
Math 762 Spring 2016
Midterm Exam Drew Armstrong

Problem 1. Cokernels in Ab. Let ϕ : A→ B be a homomorphism of abelian groups.

(a) State the universal property of the cokernel π : B → cokerϕ.

We say that π : B → cokerϕ is the cokernel of ϕ : A→ B if
• π ◦ ϕ = 0, and
• for all homomorphisms ψ : B → C such that ψ ◦ ϕ = 0, there exists a unique

homomorphism ψ̄ : cokerϕ→ C such that ψ̄ ◦ π = ψ.
We can summarize these two conditions with the following diagram:
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(b) State the universal property of the quotient homomorphism π : B → B/imϕ.

We say that π : B → B/imϕ is a quotient homomorphism if
• imϕ ⊆ kerπ, and
• for all homomorphisms ψ : B → C such that imϕ ⊆ kerψ, there exists a unique

homomorphism ψ̄ : B/imϕ→ C such that ψ̄ ◦ π = ψ.
We can summarize these two conditions with the following diagram:

C

A
ϕ //

0

((

0

44

B

π **

ψ
44

B/imϕ

∃!ψ̄

OO

(c) Use your answers from (a) and (b) to show that π : B → B/imϕ is the cokernel of ϕ.

Observe that the two diagrams are the same.

[Remark: This argument also works in the category Grp as long as imϕ ⊆ B is a normal subgroup.
More generally, the cokernel of ϕ : A → B is the quotient homomorphism π : B → B/〈imϕ〉B,
where 〈imϕ〉B is the conjugate closure of imϕ in B.]

Problem 2. Independent and Spanning Sets. Let R be a ring. By an “R-module” we
will mean a left R-module.

(a) State the universal property of the free R-module generated by the set A.

We say that F is the free R-module generated by A if
• we have a set function i : A→ F , and



• for all R-modules M and set functions j : A→M there exists a unique R-module
homomorphism ϕ : F →M such that ϕ ◦ i = j.

We can summarize these two conditions with the following diagram:
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(b) Let M be an R-module and let A → M be an indexed subset of M . State what it
means for this subset to be: (1) R-linearly independent, (2) R-spanning, and (3) an
R-basis. Use the universal property from part (a) in your answer.

Consider an indexed subset j : A→M and let i : A→ F be the free module generated
by A. Then by part (a) there exists a canonical R-module homomorphism ϕ : F →M
such that ϕ ◦ i = j. We say that
(1) A→M is R-linearly independent if ϕ is injective,
(2) A→M is R-spanning if ϕ is surjective,
(3) A→M is an R-basis if ϕ is bijective.

(c) Prove that an R-module has a basis if and only if it free.

Proof. If i : A → F is the free module generated by A then the canonical homomor-
phism ϕ : F → F is the identity map. Since the identity map is bijective we conclude
that A → F is a basis. Conversely, let M be an R-module and let j : A → M be a
basis. If i : A → F is the free module generated by A this means that the canonical
morphism ϕ : F →M satisfying ϕ ◦ i = j is a bijection, hence it is an isomorphism of
R-modules. �

[Remark: In the next problem I will use the fact that the free R-module F generated by i : A→ F
can be identified with the collection of formal sums

∑
a∈A raia in which ra = 0 for all but finitely

many a ∈ A.]

Problem 3. Vector Spaces are Free. Let K be a field and let V be a K-module.

(a) Prove that every miminal K-spanning subset of V is a basis.

Proof. Let j : A → V be a minimal spanning set and assume for contradiction that
there exists a linear relation ∑

a∈A
raja = 0

in which ra′ 6= 0 for some a′ ∈ A. Then since K is a field we can divide by ra′ to get

ja′ =
∑
a6=a′

(
− ra
ra′

)
ja.

Finally, given any element u =
∑

a∈A saja ∈ V we can write

u =
∑
a6=a′

(
sa −

sa′ra
ra′

)
ja,

which contradicts the minimality of j : A → V . We conclude that j : A → V is
K-linearly independent, hence it is a basis. �



(b) Prove that every maximal K-independent subset of V is a basis. [It then follows from
Zorn’s Lemma that every vector space has a basis, but don’t prove this.]

Proof. Let j : A → V be a maximal K-independent set. To show that the set is
K-spanning, consider any u ∈ V \ im j. By maximality of j : A → V there exists a
K-linear relation

ru+
∑
a∈A

raja = 0

in which not all coefficients are zero. If r = 0 then we obtain a nontrivial relation∑
a∈A raja = 0, which contradicts the independence of A. Hence r 6= 0. Then since K

is a field we can divide by r to obtain

u =
∑
a∈A

(
−ra
r

)
ja.

We conclude that j : A→ V is a K-spanning set, hence it is a basis. �

(c) If the vector space V is finitely generated, prove (without using Zorn’s Lemma) that
V has a basis. [Hint: Let u1, u2, . . . , un ∈ V be a K-spanning set. If this set is not
K-linearly independent then ... ]

Proof. Let u1, u2, . . . , un ∈ V be a K-spanning set. If this set is not K-linearly inde-
pendent then we know from part (a) that the K-spanning set is not minimal. That
is, there exists an element ui such that {u1, . . . , un} \ {ui} is still a K-spanning set. If
this smaller set is still not K-linearly independent we can repeat the argument until a
K-linearly independent K-spanning set is reached. �

Problem 4. Cyclic Modules. Let R be a ring. We say that a (left) R-module M is cyclic
if it has an R-spanning set of size one.

(a) If I ⊆ R is a (left) ideal, prove that the abelian quotient group R/I is a (left) R-module
(i.e., construct a well-defined (left) linear R-action).

Proof. For all r ∈ R and s + I ∈ R/I we will define r(s + I) := rs + I. To show that
this operation is well-defined, suppose that s1 + I = s2 + I, i.e., s1−s2 ∈ I. Then since
I is a left ideal we have

rs1 − rs2 = r(s1 − s2) ∈ I,
and it follows that r(s1 + I) = rs1 + I = rs2 + I = r(s2 + I) as desired. Then to
show that the (well-defined) operation λr(s+I) = rs+I defines a ring homomorphism
λ : R→ EndAb(R/I), note that for all r1, r2 ∈ R and s+ I ∈ R/I we have

(r1 + r2)(s+ I) = (r1 + r2)s+ I

= (r1s+ r2s) + I

= (rs1 + I) + (rs2 + I)

= r1(s+ I) + r2(s+ I)

and

(r1r2)(s+ I) = (r1r2)s+ I

= r1(r2s) + I

= r1(r2s+ I)



= r1(r2(s+ I));

note that for all r ∈ R and s1 + I, s2 + I ∈ R/I we have

r((s1 + I) + (s2 + I)) = r((s1 + s2) + I)

= r(s1 + s2) + I

= (rs1 + rs2) + I

= (rs1 + I) + (rs2 + I)

= r(s1 + I) + r(s2 + I);

and, finally, note that for all s+ I ∈ R/I we have 1(s+ I) = 1s+ I = s+ I. �

(b) Let I ⊆ R be a (left) ideal of R. Prove that the (left) R-module R/I is cyclic.

Proof. I claim that {1 + I} ⊆ R/I is an R-spanning set of size one. Indeed, for all
r + I ∈ R/I we have r + I = r(1 + I). �

(c) If M is a cyclic (left) R-module, prove we have M ≈ R/I for some (left) ideal I ⊆ R.
[Hint: Use the definition of spanning from Problem 2(b).]

Proof. If {m} ⊆ M is an R-spanning set then we obtain a canonical surjective R-
module homomorphism ϕ : R � M defined by m 7→ rm. [We can think of R as
the free R-module generated by one element.] Then by the 1st Isomorphism Theorem
for modules we obtain an isomorphism M = imϕ ≈ R/ kerϕ, where kerϕ is a left
R-submodule of R (i.e., a left ideal). �


