Posets and Lattices.

- Limits: \wedge , 1
- Colimits: \lor , 0
- Examples: Divisors, Subsets, Subgroups, Submodules
- Modular Elements vs. Normal Subgroups
- Galois Connections: $p \leq q^* \iff q \leq p^*$
- Galois Connection $2^S \rightleftharpoons 2^T$ from a Relation $R \subseteq S \times T$.
- Example: Image and Preimage of a Homomorphism

 $\mathscr{L}(G, \ker \varphi) \cong \mathscr{L}(\operatorname{im} \varphi)$

Equivalence Relations and Quotients.

- Definition of Equivalence $\sim \subseteq S \times S$
- Universal Property of the Quotient S/\sim
- Equivalence from a Function $f: S \to T$

$$s_1 \sim s_2 \iff f(s_1) = f(s_2)$$

• Canonical Factorization

$$S \xrightarrow{f} \inf f \xrightarrow{f} T$$

- G-Invariant Relations vs. Normal Subgroups
- 1st, 2nd, 3rd Isomorphism Theorems for Groups and Modules
- Jordan–Hölder Theorem
- Examples: Cyclic Groups, Vector Spaces

Products of Groups.

- Multiplication Function $\mu: H \times K \to G$ for Subgroups $H, K \subseteq G$
- μ Injective $\iff H \cap K = 1$
- im μ is Subgroup $\iff HK = KH \iff H \subseteq N_G(K)$ OR $K \subseteq N_G(H)$
- Semidirect Product: $H \subseteq N_G(K)$ XOR $K \subseteq N_G(H)$
- Direct Product: $H \subseteq N_G(K)$ AND $K \subseteq N_G(H)$
- External vs. Internal Direct and Semidirect Products
- Semidirect: Right-Split Short Exact Sequence
- Direct: Left-Split Short Exact Sequence
- Examples: Dihedral Groups, General Affine Groups

Automorphism Groups.

- Symmetric Group: $S_n = \operatorname{Aut}_{\mathsf{Set}}(\{1, 2, \dots, n\})$
- General Linear Group: $\operatorname{GL}_n(K) = \operatorname{Aut}_{K-\mathsf{Mod}}(K^n)$
- Alternating and Special Subgroups
- Abel–Galois–Ruffini: S_5 is not Solvable
- A_n and $PSL_n(K)$ are (usually) Simple

$$\operatorname{PSL}_{n}(\mathbb{F}_{q})| = \frac{q^{\binom{n}{2}}(q^{2}-1)(q^{3}-1)\cdots(q^{n}-1)}{\gcd(n,q-1)}$$

Category of G-Sets.

- Definitions: Category, Functor, Natural Transformation
- Definition of "Group" Models $\operatorname{Aut}_{\mathcal{C}}(-)$
- G-Set is $G \to \operatorname{Aut}_{\mathsf{Set}}(X)$, so $G\operatorname{-Set} = \operatorname{Set}^G$
- Orbits and Stabilizers
- Fundamental Theorem of G-Sets
- Examples: Cosets, Double Cosets, Grassmannians
- Conjugation and the Class Equation

Sylow Theory.

- Lagrange's Theorem
- Converse to Lagrange is Not True
- Cauchy's Theorem: $p \mid |G| \Longrightarrow G$ has an element of order p
- Sylow Theorem Parts 1, 2, 3
- Application: Groups of Size $p^{\alpha}q$ and pqr, for Prime p, q, r
- Application: Primary Decomposition of Finite Abelian Groups

Differences Between Grp and Ab.

- Definitions: Zero Object, Kernel, Cokernel, Monomorphism, Epimorphism
- Ab Has a Biproduct: \oplus
- Ab is Enriched Over Ab
- $\operatorname{End}_{Ab}(-): Ab \to Rng$
- Multiplication is Repeated Addition: $\mathbb{Z} = \operatorname{End}_{Ab}(\mathbb{Z})$

Rings and *R*-Modules.

- Definition of "Ring" Models $\operatorname{End}_{Ab}(-)$
- *R*-Module is $R \to \operatorname{End}_{Ab}(M)$, so R-Mod = Ab^{*R*}
- \mathbb{Z} -Mod = Ab
- K-Mod = K-Vec
- Definitions: Free Modules, Adjoint Functors, Meta-Theorem (RAPL)
- Forget : R-Mod \rightarrow Ab has Left Adjoint Free_R(A) = $R^{\oplus A}$
- Application: $R^{\oplus (A \sqcup B)} = R^{\oplus A} \oplus R^{\oplus B}$

Algebras Over a Commutative Ring.

- Definitions: R-Alg and R-CAlg
- Polynomials R[X] = Free Commutative Algebra
- Evaluation Homomorphism $\varphi_a : R[x] \to S$
- Algebraic vs. Transcendental

Modules Over a PID, Part I.

- Field \Rightarrow Euclidean \Rightarrow PID \Rightarrow UFD
- \mathbb{Z} and K[x] are Euclidean
- Dimension Exists in *K*-Mod (Steinitz Exchange)
- Localization of a Module: $M \to A^{-1}M = M \otimes_R A^{-1}R$
- Rank Exists in R-Mod When R is an Integral Domain
- Submodule of $R^{\oplus A}$ is Free of Rank $\leq |A|$ when R is PID
- FTFGMPID, Part I:

$$M \cong R^{\oplus \operatorname{rank}(M)} \oplus \operatorname{Tor}_R(M)$$

Matrix Notation (Assume R is Commutative).

- $\varphi : \bigoplus M_j \to \bigoplus N_i$ is Determined by Components $\varphi_{ij} : M_j \to N_i$ $\varphi : R^{\oplus m} \to R^{\oplus n}$ is Determined by Matrix $[\varphi] \in \operatorname{Mat}_{n \times m}(R)$
- *R*-Mod is Enriched Over *R*-Mod
- Choosing a Basis is Isomorphism of *R*-Modules: $\operatorname{Hom}_{R\operatorname{-Mod}}(R^{\oplus m}, R^{\oplus n}) \xrightarrow{\sim} \operatorname{Mat}_{n \times m}(R)$
- Special Case: Isomorphism of *R*-Algebras: $\operatorname{End}_{R-\operatorname{Mod}}(R^{\oplus n}) \xrightarrow{\sim} \operatorname{Mat}_n(R)$
- Change of Basis: $\operatorname{GL}_n(R) \times \operatorname{GL}_m(R)$ acts on $\operatorname{Mat}_{n \times m}(R)$ by $(A, B) \cdot C = ACB^{-1}$
- Special Case: $\operatorname{GL}_n(R)$ acts on $\operatorname{Mat}_n(R)$ by Conjugation

Modules Over a PID, Part II.

- Elementary Matrices $E_{ij}(r), E_{ii}(r), P_{ij}$
- RREF Exists Over a Field
- Elementary Matrices Generate $GL_n(R)$ when R is Euclidean
- Pseudo-Elementary Matrices Generate $GL_n(R)$ when R is PID
- Smith Normal Form Over a PID
- Chinese Remainder Theorem Over a PID
- FTFGMPID, Part II:

$$\operatorname{Tor}_R(M) \cong \bigoplus \frac{R}{(f_i)} \cong \bigoplus \frac{R}{(p_i^{\alpha_{ij}})}$$

Applications of FTFGMPID.

- Fundamental Theorem of Finitely Generated Abelian Groups
- Primitive Root Theorem
- K[x]-Modules = Pairs (V, φ) with $V \in K$ -Vec and $\varphi \in \operatorname{End}_{K-\operatorname{Vec}}(V)$
- Rational Canonical Form
- Minimal vs. Characteristic Polynomial
- Jordan Canonical Form
- Jordan-Chevalley Decomposition