
Math 762 Spring 2016
Homework 4 Drew Armstrong

Problem 1. Cokernel of a Direct Sum. Here’s something that confused me in class, so
I’ll have you prove it. (Just like you have to wear a coat when your mother is cold.) Let
R be a ring and suppose we have a homomorphism ϕ : M1 ⊕M2 → N1 ⊕ N2 of R-modules.
Since ⊕ is both the product and the coproduct in R-Mod, there exist canonical injections and
projections as in the following diagram:

M1

ι1

$$

ϕ11 // N1

M1 ⊕M2
ϕ // N1 ⊕N2

π1
::

π2 $$
M2

ι2

::

ϕ22 // N2

Define the “component homomorphisms” ϕij := πi ◦ ϕ ◦ ιj : Mj → Ni for i, j ∈ {1, 2} and
assume that ϕ12 and ϕ21 are both the zero map. In this case prove that we have an isomorphism

N1 ⊕N2

imϕ
≈ N1

imϕ11
⊕ N2

imϕ22
.

Proof. First note that the map ϕ is uniquely determined by its components ϕ11, ϕ12, ϕ21, ϕ22.
Indeed, by the universal property of the coproduct M1 ⊕ M2 we see that ϕ is uniquely
determined by the maps ϕ∗1 := ϕ◦ι1 and ϕ∗2 := ϕ◦ι2. Then from the universal property of the
product N1⊕N2 we see that the map ϕ∗1 is uniquely determined by the maps ϕ11 = π1 ◦ϕ∗1
and ϕ21 = π2 ◦ ϕ∗1. Similarly, ϕ∗2 is uniquely determined by ϕ12 and ϕ22. In summary, for a
general element m = m1 +m2 ∈M1 ⊕M2 we have

ϕ(m) = ϕ(m1 +m2)

= ϕ∗1(m1) + ϕ∗2(m2)

= (ϕ11(m1) + ϕ21(m1)) + (ϕ12(m2) + ϕ22(m2))

= (ϕ11(m1) + ϕ12(m2)) + (ϕ21(m1) + ϕ22(m2)).

But we can make this clearer using matrix notation:

ϕ(m) =

(
ϕ11 ϕ12

ϕ21 ϕ22

)(
m1

m2

)
=

(
ϕ11(m1) + ϕ12(m2)
ϕ21(m1) + ϕ22(m2)

)
.

Then since we have assumed that ϕ12 and ϕ21 are the zero maps this simplifies to

ϕ(m) =

(
ϕ11 0
0 ϕ22

)(
m1

m2

)
=

(
ϕ11(m1)
ϕ22(m2)

)
,

and it follows that imϕ = imϕ11 ⊕ imϕ22.
Next consider the quotient maps p1 : N1 � N1/imϕ11 and p2 : N2 � N2/imϕ22. Compos-

ing these with π1 and π2 gives us two maps

p1 ◦ π1 : N1 ⊕N2 → N1/imϕ11,

p2 ◦ π2 : N1 ⊕N2 → N2/imϕ22,



and then from the universal property of the coproduct there exists a unique homomorphism
Φ such that the following diagram commutes:

N1
p1 // N1/imϕ11

N1 ⊕N2
Φ //

π1
00

π2 ..

N1
imϕ11

⊕ N2
imϕ22

55

))
N2 p2

// N2/imϕ22

In terms of matrix notation we have

Φ(n) = Φ

(
n1

n2

)
=

(
n1 + imϕ11

n2 + imϕ22

)
,

and it follows that Φ is a surjective homomorphism with ker Φ = imϕ11⊕ imϕ22. Finally, the
1st Isomorphism Theorem tells us that

N1

imϕ11
⊕ N2

imϕ22
= im Φ ∼=

N1 ⊕N2

ker Φ
=

N1 ⊕N2

imϕ11 ⊕ imϕ22
=
N1 ⊕N2

imϕ
.

�

[Remark: I’m still unhappy about this. Clearly the matrix notation is the correct way to think
about the problem, but one must first justify the matrix notation from the universal properties.
Apparently, this is a game that can be played in any additive category; unfortunately, I couldn’t
find a convincing exposition anywhere. After all these years matrices still seem like magic.]

Problem 2. Chinese Remainder Theorem for PIDs. Let R be a PID and consider any
element a ∈ R with unique prime factorization a = pα1

1 pα2
2 · · · p

αd
d .

(a) Prove that there exist elements r1, . . . , rd ∈ R such that the following identity holds in
the field of fractions:

1

a
=

r1

pα1
1

+ · · ·+ rd
pαd
d

.

[Hint: Use induction on d.]
(b) Use part (a) to construct an isomorphism of R-modules

R

(a)
≈ R

(pα1
1 )
⊕ · · · ⊕ R

(pαd
d )

.

Proof. (a): Let R be a PID and consider two coprime elements p, q ∈ R (that is, assume that
p and q have no common non-unit divisor). Now consider the ideal

(p, q) := {ax+ by : x, y ∈ R}.
Since R is a PID we must have (p, q) = (r) for some r ∈ R. If (r) 6= (1) then since (p) ⊆
(p, q) = (r) and (q) ⊆ (p, q) = (r) we see that r is a common non-unit divisor of p and q,
which is a contradiction. We conclude that (p, q) = (r) = (1) and hence there exist x, y ∈ R
such that 1 = px+ qy.

Now consider any element a ∈ R with prime factorization a = pα1
1 pα2

2 · · · p
αd
d . First note

that pα1
1 and a/pα1

1 = pα2
2 · · · p

αd
d are coprime so by the above remarks there exist r1, r

′
1 ∈ R

such that

1 = r1(pα2
2 · · · p

αd
d ) + r′1p

α1
1 .



We can divide both sides by a to get

1

a
=

r1

pα1
1

+
r′1

pα2
2 · · · p

αd
d

and then by induction on d there exist elements r′2, . . . , r
′
d ∈ R such that

1

pα2
2 · · · p

αd
d

=
r′2
pα2

2

+ · · ·+
r′d
pαd
d

.

Finally, combining the two previous equations gives

(1)
1

a
=

r1

pα1
1

+ · · ·+ rd
pαd
d

where ri := r′1r
′
i ∈ R for i ∈ {2, . . . , d}.

(b): Let a ∈ R be as above. We have an obvious homomorphism of R-modules

Φ : R→ R

(pα1
1 )
⊕ · · · ⊕ R

(pαd
d )

defined by Φ(s) := (s + (pα1
1 ), s + (pα2

2 ), . . . , s + (pαd
d )) and the kernel of this homomorphism

is obviously the intersection of ideals:

ker Φ = (pα1
1 ) ∩ (pα2

2 ) ∩ · · · ∩ (pαd
d ).

If we can show that ker Φ = (a) and that Φ is surjective then we will be done by the 1st
Isomorphism Theorem.

First we will show that ker Φ = (a). Indeed, for each i we know that pαi
i divides a and

hence we have (a) ⊆ (pαi
i ). Then from the universal property of intersection it follows that

(a) ⊆ ker Φ. Conversely, since R is a PID we have ker Φ = (r) for some r ∈ R. Since
ker Φ ⊆ (pαi

i ) this implies that pαi
i divides r for each i. Now consider the following general

argument: If elements p, q ∈ R both divide an element r ∈ R then there exist elements k, ` ∈ R
such that r = pk and r = q`. If in addition p, q are coprime then from part (a) there exist
elements x, y ∈ R such that 1 = px+ qy. Now multiply both sides of this equation by r to get

r = rpx+ rqy

= (q`)px+ (pk)qy

= (pq)`x+ (pq)ky

= pq(`x+ ky).

In summary, if p, q both divide r and if p, q are coprime then their product pq divides r.
Going back to our problem, we know that each pαi

i divides r and that the elements pαi
i , p

αj

j

are coprime for i 6= j. By induction this implies that their product a divides r, and hence
ker Φ = (r) ⊆ (a).

Next we will show that Φ is surjective. (This is the actual hard part, which goes back to
Sun Tzu in the 3rd century A.D.) To do this we first multiply boths sides of equation (1) by
a to obtain

(2) 1 = r1a
′
1 + r2a

′
2 + · · ·+ rda

′
d,

where a′i := a/pαi
i =

∏
i 6=j p

αj

j ∈ R for each i. Now consider an arbitrary element

(s1 + (pα1
1 ), s2 + (pα2

2 ), . . . , sd + (pαd
d ))

of the codomain of Φ. I claim that this element equals Φ(s) for the special element

s := s1r1a
′
1 + s2r2a

′
2 + · · ·+ sdrda

′
d ∈ R.



Indeed, since a′i is divisible by p
αj

j for all i 6= j we see that s+ (pαi
i ) = siria

′
i + (pαi

i ). But then

from (2) we have

ria
′
i = 1−

∑
i 6=j

rja
′
j

and it follows that

s+ (pαi
i ) = siria

′
i + (pαi

i ) = si − si
∑
i 6=j

rja
′
j + (pαi

i ) = si + (pαi
i ),

as desired. Pretty clever, right? �

[Remark: We will use the same clever trick on Problem 4.]

Problem 3. Idempotents = Internal Direct Sums. Let R be any ring and let M be a
(left) R-module. Let E = EndR(M) be the (noncommutative) ring of endomorphisms. We
say that an endomorphism e ∈ E is idempotent if e2 = e ◦ e = e.

(a) Given e ∈ E, prove that e is idempotent if and only if id − e is idempotent. We call
this an orthogonal pair of idempotents because e ◦ (id− e) = (id− e) ◦ e = 0.

(b) If e ∈ E is idempotent, prove that M decomposes as a direct sum of R-submodules

M = im e⊕ im (id− e).
(c) Conversely, if M = M1 ⊕M2 is a direct sum of (left) R-submodules prove that there

exist idempotents e1, e2 ∈ E such that im e1 = M1, im e2 = M2, e1 + e2 = id and
e1 ◦ e2 = e2 ◦ e1 = 0. [Hint: Think of ⊕ as the product in R-Mod.]

Proof. (a): Consider e ∈ E = EndR(M). If e2 = e then we have

(id− e)2 = (id− e) ◦ (id− e)
= id ◦ id− e ◦ id− id ◦ e+ e ◦ e
= id− e− �e+ �e

= (id− e).

Conversely, suppose that (id − e)2 = (id − e). Then by the same argument it follows that
e = (id− (id− e)) is idempotent. Finally, if e2 = e we note that

e ◦ (id− e) = e ◦ id− e ◦ e = e− e = 0

and
(id− e) ◦ e = id ◦ e− e ◦ e = e− e = 0.

(b): Now suppose that e ∈ E is idempotent. In this case I claim that M decomposes as a
direct sum M = im e⊕ im (id− e). To see this, first note that for all m ∈M we have

m = id(m) = (e+ (id− e))(m)

= e(m) + (id− e)(m)

∈ im e+ im (id− e),
hence M = im e+ im (id− e). Next consider any element m ∈ im e∩ im (id− e), i.e., such that
there exist n1, n2 ∈M with m = e(n1) = (id− e)(n2). Applying e to both sides gives

(e ◦ e)(n1) = (e ◦ (id− e))(n2)

e(n1) = 0(n2)

e(n1) = 0,

and hence m = e(n1) = 0. We conclude that im e ∩ im (id− e) = 0, as desired.



(c): Finally, suppose that we have submodules M1,M2 ⊆M such that M = M1 ⊕M2. We
will think of this as a categorical product with canonical projections π1 : M1 ⊕M2 → M1

and π2 : M1 ⊕M2 → M2. By the universal property, there exists a unique endomorphism
e1 : M1 ⊕M2 →M1 ⊕M2 such that the following diagram commutes:

M1

M1 ⊕M2
e1 //

π1 ++

0
33

M1 ⊕M2

π1
::

π2 $$
M2

Similarly, there exists a unique endomorphism e2 : M1 ⊕M2 →M1 ⊕M2 such that

M1

M1 ⊕M2
e2 //

0 ++

π2
33

M1 ⊕M2

π1
::

π2 $$
M2

I claim that e1, e2 is the desired pair of orthogonal idempotents. The proof of this is immediate
after we observe how e1, e2 behave in terms of the matrix notation from Problem 1. That is,
observe that for all elements m = (m1,m2) ∈M1 ⊕M2 we have

e1(m) =

(
id 0
0 0

)(
m1

m2

)
=

(
m1

0

)
and e2(m) =

(
0 0
0 id

)(
m1

m2

)
=

(
0
m2

)
.

�

[Remark: This is a very important and basic observation that somehow never gets treated in algebra
textbooks. I don’t know why. You can find it in books on algebraic geometry or representation
theory, but they will assume there that you already know it. Actually, there is a lot of “advanced
linear algebra” that falls into this gap, including the following two problems.]

Problem 4. Generalized Eigenspaces of a Matrix. Let K be a field and consider a
matrix A ∈ Matn(K). Let ϕA : K[x] → Matn(K) be the canonical homomorphism from
the free algebra K[x] (= K〈x〉). Since K[x] is a PID we know that the kernel has the form
kerϕA = (mA(x)) for some unique monic polynomial mA(x) called the minimal polynomial of
A. Let mA(x) = f1(x)m1 · · · fd(x)md be the unique factorization into irreducible polynomials
(note that mA(x) is not necessarily irreducible because Matn(K) is not an integral domain).
Then by Problem 2 there exist polynomials gi(x) ∈ K[x] such that

(3)
1

mA(x)
=
∑
i

gi(x)

fi(x)mi
.

For each i we define the polynomial pi(x) := mA(x)gi(x)/fi(x)mi = gi(x)
∏
i 6=j fj(x)mj and

the matrix Pi := pi(A) = ϕA(pi(x)) ∈ Matn(K).

(a) Prove that we have
∑

i Pi = I.



(b) Prove that for i 6= j we have PiPj = 0.
(c) Prove that for all i we have P 2

i = Pi. [Hint: Use (a) and (b).]
(d) Conclude from Problem 3 that we have a direct sum decomposition of K-subspaces

Kn =
d⊕
i=1

imPi.

Proof. (a): Multiplying both sides of equation (3) by mA(x) gives

1 = p1(x) + · · ·+ pd(x)

and then applying ϕA to both sides gives

I = ϕA(1) = ϕA(p1(x) + · · ·+ pd(x))

= ϕA(p1(x)) + · · ·ϕA(pd(x))

= P1 + · · ·+ Pd.

(b): Note that for all i 6= j we have mA(x)|pi(x)pj(x). That is, there exists a polynomial
h(x) ∈ K[x] such that pi(x)pj(x) = mA(x)h(x). Then applying ϕA to both sides gives

PiPj = pi(A)pj(A) = mA(A)h(A) = 0h(A) = 0.

(c): Now for all i we have

Pi = PiI = Pi
∑
j

Pj

= P 2
i +

∑
i 6=j

PiPj = P 2
i +

∑
i 6=j

0 = P 2
i .

(d): To prove the direct sum, first note that P2 + · · ·+ Pd is idempotent since

(P2 + · · ·+ Pd)
2 = (P 2

2 + · · ·P 2
d ) +

∑
i,j∈{2,...,d}

i 6=j

���PiPj = (P 2
2 + · · ·+ P 2

d ) + 0 = (P2 + · · ·+ Pd).

Thus P1, (P2 + · · ·+ Pd) is an orthogonal pair of idempotents and from Problem 3 we obtain

Kn = imP1 ⊕ im (P2 + · · ·+ Pd).

Now we will use induction. Define the subspace V := im (P2 + · · ·+Pd) ⊆ Kn. With respect to
the direct sum Kn = imP1⊕V we can write each projection Pi as a block matrix. Furthermore,
by the properties in parts (b) and (c) we must have

P1 =

(
P ′1 0
0 0

)
and Pi =

(
0 0
0 P ′i

)
for i ∈ {2, . . . , d}

where the smaller matrices P ′1, P
′
2, . . . , P

′
d are also idempotent and the matrices P ′2, . . . , P

′
d are

pairwise orthogonal. Then from part (a) we have

I =
∑
i

Pi =

(
P ′1 0
0 P ′2 + · · ·+ P ′d

)
so that P ′2 + · · · + P ′d = I ′ where I ′ is the identity matrix on the subspace V . Finally, by
induction on d we have

V =
d⊕
i=2

imP ′i

and the fact that imP ′i = imPi for all i ∈ {2, . . . , d} completes the proof. �



[Remark: All that mumbling about eigenspaces in the linear algebra textbooks and this is what’s
really going on. There aren’t even any eigenvalues yet; those appear in Problem 5.]

Problem 5. Jordan-Chevalley Decomposition. Now let K be an algebraically closed
field and consider a matrix A ∈ Matn(K). In this problem we will prove that there exist
unique matrices S,N ∈ Matn(K) such that:

• S is diagonalizable and N is nilpotent,
• A = S +N ,
• SN = NS.

(a) Since K is algebraically closed we can factor the minimal polynomial as mA(x) =∏
i(x− λi)mi for some λi ∈ K and mi ∈ N. Let Pi be the projections from Problem 4

corresponding to the factors fi(x)mi = (x− λi)mi . Prove that (A− λiI)miPi = 0.
(b) Existence: Prove that the matrix S :=

∑
i λiPi is diagonalizable and that the matrix

N := A − S is nilpotent. Then since S =
∑

i λipi(A) for some polynomials pi(x) it
automatically follows that SN = NS. [Hint: Use Problem 4 to show that S has a basis
of eigenvectors. To show that N is nilpotent, note that for all polynomials h(x) ∈ K[x]
we have h(N) =

∑
i h(A− λiI)Pi. Then use part (a).]

(c) Uniqueness: I need to come up with a good hint for this.

Proof. (a): Let K be algebraically closed and suppose that

mA(x) =
d∏
i=1

(x− λi)mi

for some λi ∈ K and mi ∈ N, where i 6= j implies λi 6= λj . As in Problem 4 there exist
polynomials gi(x) ∈ K[x] such that

1

mA(x)
=

g1(x)

(x− λ1)m1
+ · · ·+ gd(x)

(x− λd)md
.

Then we define the polynomials pi(x) := gi(x)
∏
i 6=j(x − λj)mj ∈ K[x] and evaluate at A to

obtain the projection matrices

Pi := pi(A) = gi(A)
∏
i 6=j

(A− λjI)mj ∈ Matn(K).

Finally, multiplying both sides (on the left or the right; it doesn’t matter) by (A−λiI)mi gives

(A− λiI)miPi = gi(A)
∏
j

(A− λjI)mj = gi(A)mA(A) = gi(A)0 = 0.

(b): Existence: Define the matrices S :=
∑

i λiPi and N := A − S. To show that S
is diagonalizable, first note that every (nonzero) vector in the subspace imPj ⊆ Kn is a
λj-eigenvector of S. Indeed, for any Pju ∈ imPj note that Problem 4 parts (b) and (c) imply

S(Pju) =

(∑
i

λiPi

)
(Pju) =

(∑
i

λiPiPj

)
u = (λjPj) = λj(Pju).

Then from Problem 4(d) we have a direct sum decomposition

(4) Kn =
n⊕
i=1

imPi.



By concatenating bases for these subspaces we obtain a basis for Kn consisting of eigenvectors
for S, hence S is diagonalizable. [And in this case equation (4) is an actual (i.e., not only a
“generalized”) eigenspace decomposition for the matrix S.]

To show that N is nilpotent, first note that

N = A− S = AI − S =
∑
i

APi −
∑
i

λiPi =
∑
i

(A− λiI)Pi.

Note that A commutes with each of the projection matrices Pi. Indeed, all matrices in this
problem commute because they are all polynomials evaluated at A. Thus by Problem 4 parts
(b) and (c) we see that for any polynomial h(x) ∈ K[x] we have h(N) =

∑
i h(A− λiI)Pi. In

particular, for any m ∈ N we have

Nm =
∑
i

(A− λiI)mPi.

Finally, if we take m := max{m1, . . . ,md} then it follows from part (a) that Nm =
∑

i 0 = 0
and we conclude that N is nilpotent.

(c): Uniqueness: I finally came up with a good hint but it was too late. Nevertheless,
some of the students (Nuno Cardoso, Qian Chen, Eric Ling, David Udumyan) still came up
with nice answers. All of the answers were along the following lines. The hint that I would
have given is contained in a Lemma after the proof.

Suppose that we have another decomposition A = S′ + N ′ where S′ ∈ Matn(K) is diag-
onalizable, N ′ ∈ Matn(K) is nilpotent, and S′N ′ = N ′S′. Since S + N = A = S′ + N ′ we
have S − S′ = N ′ − N . If we can show that S − S′ is diagonalizable and that N ′ − N is
nilpotent then we will be done. Indeed, if the matrix B := S − S′ = N ′ − N ∈ Matn(K) is
both diagonalizable and nilpotent then there exists an invertible matrix P ∈ GLn(K) such
that PBP−1 = 0 (since zero is the only possible eigenvalue of a nilpotent matrix), and we
conclude that B = P−10P = 0.

To show that N ′ − N is nilpotent we first note that NN ′ = N ′N . Indeed, since N is a
polynomial in A it suffices to show that N ′ commutes with A, and this is true because

N ′A = N ′(S′ +N ′) = N ′S′ +N ′N ′ = S′N ′ +N ′N ′ = (S′ +N ′)N ′ = AN ′.

Then we can apply the binomial theorem to get

(5) (N ′ −N)m =
m∑
k=0

(−1)k
(
m

k

)
(N ′)m−kNk.

Since N ′ and N are nilpotent there exist m1,m2 ∈ N such that (N ′)m1 = 0 and Nm2 = 0.
Finally, let m ≥ m1 +m2. Then for all k we have for all k ∈ N that (m− k) ≥ m1 or k ≥ m2

(since otherwise m = (m − k) + k < m1 + m2), and hence (N ′)m−kNk = 0. It follows from
equation (5) that (N ′ −N)m =

∑m
k=0 0 = 0, hence N ′ −N is nilpotent.

Then to see that S − S′ is diagonalizable, first note that S′ commutes with A:

S′A = S′(S′ +N ′) = S′S′ + S′N ′ = S′S′ +N ′S′ = (S′ +N ′)S′ = AS′.

Now consider the eigenspace decomposition (4) for the matrix S. Since each projection matrix
Pi is a polynomial in A we have S′Pi = PiS

′ and hence for all vectors u ∈ Kn we have

S′(Piu) = (S′Pi)u = (PiS
′)u = Pi(S

′u).

In other words, S′ preserves each subspace imPi ⊆ Kn. If we write ri := dim(imPi) then
by concatenating bases in (4) we obtain an invertible matrix Q ∈ GLn(K) and (possibly



non-invertible) matrices S′i ∈ Matri(K) such that

QSQ−1 =


λ1Ir1 0

λ2Ir2
. . .

0 λdIrd

 and QS′Q−1 =


S′1 0

S′2
. . .

0 S′d

 .

Since we assumed that S′ is diagonalizable, the Lemma below implies (by induction) that
each submatrix Si ∈ Matri(K) is diagonalizable. That is, there exist invertible matrices
Ui ∈ GLri(K) such that each UiS

′
iU
−1
i ∈ Matri(K) is a diagonal matrix. Now by defining

U :=


U1 0

U2

. . .

0 Ud

 ∈ GLn(K)

we conclude that the matrix

(UQ−1)(S − S′)(UQ−1)−1 =


λ1I − U1S

′
1U
−1
1 0

λ2I − U2S
′
2U
−1
2

. . .

0 λdI − UdS′dU
−1
d


is diagonal, hence S − S′ is diagonalizable. �

[The hard part of the uniqueness proof is contained in the following unavoidable lemma. In
retrospect, this could have been the heart of a nice problem on “Simultaneous Diagonalization”.]

Lemma. Let K be any field and consider any block diagonal matrix

A =

(
A1 0
0 A2

)
∈ Matn(K).

If A is diagonalizable then each of the matrices A1 and A2 is diagonalizable.

Proof. By assumption we have a matrix P ∈ GLn(K) and scalars λj ∈ K such that

(6) AP = P

λ1

. . .

λn

 .

If pj ∈ Matn×1(K) is the j-th column of P then the equation (6) just says that Apj = λjpj
for all j. Then the fact that P is invertible tells us that A has a basis of eigenvectors. Now
assume that we have

A =

(
A1 0
0 A2

)
for some matrices A1 ∈ Matn1(K) and A2 ∈ Matn2(K) with n = n1 + n2. We wish to show
that each of A1 and A2 has a basis of eigenvectors. To do this, we partition the matrix P as

(7) P =

(
P1

P2

)



with P1 ∈ Matn1×n(K) and P2 ∈ Matn2×n(K). If we rewrite the diagonal matrix as D :=
diag(λ1, . . . , λn) then equation (6) becomes

AP = PD(
A1 0
0 A2

)(
P1

P2

)
=

(
P1

P2

)
D(

A1P1

A2P2

)
=

(
P1D
P2D

)
.

The equation A1P1 = P1D says that the columns of P1 are eigenvectors of A1 and similarly
A2P2 = P2D says that the columns of P2 are eigenvectors of A2. We only need to show that
there are enough linearly independent columns. That is, we want to show that P1 has column
rank n1 and P2 has column rank n2. But recall that the column rank of a matrix equals its
row rank (this the Fundamental Miracle of Linear Algebra; I won’t prove it here). Let rk(P ),
rk(P1), and rk(P2) denote the row ranks of P , P1, and P2, respectively. By definition we
have rk(P1) ≤ n1 and rk(P2) ≤ n2, and and since P is invertible we know that rk(P ) = n.
Furthermore, equation (7) tells us that rk(P ) ≤ rk(P1) + rk(P2). Then since

(8) n1 + n2 = n = rk(P ) ≤ rk(P1) + rk(P2)

we must have either n1 ≤ rk(P1) or n2 ≤ rk(P2); without loss say n1 ≤ rk(P1). Together with
rk(P1) ≤ n1 this implies rk(P1) = n1 and subtracting this equation from both sides of (8)
gives n2 ≤ rk(P2), which implies that rk(P2) = n2. We conclude that each of A1 and A2 has
a basis of eigenvectors, hence each is diagonalizable. �

[Remark: What is the Jordan-Chevalley Decomposition of a Jordan block? From this you will see
that the Jordan Canonical Form easily implies the existence of Jordan-Chevalley Decomposition.
However, the proof given here is much more direct than the one using Smith Normal Form. I
learned this beautiful proof (of existence; the proof of uniqueness isn’t so beautiful) from Goodman
and Wallach’s book on “Representations and Invariants of the Classical Groups”. I think it deserves
to be better known, which is why I’m putting it here (you’re welcome, internet). I would love to
know more about the history of this proof but the paper trail seems to end with Humphreys’ book
on Lie Algebras, and he doesn’t remember where he learned the proof. More work needs to be
done on investigating the history of linear algebra; too bad there isn’t a funding agency willing to
pay for it.]

[Ending Remark: Once again, I think that a lot of fundamental concepts of representation theory
are sadly under-represented in standard algebra textbooks. This all falls into the gap of “things
that we don’t teach but we expect people to know anyway”. Maybe some day I’ll write my own
algebra textbook; by which I mean: maybe some day I’ll organize all of this crap on my webpage
into a single pdf file with a table of contents and nice crap like that. The acknowledgements
section will be the hardest part to write, and may end up filling most of the book.]


