There are 4 problems and 9 pages. You have 3 hours to write the exam.

1. Galois Connections. Let (P, \leq) and (Q, \leq) be partially ordered sets. We say that a pair of functions $*: P \rightleftharpoons Q : *$ is a Galois connection if for all $p \in P$ and $q \in Q$ we have

$$p \le q^* \quad \Longleftrightarrow \quad q \le p^*.$$

Since this relation is symmetric in P and Q, you need only prove half of parts (a)-(d) below.

(a) Prove that for all $p \in P$ and $q \in Q$ we have

$$p \le p^{**}$$
 and $q \le q^{**}$.

Proof. For all $p \in P$ we have $p^* \leq p^*$ from the reflexivity of partial order. Then putting $q = p^*$ in the definition of Galois connection gives $(p^*) \leq (p)^* \Longrightarrow (p) \leq (p^*)^* = p^{**}$.

(b) Prove that for all $p_1, p_2 \in P$ and $q_1, q_2 \in Q$ we have

 $p_1 \le p_2 \Longrightarrow p_2^* \le p_1^*$ and $q_1 \le q_2 \Longrightarrow q_2^* \le q_1^*$.

Proof. Consider $p_1, p_2 \in P$ such that $p_1 \leq p_2$. By part (a) and the transitivity of partial order we have $p_1 \leq p_2 \leq p_2^{**}$ and then from the definition of Galois connection we have $(p_1) \leq (p_2^*)^* \Longrightarrow (p_2^*) \leq (p_1)^*$.

(c) Prove that for all $p \in P$ and $q \in Q$ we have

$$p^{***} = p^*$$
 and $q^{***} = q^*$.

Proof. Consider any $p \in P$. On the one hand, part (a) tells us that $(p^*) \leq (p^*)^{**}$. On the other hand, part (a) says that $p \leq p^{**}$ and then part (b) gives $(p) \leq (p^{**}) \Longrightarrow (p^{**})^* \leq (p)^*$. Finally, the antisymmetry of partial order gives $p^{***} = p^*$.

(d) We say that an element $p \in P$ (resp. $q \in Q$) is **-closed if $p^{**} = p$ (resp. $q^{**} = q$). Prove that the Galois connection $* : P \rightleftharpoons Q : *$ restricts to an order-reversing **bijection** between **-closed elements.

Proof. Let $P^* \subseteq P$ and $Q^* \subseteq Q$ denote the images of the functions $*: Q \to P$ and $*: P \to Q$, respectively. I claim that $P^* \subseteq P$ is precisely the subset of **-closed elements. Indeed, if $p^{**} = p$ then $p = (p^*)^*$ is the image of p^* . Conversely, if $p = q^*$ for some $q \in Q$ then by part (c) we have $p^{**} = (q^*)^{**} = (q^*) = p$. Similarly, we can show that $Q^* \subseteq Q$ is the subset of **-closed elements in Q. It follows immediately that the functions $*: Q^* \rightleftharpoons P^* : *$ are inverse to each other, hence they are bijections. [The fact that they reverse order follows from (b).]

(e) Finally, suppose that P and Q have bottom and top elements $0_P, 1_P \in P$ and $0_Q, 1_Q \in Q$. In this case **draw a picture** of the bijection from part (d).

2. Image and Preimage. Let *R* be a ring and let $\varphi : M \to N$ be a homomorphism of (left) *R*-modules with kernel ker $\varphi \subseteq M$ and image im $\varphi \subseteq N$. For any (left) *R*-modules $Q \subseteq P$ let $\mathscr{L}(P,Q)$ be the lattice of submodules of *P* that contain *Q*, and let $\mathscr{L}(P) := \mathscr{L}(P,0)$.

(a) For every submodule $A \subseteq M$ prove that the image $\varphi(A) := \{n \in N : \exists a \in A, \varphi(a) = n\}$ is a submodule of N.

Proof. Consider any elements $n_1, n_2 \in \varphi(A)$ and $r \in R$. Since $n_1, n_2 \in \varphi(A)$ there exist $a_1, a_2 \in A$ such that $n_1 = \varphi(a_1)$ and $n_2 = \varphi(a_2)$. Then since φ is a homomorphism of R-modules we have

$$\varphi(a_1 + ra_2) = \varphi(a_1) + r\varphi(a_2) = n_1 + rn_2.$$

Finally, since $A \subseteq M$ is a submodule we have $a_1 + ra_2 \in A$, and it follows that $n_1 + rn_2 \in \varphi(A)$ as desired.

(b) For every submodule $B \subseteq N$ prove that the preimage $\varphi^{-1}(B) := \{m \in M : \exists b \in B, \varphi(m) = b\}$ is a submodule of M.

Proof. Consider any elements $m_1, m_2 \in \varphi^{-1}(B)$ and $r \in R$. Since $m_1, m_2 \in \varphi^{-1}(B)$ there exist $b_1, b_2 \in B$ such that $\varphi(m_1) = b_1$ and $\varphi(m_2) = b_2$. Then since φ is a homomorphism of *R*-modules we have

$$\varphi(m_1 + rm_2) = \varphi(m_1) + r\varphi(m_2) = b_1 + rb_2.$$

Finally, since $B \subseteq N$ is a submodule we have $b_1 + rb_2 \in B$, and it follows that $m_1 + rm_2 \in \varphi^{-1}(B)$ as desired. \Box

(c) For all submodules $A \subseteq M$ and $B \subseteq N$ prove that we have

 $\varphi(A) \subseteq B \iff A \subseteq \varphi^{-1}(B).$

Proof. By definition we have

$$\varphi(A) \subseteq B \iff \forall a \in A, \ \varphi(a) \in B$$
$$\iff \forall a \in A, \ \exists b \in B, \ \varphi(a) = b$$
$$\iff \forall a \in A, \ a \in \varphi^{-1}(B)$$
$$\iff A \subseteq \varphi^{-1}(B).$$

(d) For all submodules $A \subseteq M$ and $B \subseteq N$ you may assume without proof that

$$\varphi^{-1}(\varphi(A)) = A \lor \ker \varphi \quad \text{and} \quad \varphi(\varphi^{-1}(B)) = B \land \operatorname{im} \varphi.$$

Quote from Problem 1 to obtain a poset isomorphism $\mathscr{L}(M, \ker \varphi) \cong \mathscr{L}(\operatorname{im} \varphi)$.

Proof. From part (c) we see that $\varphi : \mathscr{L}(M)^{\mathrm{op}} \rightleftharpoons \mathscr{L}(N) : \varphi^{-1}$ is a Galois connection in the sense of Problem 1, thus from Problem 1(d) we obtain an order-reversing bijection between the subposets of "closed submodules" in $\mathscr{L}(M)^{\mathrm{op}}$ and $\mathscr{L}(N)$. Equivalently, we obtain an **order-preserving** bijection (i.e. a poset isomorphism) between closed submodules in $\mathscr{L}(M)$ and $\mathscr{L}(N)$.

It remains only to determine the closed submodules. By assumption $A \subseteq M$ is $\varphi^{-1}\varphi$ -closed if and only if $A = A \lor \ker \varphi$, and from the universal property of \lor this is equivalent to saying that $\ker \varphi \subseteq A$. Similarly, a submodule $B \subseteq N$ is $\varphi \varphi^{-1}$ -closed if and only if $B = B \land \operatorname{im} \varphi$, which is equivalent to $B \subseteq \operatorname{im} \varphi$. \Box

(e) Prove that we have an isomorphism of (left) *R*-modules $M/\ker \varphi \cong \operatorname{im} \varphi$. [Hint: Show that the surjective homomorphism $(m + \ker \varphi) \mapsto \varphi(m)$ is well-defined and injective.]

Proof. For all elements $m_1, m_2 \in M$ we have

$$(m_1 + \ker \varphi) = (m_2 + \ker \varphi) \iff (m_1 - m_2) \in \ker \varphi$$
$$\iff \varphi(m_1 - m_2) = 0$$
$$\iff \varphi(m_1) = \varphi(m_2).$$

The \Rightarrow direction proves that the map is well-defined and the \Leftarrow direction proves that it is injective. [This result is often called the 1st Isomorphism Theorem.]

(f) Conclude that we have an isomorphism of posets $\mathscr{L}(M, \ker \varphi) \cong \mathscr{L}(M/\ker \varphi)$.

Proof. The *R*-module isomorphism im $\varphi \cong M/\ker \varphi$ from part (e) induces a poset isomorphism $\mathscr{L}(\operatorname{im} \varphi) \cong \mathscr{L}(M/\ker \varphi)$. Then combining this with part (d) gives

$$\mathscr{L}(M, \ker \varphi) \cong \mathscr{L}(\operatorname{im} \varphi) \cong \mathscr{L}(M/ \ker \varphi).$$

[This result is often called the Correspondence Theorem. See the picture from 1(e).]

3. Direct Product of Rings. Let CRng be the category of commutative rings and consider $R, S \in \mathsf{CRng}$. We define the **direct product ring** $R \times S$ as the Cartesian product set with componentwise addition and multiplication. Note that it has a unit: $(1_R, 1_S) \in R \times S$.

(a) Prove that $R \times S$ is the categorical product in CRng. [Hint: You can assume that the Cartesian product is the categorical product in Set.]

Proof. The definition of categorical product is given by the following diagram:

By assumption we know that there exist set functions $\pi_R : R \times S \to R$ and $\pi_S : R \times S \to S$ such that for all set functions $\varphi_R : T \to R$ and $\varphi_S : T \to S$ there exists a unique set

function $\varphi_R \times \varphi_S : T \to R \times S$ making the above diagram commute. Explicitly, these functions are given by

 $\pi_R(r,s) = r, \quad \pi_S(r,s) = s, \quad \text{and} \quad (\varphi_R \times \varphi_S)(t) = (\varphi_R(t), \varphi_S(t)).$

To lift this diagram to the category CRng, first note that π_r and π_S are clearly ring homomorphisms. If $T \in \text{CRng}$ and if φ_R and φ_S are ring homomorphisms then it is also clear that the function $\varphi_S \times \varphi_R$ defined by $(\varphi_R \times \varphi_S)(t) = (\varphi_R(t), \varphi_S(t))$ is a ring homomorphism. Finally, the uniqueness of the ring homomorphism $\varphi_R \times \varphi_S$ follows from the uniqueness of the underlying set function.

(b) If $R \cong S \times T$ for some $R, S, T \in \mathsf{CRng}$ where neither of S or T is the zero ring, prove that R contains a **nontrivial idempotent**, i.e., an element $e \in R$ such that $e^2 = e$ and $e \notin \{0_R, 1_R\}$.

Proof. Since S and T are both nonzero rings we have $0_S \neq 1_S$ and $0_T \neq 1_T$. Now I claim that $e := (1_S, 0_T) \in R \times S$ is a nontrivial idempotent. Indeed, since $0_S \neq 1_S$ and $0_T \neq 1_T$ we see that $e \neq (0_S, 0_T) = 0_R$ and $e \neq (1_S, 1_T) = 1_R$, hence e is nontrivial. And e is idempotent because

$$e^2 = (1_S, 0_T)(1_S, 0_T) = (1_S 1_S, 0_T 0_T) = (1_S, 0_T) = e$$

[Note that $f = (0_S, 1_T) = 1_R - e$ is another perfectly good choice.]

(c) Given any ring $R \in \mathsf{CRng}$ and an element $e \in R$, prove that

e is a nontrivial idempotent $\iff 1_R - e$ is a nontrivial idempotent.

Proof. First note that $e \notin \{0_R, 1_R\}$ if and only if $(1_R - e) \notin \{0_R, 1_R\}$. Now assume that $e^2 = e$. From this it follows that

$$(1_R - e)^2 = (1_R)^2 - e - e + e^2 = 1_R - e - e + e = (1_R - e).$$

Finally, if $f := (1_R - e)$ satisfies $f^2 = f$ then the same computation shows that $e = (1_R - f)$ satisfies $e^2 = e$.

(d) If $e \in R$ is idempotent, prove that $eR := \{er : r \in R\}$ is a commutative ring with unit element $e \in eR$. But note that $eR \subseteq R$ is (probably) **not a subring**.

Proof. We would usually write eR as the principal ideal $(e) \subseteq R$. To see that this is indeed an ideal note that for all $er_1, er_2 \in eR$ and $r_3 \in R$ we have

$$er_1 - r_3(er_2) = e(r_1 - r_3r_2) \in eR.$$

In particular we see that $(eR, +, 0_R)$ is an abelian group and that multiplication is a commutative and associative operation $eR \times eR \rightarrow eR$ that distributes over +. It remains only to show that $e \in eR$ is a unit element. To see this, observe that for all $er \in eR$ we have $e(er) = e^2r = er$.

Finally, observe that $eR \subseteq R$ is a subring if and only if $e \in \{0_R, 1_R\}$.

(e) Finally, suppose that $R \in \mathsf{CRng}$ contains a nontrivial idempotent $e \in R$. In this case prove that R is isomorphic to a direct product of nonzero rings. This is the converse of part (b). [Hint: Use parts (c) and (d).]

Proof. Let $e \in R$ be a nontrivial idempotent, so that $1_R - e \in R$ is also a nontrivial idempotent by part (c). From part (d) we know that eR and $(1_R - e)R$ are nonzero commutative rings. We will prove that there is a ring isomorphism $R \cong eR \times (1_R - e)R$.

Indeed, consider the obvious ring homomorphisms $R \to eR$ and $R \to (1_R - e)R$ defined by $r \mapsto er$ and $r \mapsto (1_R - e)r$, respectively. From part (a) these define a canonical product homomorphism $\varphi(r) := (er, (1_R - e)r)$. To prove that φ is injective we will show ker $\varphi = \{0_R\}$. Indeed, if $\varphi(r) = (er, (1_R - e)r) = (0_R, 0_R)$ then we have

$$r = 1_R r = (e + (1_R - e))r = er + (1_R - e)r = 0_R + 0_R = 0_R$$

as desired. To prove that φ is surjective, consider a general element $(er_1, (1_R - e)r_2)$ of the ring $eR \times (1_R - e)R$. Then since $e(1_R - e) = (1_R - e)e = 0_R$ we have

$$\varphi(er_1 + (1_R - e)r_2) = (e(er_1 + (1_R - e)r_2), (1_R - e)(er_1 + (1_R - e)r_2))$$

= $(e^2r_1 + e(1_R - e)r_2, (1_R - e)er_1 + (1_R - e)^2r_2)$
= $(er_1 + 0_Rr_2, 0_Rr_1 + (1_R - e)r_2)$
= $(er_1, (1_R - e)r_2).$

4. Companion Matrices. Let K be a field.

(a) Use the fact that K[x] is a Euclidean domain to prove that K[x] is a PID. [Hint: Consider a nonzero ideal $0 \subsetneq I \subseteq K[x]$ and let $m(x) \in I$ be a monic polynomial of minimal degree.]

Proof. Suppose that $I \subseteq K[x]$ is a nonzero ideal and let $m(x) \in I$ be a monic polynomial of minimal degree. Note that $(m(x)) \subseteq I$. Now consider any polynomial $f(x) \in I$. Since m(x) is monic we can use long division to obtain polynomials $q(x), r(x) \in K[x]$ such that f(x) = q(x)m(x) + r(x) and such that r(x) = 0 or $\deg(r) < \deg(m)$. Since I is an ideal we have $r(x) = q(x)m(x) - f(x) \in I$. Then if $r(x) \neq 0$ we find that $\deg(r) < \deg(m)$, which contradicts the minimality of $\deg(m)$. It follows that r(x) = 0 and hence $f(x) = q(x)m(x) \subseteq (m(x))$. Since this is true for all f(x) we have $I \subseteq (m(x))$, and hence I = (m(x)).

(b) Given a monic polynomial $m(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in K[x]$, prove that (the images of) $1, x, x^2, \ldots, x^{n-1}$ are a basis for the K-vector space K[x]/(m(x)).

Proof. A general K-linear combination of the elements $1, x, \ldots, x^{n-1} \in K[x]/(m(x))$ is just a coset r(x) + (m(x)) where $r(x) \in K[x]$ satisfies r(x) = 0 or $\deg(r) \le n-1$. To prove "spanning", consider any element $f(x) + (m(x)) \in K[x]/(m(x))$. Dividing the polynomial f(x) by the monic polynomial m(x) gives f(x) = q(x)m(x) + r(x) where r(x) = 0 or $\deg(r) \le n-1$. The result now follows from the fact that f(x) + (m(x)) =r(x) + (m(x)). To prove "independence", assume for contradiction that there exists a nonzero polynomial $r(x) \in K[x]$ such that $\deg(r) \le n-1$ and r(x) + (m(x)) =0 + (m(x)). The fact that $r(x) \in (m(x))$ means that we have r(x) = f(x)m(x) for some nonzero $f(x) \in K[x]$ and the fact that K is a domain implies that

$$n = \deg(m) \le \deg(m) + \deg(f) = \deg(r) \le n - 1,$$

which is the desired contradiction.

(c) "Multiplication by x" defines a K-linear endomorphism $K[x]/(m(x)) \to K[x]/(m(x))$. Find the matrix of this endomorphism in terms of the basis from part (b). We will call this matrix $C_m \in Mat_n(K)$.

Proof. To find the matrix we just need to know what "multiplication by x" does to the basis elements. Note that we have

$$x \cdot 1 = x,$$

$$x \cdot x = x^{2},$$

$$\vdots$$

$$x \cdot x^{n-2} = x^{n-1},$$

$$x \cdot x^{n-1} = x^{n} = -a_{0}1 - a_{1}x - \dots - a_{n-1}x^{n-1},$$

where each polynomial is interpreted as the coset in K[x]/(m(x)) that it generates. The corresponding matrix is

$$C_m = \begin{pmatrix} & & & -a_0 \\ 1 & & & -a_1 \\ & 1 & & -a_2 \\ & & \ddots & & \vdots \\ & & & 1 & -a_{n-1} \end{pmatrix},$$

where we interpret the blank entries as zeroes. [This is called the companion matrix of the monic polynomial m(x).]

(d) You may assume without proof that m(x) is both the minimal polynomial **and** the characteristic polynomial of the matrix C_m . In this case, prove that m(x) is both the minimal **and** the characteristic polynomial of the **transpose** matrix $(C_m)^T$.

Proof. Consider **any** matrix $A \in \operatorname{Mat}_n(K)$ and recall that the minimal polynomial is the unique monic polynomial $f(x) \in K[x]$ of minimum degree satisfying $f(A) = 0 \in \operatorname{Mat}_n(K)$. First note that $f(A)^T = f(A^T)$ for all polynomials $f(x) \in K[x]$ and hence we have $f(A) = 0 \iff f(A^T) = 0$. It follows that A and A^T have the same minimal polynomial. Then recall that the characteristic polynomial of A is defined as $\det(xI_n - A) \in K[x]$. Since

$$\det(xI_n - A) = \det((xI_n - A)^T) = \det(xI_n - A^T),$$

we conclude that A and A^T have the same characteristic polynomial. In particular, both of these statements are true when $A = C_m$.

(e) Define a (finitely-generated and torsion) K[x]-module structure on $M = K^n$ by letting x act as the matrix $(C_m)^T$. Since K[x] is a PID we know (from the FTFGMPID) that there exist unique, monic, nonconstant polynomials $f_1(x)|f_2(x)|\cdots|f_d(x)$ such that $M \cong \bigoplus_{i=1}^d K[x]/(f_i(x))$ as K[x]-modules. Use part (d) to **compute these polynomials**. [Hint: You can quote results from class.]

Proof. From class we know that $f_d(x)$ is the minimal polynomial of $(C_m)^T$ and that $\prod_{i=1}^d f_i(x)$ is the characteristic polynomial of $(C_m)^T$. And from part (d) we know that m(x) is the minimal and the characteristic polynomial of $(C_m)^T$. Since the polynomials $f_i(x)$ are nonconstant this implies that d = 1 and $f_d(x) = m(x)$.

(f) Finally, prove that there exists an invertible matrix $P \in GL_n(K)$ such that

$$PC_m P^{-1} = (C_m)^T.$$

Proof. Recall that a K[x]-module is the same as a pair (V, φ) where V is a K-vector space and x acts on V by the K-linear endomorphism $\varphi \in \operatorname{End}_K(V)$. Furthermore, recall that a morphism of K[x]-modules $(V_1, \varphi_1) \to (V_2, \varphi_2)$ is the same as a K-linear function $\Phi : V_1 \to V_2$ satisfying $\Phi \circ \varphi_1 = \varphi_2 \circ \Phi$. Thus an **isomorphism** of K[x]modules is the same as an isomorphism of K-vector spaces $\Phi : V_1 \to V_2$ satisfying $\Phi \circ \varphi_1 \circ \Phi^{-1} = \varphi_2$. After choosing bases for V_1 and V_2 this becomes a matrix equation:

$$P[\varphi_1]P^{-1} = [\varphi_2].$$

Finally, consider the K[x]-modules corresponding to pairs (K^n, C_m) and $(K^n, (C_m)^T)$. From part (e) we know that each of these is isomorphic to K[x]/(m(x)) as a K[x]-module, hence they are isomorphic to each other. It follows from the above observations that there exists an invertible matrix $P \in \operatorname{GL}_n(K)$ such that

$$PC_m P^{-1} = (C_m)^T.$$

[Remark: This strange result would be quite difficult to prove directly. Indeed, I have no idea how to find such a matrix P for a specific companion matrix C_m . (The situation is easier for a Jordan block $J_{\lambda} \in \operatorname{Mat}_n(K)$: if P is the anti-identity matrix (with 1s on the anti-diagonal) then we have $PJ_{\lambda}P^{-1} = (J_{\lambda})^T$.) Now let K be any field and consider any matrix $A \in \operatorname{Mat}_n(K)$. From part (f) and the existence of Rational Canonical Form we conclude that there exists a matrix $P \in \operatorname{GL}_n(K)$ such that

$$PAP^{-1} = A^T.$$

Strange but true!]