: \exists a \in A, \varphi(a)=$ $n\}$ is a submodule of N.
Proof. Consider any elements $n_{1}, n_{2} \in \varphi(A)$ and $r \in R$. Since $n_{1}, n_{2} \in \varphi(A)$ there exist $a_{1}, a_{2} \in A$ such that $n_{1}=\varphi\left(a_{1}\right)$ and $n_{2}=\varphi\left(a_{2}\right)$. Then since φ is a homomorphism of R-modules we have

$$
\varphi\left(a_{1}+r a_{2}\right)=\varphi\left(a_{1}\right)+r \varphi\left(a_{2}\right)=n_{1}+r n_{2} .
$$

Finally, since $A \subseteq M$ is a submodule we have $a_{1}+r a_{2} \in A$, and it follows that $n_{1}+r n_{2} \in \varphi(A)$ as desired.
(b) For every submodule $B \subseteq N$ prove that the preimage $\varphi^{-1}(B):=\{m \in M: \exists b \in$ $B, \varphi(m)=b\}$ is a submodule of M.

Proof. Consider any elements $m_{1}, m_{2} \in \varphi^{-1}(B)$ and $r \in R$. Since $m_{1}, m_{2} \in \varphi^{-1}(B)$ there exist $b_{1}, b_{2} \in B$ such that $\varphi\left(m_{1}\right)=b_{1}$ and $\varphi\left(m_{2}\right)=b_{2}$. Then since φ is a homomorphism of R-modules we have

$$
\varphi\left(m_{1}+r m_{2}\right)=\varphi\left(m_{1}\right)+r \varphi\left(m_{2}\right)=b_{1}+r b_{2} .
$$

Finally, since $B \subseteq N$ is a submodule we have $b_{1}+r b_{2} \in B$, and it follows that $m_{1}+r m_{2} \in \varphi^{-1}(B)$ as desired.
(c) For all submodules $A \subseteq M$ and $B \subseteq N$ prove that we have

$$
\varphi(A) \subseteq B \quad \Longleftrightarrow \quad A \subseteq \varphi^{-1}(B)
$$

Proof. By definition we have

$$
\begin{aligned}
\varphi(A) \subseteq B & \Longleftrightarrow \forall a \in A, \varphi(a) \in B \\
& \Longleftrightarrow \forall a \in A, \exists b \in B, \varphi(a)=b \\
& \Longleftrightarrow \forall a \in A, a \in \varphi^{-1}(B) \\
& \Longleftrightarrow A \subseteq \varphi^{-1}(B) .
\end{aligned}
$$

(d) For all submodules $A \subseteq M$ and $B \subseteq N$ you may assume without proof that

$$
\varphi^{-1}(\varphi(A))=A \vee \operatorname{ker} \varphi \quad \text { and } \quad \varphi\left(\varphi^{-1}(B)\right)=B \wedge \operatorname{im} \varphi .
$$

Quote from Problem 1 to obtain a poset isomorphism $\mathscr{L}(M, \operatorname{ker} \varphi) \cong \mathscr{L}(\operatorname{im} \varphi)$.
Proof. From part (c) we see that $\varphi: \mathscr{L}(M)^{\mathrm{op}} \rightleftarrows \mathscr{L}(N): \varphi^{-1}$ is a Galois connection in the sense of Problem 1, thus from Problem 1(d) we obtain an order-reversing bijection between the subposets of "closed submodules" in $\mathscr{L}(M)^{\text {op }}$ and $\mathscr{L}(N)$. Equivalently, we obtain an order-preserving bijection (i.e. a poset isomorphism) between closed submodules in $\mathscr{L}(M)$ and $\mathscr{L}(N)$.

It remains only to determine the closed submodules. By assumption $A \subseteq M$ is $\varphi^{-1} \varphi$-closed if and only if $A=A \vee \operatorname{ker} \varphi$, and from the universal property of \vee this is equivalent to saying that $\operatorname{ker} \varphi \subseteq A$. Similarly, a submodule $B \subseteq N$ is $\varphi \varphi^{-1}$-closed if and only if $B=B \wedge \operatorname{im} \varphi$, which is equivalent to $B \subseteq \operatorname{im} \varphi$.
(e) Prove that we have an isomorphism of (left) R-modules $M / \operatorname{ker} \varphi \cong \operatorname{im} \varphi$. [Hint: Show that the surjective homomorphism $(m+\operatorname{ker} \varphi) \mapsto \varphi(m)$ is well-defined and injective.]

Proof. For all elements $m_{1}, m_{2} \in M$ we have

$$
\begin{aligned}
\left(m_{1}+\operatorname{ker} \varphi\right)=\left(m_{2}+\operatorname{ker} \varphi\right) & \Longleftrightarrow\left(m_{1}-m_{2}\right) \in \operatorname{ker} \varphi \\
& \Longleftrightarrow \varphi\left(m_{1}-m_{2}\right)=0 \\
& \Longleftrightarrow \varphi\left(m_{1}\right)=\varphi\left(m_{2}\right) .
\end{aligned}
$$

The \Rightarrow direction proves that the map is well-defined and the \Leftarrow direction proves that it is injective. [This result is often called the 1st Isomorphism Theorem.]
(f) Conclude that we have an isomorphism of posets $\mathscr{L}(M, \operatorname{ker} \varphi) \cong \mathscr{L}(M / \operatorname{ker} \varphi)$.

Proof. The R-module isomorphism $\operatorname{im} \varphi \cong M / \operatorname{ker} \varphi$ from part (e) induces a poset isomorphism $\mathscr{L}(\operatorname{im} \varphi) \cong \mathscr{L}(M / \operatorname{ker} \varphi)$. Then combining this with part (d) gives

$$
\mathscr{L}(M, \operatorname{ker} \varphi) \cong \mathscr{L}(\operatorname{im} \varphi) \cong \mathscr{L}(M / \operatorname{ker} \varphi)
$$

[This result is often called the Correspondence Theorem. See the picture from 1(e).]
3. Direct Product of Rings. Let CRng be the category of commutative rings and consider $R, S \in$ CRng. We define the direct product ring $R \times S$ as the Cartesian product set with componentwise addition and multiplication. Note that it has a unit: $\left(1_{R}, 1_{S}\right) \in R \times S$.
(a) Prove that $R \times S$ is the categorical product in CRng. [Hint: You can assume that the Cartesian product is the categorical product in Set.]
Proof. The definition of categorical product is given by the following diagram:

By assumption we know that there exist set functions $\pi_{R}: R \times S \rightarrow R$ and $\pi_{S}: R \times S \rightarrow$ S such that for all set functions $\varphi_{R}: T \rightarrow R$ and $\varphi_{S}: T \rightarrow S$ there exists a unique set
function $\varphi_{R} \times \varphi_{S}: T \rightarrow R \times S$ making the above diagram commute. Explicitly, these functions are given by

$$
\pi_{R}(r, s)=r, \quad \pi_{S}(r, s)=s, \quad \text { and } \quad\left(\varphi_{R} \times \varphi_{S}\right)(t)=\left(\varphi_{R}(t), \varphi_{S}(t)\right)
$$

To lift this diagram to the category CRng, first note that π_{r} and π_{S} are clearly ring homomorphisms. If $T \in \mathrm{CRng}$ and if φ_{R} and φ_{S} are ring homomorphisms then it is also clear that the function $\varphi_{S} \times \varphi_{R}$ defined by $\left(\varphi_{R} \times \varphi_{S}\right)(t)=\left(\varphi_{R}(t), \varphi_{S}(t)\right)$ is a ring homomorphism. Finally, the uniqueness of the ring homomorphism $\varphi_{R} \times \varphi_{S}$ follows from the uniqueness of the underlying set function.
(b) If $R \cong S \times T$ for some $R, S, T \in$ CRng where neither of S or T is the zero ring, prove that R contains a nontrivial idempotent, i.e., an element $e \in R$ such that $e^{2}=e$ and $e \notin\left\{0_{R}, 1_{R}\right\}$.

Proof. Since S and T are both nonzero rings we have $0_{S} \neq 1_{S}$ and $0_{T} \neq 1_{T}$. Now I claim that $e:=\left(1_{S}, 0_{T}\right) \in R \times S$ is a nontrivial idempotent. Indeed, since $0_{S} \neq 1_{S}$ and $0_{T} \neq 1_{T}$ we see that $e \neq\left(0_{S}, 0_{T}\right)=0_{R}$ and $e \neq\left(1_{S}, 1_{T}\right)=1_{R}$, hence e is nontrivial. And e is idempotent because

$$
e^{2}=\left(1_{S}, 0_{T}\right)\left(1_{S}, 0_{T}\right)=\left(1_{S} 1_{S}, 0_{T} 0_{T}\right)=\left(1_{S}, 0_{T}\right)=e .
$$

[Note that $f=\left(0_{S}, 1_{T}\right)=1_{R}-e$ is another perfectly good choice.]
(c) Given any ring $R \in \mathrm{CRng}$ and an element $e \in R$, prove that

$$
e \text { is a nontrivial idempotent } \Longleftrightarrow 1_{R}-e \text { is a nontrivial idempotent. }
$$

Proof. First note that $e \notin\left\{0_{R}, 1_{R}\right\}$ if and only if $\left(1_{R}-e\right) \notin\left\{0_{R}, 1_{R}\right\}$. Now assume that $e^{2}=e$. From this it follows that

$$
\left(1_{R}-e\right)^{2}=\left(1_{R}\right)^{2}-e-e+e^{2}=1_{R}-e-\not \subset+\not \subset=\left(1_{R}-e\right) .
$$

Finally, if $f:=\left(1_{R}-e\right)$ satisfies $f^{2}=f$ then the same computation shows that $e=\left(1_{R}-f\right)$ satisfies $e^{2}=e$.
(d) If $e \in R$ is idempotent, prove that $e R:=\{e r: r \in R\}$ is a commutative ring with unit element $e \in e R$. But note that $e R \subseteq R$ is (probably) not a subring.

Proof. We would usually write $e R$ as the principal ideal $(e) \subseteq R$. To see that this is indeed an ideal note that for all $e r_{1}, e r_{2} \in e R$ and $r_{3} \in R$ we have

$$
e r_{1}-r_{3}\left(e r_{2}\right)=e\left(r_{1}-r_{3} r_{2}\right) \in e R .
$$

In particular we see that $\left(e R,+, 0_{R}\right)$ is an abelian group and that multiplication is a commutative and associative operation $e R \times e R \rightarrow e R$ that distributes over + . It remains only to show that $e \in e R$ is a unit element. To see this, observe that for all $e r \in e R$ we have $e(e r)=e^{2} r=e r$.

Finally, observe that $e R \subseteq R$ is a subring if and only if $e \in\left\{0_{R}, 1_{R}\right\}$.
(e) Finally, suppose that $R \in$ CRng contains a nontrivial idempotent $e \in R$. In this case prove that R is isomorphic to a direct product of nonzero rings. This is the converse of part (b). [Hint: Use parts (c) and (d).]

Proof. Let $e \in R$ be a nontrivlal idempotent, so that $1_{R}-e \in R$ is also a nontrivial idempotent by part (c). From part (d) we know that $e R$ and $\left(1_{R}-e\right) R$ are nonzero commutative rings. We will prove that there is a ring isomorphism $R \cong e R \times\left(1_{R}-e\right) R$.

Indeed, consider the obvious ring homomorphisms $R \rightarrow e R$ and $R \rightarrow\left(1_{R}-e\right) R$ defined by $r \mapsto e r$ and $r \mapsto\left(1_{R}-e\right) r$, respectively. From part (a) these define a canonical product homomorphism $\varphi(r):=\left(e r,\left(1_{R}-e\right) r\right)$. To prove that φ is injective we will show $\operatorname{ker} \varphi=\left\{0_{R}\right\}$. Indeed, if $\varphi(r)=\left(e r,\left(1_{R}-e\right) r\right)=\left(0_{R}, 0_{R}\right)$ then we have

$$
r=1_{R} r=\left(e+\left(1_{R}-e\right)\right) r=e r+\left(1_{R}-e\right) r=0_{R}+0_{R}=0_{R}
$$

as desired. To prove that φ is surjective, consider a general element $\left(e r_{1},\left(1_{R}-e\right) r_{2}\right)$ of the ring $e R \times\left(1_{R}-e\right) R$. Then since $e\left(1_{R}-e\right)=\left(1_{R}-e\right) e=0_{R}$ we have

$$
\begin{aligned}
\varphi\left(e r_{1}+\left(1_{R}-e\right) r_{2}\right) & =\left(e\left(e r_{1}+\left(1_{R}-e\right) r_{2}\right),\left(1_{R}-e\right)\left(e r_{1}+\left(1_{R}-e\right) r_{2}\right)\right) \\
& =\left(e^{2} r_{1}+e\left(1_{R}-e\right) r_{2},\left(1_{R}-e\right) e r_{1}+\left(1_{R}-e\right)^{2} r_{2}\right) \\
& =\left(e r_{1}+0_{R} r_{2}, 0_{R} r_{1}+\left(1_{R}-e\right) r_{2}\right) \\
& =\left(e r_{1},\left(1_{R}-e\right) r_{2}\right) .
\end{aligned}
$$

4. Companion Matrices. Let K be a field.
(a) Use the fact that $K[x]$ is a Euclidean domain to prove that $K[x]$ is a PID. [Hint: Consider a nonzero ideal $0 \subsetneq I \subseteq K[x]$ and let $m(x) \in I$ be a monic polynomial of minimal degree.]

Proof. Suppose that $I \subseteq K[x]$ is a nonzero ideal and let $m(x) \in I$ be a monic polynomial of minimal degree. Note that $(m(x)) \subseteq I$. Now consider any polynomial $f(x) \in I$. Since $m(x)$ is monic we can use long division to obtain polynomials $q(x), r(x) \in K[x]$ such that $f(x)=q(x) m(x)+r(x)$ and such that $r(x)=0$ or $\operatorname{deg}(r)<\operatorname{deg}(m)$. Since I is an ideal we have $r(x)=q(x) m(x)-f(x) \in I$. Then if $r(x) \neq 0$ we find that $\operatorname{deg}(r)<\operatorname{deg}(m)$, which contradicts the minimality of $\operatorname{deg}(m)$. It follows that $r(x)=0$ and hence $f(x)=q(x) m(x) \subseteq(m(x))$. Since this is true for all $f(x)$ we have $I \subseteq(m(x))$, and hence $I=(m(x))$.
(b) Given a monic polynomial $m(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in K[x]$, prove that (the images of) $1, x, x^{2}, \ldots, x^{n-1}$ are a basis for the K-vector space $K[x] /(m(x))$.
Proof. A general K-linear combination of the elements $1, x, \ldots, x^{n-1} \in K[x] /(m(x))$ is just a coset $r(x)+(m(x))$ where $r(x) \in K[x]$ satisfies $r(x)=0$ or $\operatorname{deg}(r) \leq n-1$. To prove "spanning", consider any element $f(x)+(m(x)) \in K[x] /(m(x))$. Dividing the polynomial $f(x)$ by the monic polynomial $m(x)$ gives $f(x)=q(x) m(x)+r(x)$ where $r(x)=0$ or $\operatorname{deg}(r) \leq n-1$. The result now follows from the fact that $f(x)+(m(x))=$ $r(x)+(m(x))$. To prove "independence", assume for contradiction that there exists a nonzero polynomial $r(x) \in K[x]$ such that $\operatorname{deg}(r) \leq n-1$ and $r(x)+(m(x))=$ $0+(m(x))$. The fact that $r(x) \in(m(x))$ means that we have $r(x)=f(x) m(x)$ for some nonzero $f(x) \in K[x]$ and the fact that K is a domain implies that

$$
n=\operatorname{deg}(m) \leq \operatorname{deg}(m)+\operatorname{deg}(f)=\operatorname{deg}(r) \leq n-1,
$$

which is the desired contradiction.
(c) "Multiplication by x " defines a K-linear endomorphism $K[x] /(m(x)) \rightarrow K[x] /(m(x))$. Find the matrix of this endomorphism in terms of the basis from part (b). We will call this matrix $C_{m} \in \operatorname{Mat}_{n}(K)$.
Proof. To find the matrix we just need to know what "multiplication by x " does to the basis elements. Note that we have

$$
\begin{aligned}
x \cdot 1 & =x \\
x \cdot x & =x^{2}, \\
& \vdots \\
x \cdot x^{n-2} & =x^{n-1}, \\
x \cdot x^{n-1} & =x^{n}=-a_{0} 1-a_{1} x-\cdots-a_{n-1} x^{n-1},
\end{aligned}
$$

where each polynomial is interpreted as the coset in $K[x] /(m(x))$ that it generates. The corresponding matrix is

$$
C_{m}=\left(\begin{array}{ccccc}
& & & & -a_{0} \\
1 & & & & -a_{1} \\
& 1 & & & -a_{2} \\
& & \ddots & & \vdots \\
& & & 1 & -a_{n-1}
\end{array}\right),
$$

where we interpret the blank entries as zeroes. [This is called the companion matrix of the monic polynomial $m(x)$.]
(d) You may assume without proof that $m(x)$ is both the minimal polynomial and the characteristic polynomial of the matrix C_{m}. In this case, prove that $m(x)$ is both the minimal and the characteristic polynomial of the transpose matrix $\left(C_{m}\right)^{T}$.
Proof. Consider any matrix $A \in \operatorname{Mat}_{n}(K)$ and recall that the minimal polynomial is the unique monic polynomial $f(x) \in K[x]$ of minimum degree satisfying $f(A)=$ $0 \in \operatorname{Mat}_{n}(K)$. First note that $f(A)^{T}=f\left(A^{T}\right)$ for all polynomials $f(x) \in K[x]$ and hence we have $f(A)=0 \Longleftrightarrow f\left(A^{T}\right)=0$. It follows that A and A^{T} have the same minimal polynomial. Then recall that the characteristic polynomial of A is defined as $\operatorname{det}\left(x I_{n}-A\right) \in K[x]$. Since

$$
\operatorname{det}\left(x I_{n}-A\right)=\operatorname{det}\left(\left(x I_{n}-A\right)^{T}\right)=\operatorname{det}\left(x I_{n}-A^{T}\right),
$$

we conclude that A and A^{T} have the same characteristic polynomial. In particular, both of these statements are true when $A=C_{m}$.
(e) Define a (finitely-generated and torsion) $K[x]$-module structure on $M=K^{n}$ by letting x act as the matrix $\left(C_{m}\right)^{T}$. Since $K[x]$ is a PID we know (from the FTFGMPID) that there exist unique, monic, nonconstant polynomials $f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{d}(x)$ such that $M \cong \oplus_{i=1}^{d} K[x] /\left(f_{i}(x)\right)$ as $K[x]$-modules. Use part (d) to compute these polynomials. [Hint: You can quote results from class.]
Proof. From class we know that $f_{d}(x)$ is the minimal polynomial of $\left(C_{m}\right)^{T}$ and that $\prod_{i=1}^{d} f_{i}(x)$ is the characteristic polynomial of $\left(C_{m}\right)^{T}$. And from part (d) we know that $m(x)$ is the minimal and the characteristic polynomial of $\left(C_{m}\right)^{T}$. Since the polynomials $f_{i}(x)$ are nonconstant this implies that $d=1$ and $f_{d}(x)=m(x)$.
(f) Finally, prove that there exists an invertible matrix $P \in \mathrm{GL}_{n}(K)$ such that

$$
P C_{m} P^{-1}=\left(C_{m}\right)^{T} .
$$

Proof. Recall that a $K[x]$-module is the same as a pair (V, φ) where V is a K-vector space and x acts on V by the K-linear endomorphism $\varphi \in \operatorname{End}_{K}(V)$. Furthermore, recall that a morphism of $K[x]$-modules $\left(V_{1}, \varphi_{1}\right) \rightarrow\left(V_{2}, \varphi_{2}\right)$ is the same as a K-linear function $\Phi: V_{1} \rightarrow V_{2}$ satisfying $\Phi \circ \varphi_{1}=\varphi_{2} \circ \Phi$. Thus an isomorphism of $K[x]-$ modules is the same as an isomorphism of K-vector spaces $\Phi: V_{1} \rightarrow V_{2}$ satisfying $\Phi \circ \varphi_{1} \circ \Phi^{-1}=\varphi_{2}$. After choosing bases for V_{1} and V_{2} this becomes a matrix equation:

$$
P\left[\varphi_{1}\right] P^{-1}=\left[\varphi_{2}\right] .
$$

Finally, consider the $K[x]$-modules corresponding to pairs $\left(K^{n}, C_{m}\right)$ and $\left(K^{n},\left(C_{m}\right)^{T}\right)$. From part (e) we know that each of these is isomorphic to $K[x] /(m(x))$ as a $K[x]$ module, hence they are isomorphic to each other. It follows from the above observations that there exists an invertible matrix $P \in \mathrm{GL}_{n}(K)$ such that

$$
P C_{m} P^{-1}=\left(C_{m}\right)^{T} .
$$

[Remark: This strange result would be quite difficult to prove directly. Indeed, I have no idea how to find such a matrix P for a specific companion matrix C_{m}. (The situation is easier for a Jordan block $J_{\lambda} \in \operatorname{Mat}_{n}(K)$: if P is the anti-identity matrix (with 1 s on the anti-diagonal) then we have $P J_{\lambda} P^{-1}=\left(J_{\lambda}\right)^{T}$.) Now let K be any field and consider any matrix $A \in \operatorname{Mat}_{n}(K)$. From part (f) and the existence of Rational Canonical Form we conclude that there exists a matrix $P \in \mathrm{GL}_{n}(K)$ such that

$$
P A P^{-1}=A^{T} .
$$

Strange but true!]

