Math 762 Spring 2016
Homework 4 Drew Armstrong

Problem 1. Cokernel of a Direct Sum. Here’s something that confused me in class, so
I'll have you prove it. (Just like you have to wear a coat when your mother is cold.) Let
R be a ring and suppose we have a homomorphism ¢ : M} & My — N; @ Ny of R-modules.
Since & is both the product and the coproduct in R-Mod, there exist canonical injections and
projections as in the following diagram:
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Define the “component homomorphisms” ¢;; := m 0 p ov; : Mj — N; for 4,5 € {1,2} and
assume that 12 and @91 are both the zero map. In this case prove that we have an isomorphism
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Problem 2. Chinese Remainder Theorem for PIDs. Let R be a PID and consider any

element a € R with unique prime factorization a = p{'p3? - - - pj*.

(a) Prove that there exist elements 71, ...,rq € R such that the following identity holds in
the field of fractions:

[Hint: Use induction on d.]
(b) Use part (a) to construct an isomorphism of R-modules
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Problem 3. Idempotents = Internal Direct Sums. Let R be any ring and let M be a
(left) R-module. Let E = Endr(M) be the (noncommutative) ring of endomorphisms. We
say that an endomorphism e € E is idempotent if e2 = eoe = e.
(a) Given e € E, prove that e is idempotent if and only if id — e is idempotent. We call
this an orthogonal pair of idempotents because e o (id — e) = (id — e) o e = 0.
(b) If e € E is idempotent, prove that M decomposes as a direct sum of R-submodules

M =ime @ im (id — e).
(c) Conversely, if M = M; & M, is a direct sum of (left) R-submodules prove that there

exist idempotents ej,es € F such that ime; = My, imey = My, e; + eo = id and
e1oeg =eg0e; = 0. [Hint: Think of & as the product in R-Mod.]

Problem 4. Generalized Eigenspaces of a Matrix. Let K be a field and consider a
matrix A € Mat,(K). Let ¢4 : K[z] — Mat,(K) be the canonical homomorphism from
the free algebra K[z| (= K(z)). Since K|[z] is a PID we know that the kernel has the form
ker o 4 = (ma(x)) for some unique monic polynomial my4(x) called the minimal polynomial of



A. Let ma(z) = fi(z)™ - fy(x)™ be the unique factorization into irreducible polynomials
(note that my4(x) is not necessarily irreducible because Mat,, (K) is not an integral domain).
Then by Problem 2 there exist polynomials g;(x) € K[z] such that

I i(z)
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For each i we define the polynomial p;(z) := ma(z)gi(z)/fi(x)™ = gi(x) [I,; fj(x)™ and
the matrix P; := p;(A) = pa(pi(z)) € Mat,(K).

a) Prove that we have ), P; = 1.

b) Prove that for i # j we have P,P; = 0.

¢) Prove that for all i we have P? = P;. [Hint: Use (a) and (b).]

d) Conclude from Problem 3 that we have a direct sum decomposition of K-subspaces
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K" = @imPi.
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Problem 5. Jordan-Chevalley Decomposition. Now let K be an algebraically closed
field and consider a matrix A € Mat, (K). In this problem we will prove that there exist
unique matrices S, N € Mat,,(K) such that:

e S is diagonalizable and N is nilpotent,
e A=S5+N,
e SN =NS.

(a) Since K is algebraically closed we can factor the minimal polynomial as ma(x) =
[L;(z — A;)™ for some A\; € K and m; € N. Let P; be the projections from Problem 4
corresponding to the factors f;(x)™ = (x — \;)™. Prove that (A — \;I)"™P; = 0.

(b) Existence: Prove that the matrix S := ), \;P; is diagonalizable and that the matrix
N := A — S is nilpotent. Then since S = >, \ip;(A) for some polynomials p;(z) it
automatically follows that SN = NS. [Hint: Define the polynomial ¢(z) := [[;(z—\;)
and show that ¢(S) = 0. Use this to define projection matrices Q1,...,Qq as in
Problem 4 and obtain a direct sum decomposition K™ = @;im );. Then show that the
image of Q); consists of A;-eigenvectors for S. To show that IV is nilpotent, note that
for all polynomials h(z) € K[z] we have h(N) =), h(A — X\;I)P;. Then use part (a).]

(c¢) Uniqueness: I need to come up with a good hint for this.



