Problem 1. Cokernel of a Direct Sum. Here's something that confused me in class, so I'll have you prove it. (Just like you have to wear a coat when your mother is cold.) Let R be a ring and suppose we have a homomorphism $\varphi: M_{1} \oplus M_{2} \rightarrow N_{1} \oplus N_{2}$ of R-modules. Since \oplus is both the product and the coproduct in R-Mod, there exist canonical injections and projections as in the following diagram:

Define the "component homomorphisms" $\varphi_{i j}:=\pi_{i} \circ \varphi \circ \iota_{j}: M_{j} \rightarrow N_{i}$ for $i, j \in\{1,2\}$ and assume that φ_{12} and φ_{21} are both the zero map. In this case prove that we have an isomorphism

$$
\frac{N_{1} \oplus N_{2}}{\operatorname{im} \varphi} \approx \frac{N_{1}}{\operatorname{im} \varphi_{11}} \oplus \frac{N_{2}}{\operatorname{im} \varphi_{22}} .
$$

Problem 2. Chinese Remainder Theorem for PIDs. Let R be a PID and consider any element $a \in R$ with unique prime factorization $a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{d}^{\alpha_{d}}$.
(a) Prove that there exist elements $r_{1}, \ldots, r_{d} \in R$ such that the following identity holds in the field of fractions:

$$
\frac{1}{a}=\frac{r_{1}}{p_{1}^{\alpha_{1}}}+\cdots+\frac{r_{d}}{p_{d}^{\alpha_{d}}} .
$$

[Hint: Use induction on d.]
(b) Use part (a) to construct an isomorphism of R-modules

$$
\frac{R}{(a)} \approx \frac{R}{\left(p_{1}^{\alpha_{1}}\right)} \oplus \cdots \oplus \frac{R}{\left(p_{d}^{\alpha_{d}}\right)} .
$$

Problem 3. Idempotents $=$ Internal Direct Sums. Let R be any ring and let M be a (left) R-module. Let $E=\operatorname{End}_{R}(M)$ be the (noncommutative) ring of endomorphisms. We say that an endomorphism $e \in E$ is idempotent if $e^{2}=e \circ e=e$.
(a) Given $e \in E$, prove that e is idempotent if and only if id $-e$ is idempotent. We call this an orthogonal pair of idempotents because $e \circ(\mathrm{id}-e)=(\mathrm{id}-e) \circ e=0$.
(b) If $e \in E$ is idempotent, prove that M decomposes as a direct sum of R-submodules

$$
M=\operatorname{im} e \oplus \operatorname{im}(\mathrm{id}-e) .
$$

(c) Conversely, if $M=M_{1} \oplus M_{2}$ is a direct sum of (left) R-submodules prove that there exist idempotents $e_{1}, e_{2} \in E$ such that $\operatorname{im} e_{1}=M_{1}, \operatorname{im} e_{2}=M_{2}, e_{1}+e_{2}=\mathrm{id}$ and $e_{1} \circ e_{2}=e_{2} \circ e_{1}=0$. [Hint: Think of \oplus as the product in R-Mod.]

Problem 4. Generalized Eigenspaces of a Matrix. Let K be a field and consider a matrix $A \in \operatorname{Mat}_{n}(K)$. Let $\varphi_{A}: K[x] \rightarrow \operatorname{Mat}_{n}(K)$ be the canonical homomorphism from the free algebra $K[x](=K\langle x\rangle)$. Since $K[x]$ is a PID we know that the kernel has the form $\operatorname{ker} \varphi_{A}=\left(m_{A}(x)\right)$ for some unique monic polynomial $m_{A}(x)$ called the minimal polynomial of
A. Let $m_{A}(x)=f_{1}(x)^{m_{1}} \cdots f_{d}(x)^{m_{d}}$ be the unique factorization into irreducible polynomials (note that $m_{A}(x)$ is not necessarily irreducible because $\operatorname{Mat}_{n}(K)$ is not an integral domain). Then by Problem 2 there exist polynomials $g_{i}(x) \in K[x]$ such that

$$
\frac{1}{m_{A}(x)}=\sum_{i} \frac{g_{i}(x)}{f_{i}(x)^{m_{i}}}
$$

For each i we define the polynomial $p_{i}(x):=m_{A}(x) g_{i}(x) / f_{i}(x)^{m_{i}}=g_{i}(x) \prod_{i \neq j} f_{j}(x)^{m_{j}}$ and the matrix $P_{i}:=p_{i}(A)=\varphi_{A}\left(p_{i}(x)\right) \in \operatorname{Mat}_{n}(K)$.
(a) Prove that we have $\sum_{i} P_{i}=I$.
(b) Prove that for $i \neq j$ we have $P_{i} P_{j}=0$.
(c) Prove that for all i we have $P_{i}^{2}=P_{i}$. [Hint: Use (a) and (b).]
(d) Conclude from Problem 3 that we have a direct sum decomposition of K-subspaces

$$
K^{n}=\bigoplus_{i=1}^{d} \mathrm{im} P_{i}
$$

Problem 5. Jordan-Chevalley Decomposition. Now let K be an algebraically closed field and consider a matrix $A \in \operatorname{Mat}_{n}(K)$. In this problem we will prove that there exist unique matrices $S, N \in \operatorname{Mat}_{n}(K)$ such that:

- S is diagonalizable and N is nilpotent,
- $A=S+N$,
- $S N=N S$.
(a) Since K is algebraically closed we can factor the minimal polynomial as $m_{A}(x)=$ $\prod_{i}\left(x-\lambda_{i}\right)^{m_{i}}$ for some $\lambda_{i} \in K$ and $m_{i} \in \mathbb{N}$. Let P_{i} be the projections from Problem 4 corresponding to the factors $f_{i}(x)^{m_{i}}=\left(x-\lambda_{i}\right)^{m_{i}}$. Prove that $\left(A-\lambda_{i} I\right)^{m_{i}} P_{i}=0$.
(b) Existence: Prove that the matrix $S:=\sum_{i} \lambda_{i} P_{i}$ is diagonalizable and that the matrix $N:=A-S$ is nilpotent. Then since $S=\sum_{i} \lambda_{i} p_{i}(A)$ for some polynomials $p_{i}(x)$ it automatically follows that $S N=N S$. [Hint: Define the polynomial $\phi(x):=\prod_{i}\left(x-\lambda_{i}\right)$ and show that $\phi(S)=0$. Use this to define projection matrices Q_{1}, \ldots, Q_{d} as in Problem 4 and obtain a direct sum decomposition $K^{n}=\oplus_{i} \operatorname{im} Q_{i}$. Then show that the image of Q_{i} consists of λ_{i}-eigenvectors for S. To show that N is nilpotent, note that for all polynomials $h(x) \in K[x]$ we have $h(N)=\sum_{i} h\left(A-\lambda_{i} I\right) P_{i}$. Then use part (a).]
(c) Uniqueness: I need to come up with a good hint for this.

