
Math 762 Spring 2016
Homework 2 Drew Armstrong

Problem 1. Limits and Colimits. Let C be any category and let I be a small category. A
diagram of shape I in C is just a covariant functor D : I → C. The limit of the diagram (if it
exists) is a structure lim←−D = (L, {λI}I∈I) where

• L ∈ C is an object and λI : L→ D(I) are morphisms such that for all objects I, J ∈ I
and morphisms α ∈ HomI(I, J) we have D(α) ◦ λI = λJ .
• If M ∈ C is another object with morphisms µI : M → D(I) satisfying the first property,

then there exists a unique morphism M → L such that:

M

µI



µJ

��

��
L

λI

||

λJ

""
D(I)

D(α)
// D(J)

In other words, the limit lim←−D is a final object in a certain category (of “cones”). We define
the colimit lim−→D by reversing all arrows in the definition.

(a) Given objects A,B ∈ C, express the categorical product A×B as a limit.
(b) Suppose there exists a zero object 0 ∈ C. Given a morphism ϕ : X → Y in C, express

the categorical kernel of ϕ as a limit.
(c) (Optional) Let R be a ring and think of I = (N,≤) as a category with a unique arrow

i → j for each i ≤ j in N. Now let D : I → R-Mod be a diagram in which each
morphism D(α) is injective. Prove that the colimit lim−→D exists.

Proof. (a): Let I be the following category with two objects and two morphisms:

1id1
%%

2 id2ee

Let A,B be objects in a category C and consider the unique functor D : I → C defined
by D(1) = A and D(2) = B. Now the limit lim←−D (if it exists) is defined by satisfying the
following two commutative diagrams:

M

µ1



µ1

��

��
lim←−D

λ1

}}

λ1

""
A

id1
// A

M

µ2



µ2

��

��
lim←−D

λ2

||

λ2

""
B

id2
// B



Putting these two diagrams together into one shows that the limit coincides exactly with the
definition of the categorical product:

A

M //

µ1

((

µ2

66

lim←−D

λ1
66

λ2 ((
B

(b): Let I be the following category with two objects and four morphisms:

1id1
%% α

((

β

66 2 id2ee

Let C be any category containing a zero object and consider any morphism ϕ : A → B in
C. Let D : I → C be the unique functor defined by D(1) = A, D(2) = B, D(α) = ϕ and
D(β) = 0 (the zero morphism). Now the limit lim←−D (if it exists) is defined by satisfying four

commutative diagrams. Two of these diagrams are just the same as in part (a). Here are the
new diagrams:

M

µ1



µ2

��

��
lim←−D

λ1

}}

λ2

""
A ϕ

// B

M

µ1



µ2

��

��
lim←−D

λ1

}}

λ2

""
A

0
// B

In particular, the second of these new diagrams just says that λ2 = 0 and µ2 = 0. Thus the
limit (if it exists) is defined by the following single diagram, which is the same diagram that
defines the kernel of the morphism ϕ : A→ B:

M

0

��

��

µ1

))
A

ϕ // B

lim←−D
λ1

66

0

BB

(c): I assigned this problem because we already secretly used this fact in class (during the
proof that PID ⇒ UFD), but then I realized that it’s too difficult/annoying so I made it
optional. Here’s my sketch of a solution.

Consider the category I with objects N = {1, 2, 3, . . .} and for each i ≤ j a unique morphism
ϕij : i → j. (Thus for each i ∈ N the morphism ϕii is the identity idi : i → i.) Now consider
a functor D : I → R-Mod such that D(ϕij) : D(i) → D(j) is an injective homomorphism
of R-modules for all i ≤ j. To save notation, let’s write Di := D(i) and Dij := D(ϕij). To
find the colimit of the diagram D, we are looking for an R-module lim−→D and a collection of
R-module homomorphisms λi : Di → lim−→D such that

• For all i ≤ j we have Dij ◦ λi = λj .



• If M is any other R-module with R-module homomorphisms µi : Di → M such that
Dij ◦ µi = µj for all i ≤ j then there exists a unique map lim−→D →M satisfying

M

lim−→D

OO

Di

µi

;;

λi
<<

Dij

// Dj

λj
bb

µj

cc

If such a module exists then it is unique (since it’s an initial object in a certain category); the
problem is to construct it. The intuition behind the construction is to think of each injective
morphism Dij : Di ↪→ Dj as an actual inclusion so that our diagram becomes an increasing
chain of modules:

D1 ⊆ D2 ⊆ D3 ⊆ · · · .
In this case we usually express the colimit as the “infinite union” ∪n∈NDn. The problem is to
make this formal.

There are various ways to do this. To gain a good understanding, we should probably
first construct the “infinite union” as a set and then upgrade it to an abelian group and an
R-module. First we will define ∪n∈NDn as a set of equivalence classes of ordered pairs⋃

n∈N
Dn := {(i, di) : i ∈ N, di ∈ Di}/ ∼

where the relation (i, di) ∼ (j, di) is defined by

• i ≤ j and Dij(di) = dj , or
• j ≤ i and Dji(dj) = di.

If i = j then since Dii = D(ϕii) = D(idi) = idDi we have (i, di) ∼ (i, di). Thus ∼ is a
symmetric and reflexive relation. To show that ∼ is transitive, assume that we have (i, di) ∼
(j, dj) and (j, dj) ∼ (k, dk) and without loss of generality assume that i ≤ j ≤ k so that
dk = Djk(dj) and dj = Dij(di). Since ϕjk ◦ ϕij is a morphism i → k and since there is a
unique such morphism in I we must have ϕjk ◦ ϕij = ϕik and hence

Djk ◦Dij = D(ϕjk) ◦D(ϕij) = D(ϕjk ◦ ϕij) = D(ϕik) = Dik.

It follows that dk = Djk(dj) = Djk(Dij(di)) = Dik(di) and hence (i, di) ∼ (k, dk). After this
we define for each i ∈ N the function λi : Di → ∪n∈NDn that sends di ∈ Di to the equivalence
class of (i, di) in ∪n∈NDn.

That was just the definition; there is still a lot of work to do. Next we need to prove that
(∪n∈NDn, {λn}n∈N) satisfies the universal property of the colimit in the category of sets. To
make the colimit into an R-module we will then define for i, j ∈ N and r ∈ R the operations

(i, di) + (j, dj) = (K,DkK(dk) + dK) and r(i, di) = (i, rdi),

where k = min{i, j} and K = max{i, j}. Finally, one needs to check that these operations are
(1) well-defined, (2) make ∪n∈NDn into an R-module, and (3) that the R-module structure is
preserved by all the commutative diagrams. I spent a while writing down a proof of this; I
realized that the proof was way too long; and then I regretted wasting time on it. �

[Remark: It was a bit tricky to see that the underlying index category of a kernel has two parallel
morphisms, one of which gets sent to the zero morphism. More generally, we can consider



diagrams D : I → C in which the two parallel arrows get sent to two arbitrary morphisms ϕ and
ψ. The limit of such a diagram (if it exists) is called the “equalizer” of ϕ and ψ; if you decode
the definition in the category of sets you will see why.]

Problem 2. Length Equals Dimension For Vector Spaces. Consider a field K and a
vector space V ∈ K-Vec. Recall that a composition series of length n is a chain of subspaces

0 = V0 ( V1 ( · · · ( Vn = V

in which each quotient Vi+1/Vi is simple (i.e. has no nontrivial subspaces). Prove that V has
a composition series of length n if and only if it has a basis of size n. Hence the length of a
vector space is the same as its dimension.

Proof. First, suppose that b1, b2, . . . , bn ∈ V is a basis. Now let V0 := (0) = 0 and for each
1 ≤ i ≤ n define the subspace

Vk := (b1, b2, . . . , bk).

I claim that for each 1 ≤ k < n the quotient Vk+1/Vi is simple. Indeed, let W ⊆ Vk+1/Vi be a
subspace that is not the trivlal subspace (0 + Vk). Then there exists a coset a+ Vk in W such
that a ∈ Vk+1 \ Vk. By definition of Vk+1 we can write

a =
k+1∑
i=1

ribi

for some r1, . . . , rk+1 ∈ K and since a 6∈ Vk we must have rk+1 6= 0. Then since K is a field
we can divide by rk+1 to get

(1) bk+1 =
1

rk+1
a−

k∑
i=1

ri
rk+1

bi.

Finally, consider an arbitrary coset b+ Vk in Vk+1/Vk. Since b ∈ Vr+1 we can write

b =

k+1∑
i=1

sibi

for some s1, . . . , sk+1 ∈ K. Then replacing bk+1 by the expression (1) gives

b =
1

rk+1
a+

k∑
i=1

(
si −

ri
rk+1

)
bi ∈ (a+ Vk).

It follows that
Vk+1/Vk ⊆ (a+ Vk) ⊆W ⊆ Vk+1/Vk

and hence W = Vk+1/Vk as desired.
Conversely, suppose that we have a chain of subspaces

0 = V0 ( V1 ( · · · ( Vn = V

in which the quotient Vk+1/Vk is simple for each 1 ≤ k < n. Then certainly V0 has a basis
of size zero (i.e. the empty set). Now let 1 ≤ k < n and assume for induction that Vk has a
basis of size k, say

b1, b2, . . . , bk ∈ Vk.
In this case we will construct a basis for Vk+1 of size k + 1. Since Vk+1/Vk is nontrivial
there exists a coset b + Vk with b ∈ Vk+1 \ Vk and since Vk+1/Vk is simple we must have
Vk+1/Vk = (b + Vk). I claim that b, b1, b2, . . . , bk ∈ Vk+1 is a basis. To see that this set is
spanning, consider an arbitrary element a ∈ Vk+1. Since Vk+1/Vk = (b + Vk) there exists



r ∈ K such that a+ Vk = rb+ Vk and hence a− rb ∈ Vk. But then we have r1, r2, . . . , rk ∈ K
such that

a− rb =

k∑
i=1

ribi

a = rb+
k∑
i=1

ribi

as desired. To see that the set is independent, consider any r, r1, r2, . . . , rk+1 ∈ K such that

rb+
k∑
i=1

ribi = 0.

If r 6= 0 then we can divide by r to obtain b = −
∑k

i=1(ri/r)bi ∈ Vk, which contradicts the fact
that b 6∈ Vk. So we must have r = 0. But then since b1, b2, . . . , bk is a linearly independent set
we must have r1 = r2 = · · · = rk = 0, as desired. �

[Remark: There are two ways to view this result. (1) Assuming the Steinitz Exchange Lemma,
we can view this as a proof of the Jordan–Hölder Theorem for vector spaces. (2) Assuming the
Jordan–Hölder Theorem for vector spaces, we can view this as a proof of the Steinitz Exchange
Lemma.]

Problem 3. Localization of a Module. Let M be a module over a commutative ring R
and let S ⊆ R be a submonoid. Then we define the set of “fractions”

S−1M :=
{[m

s

]
: m ∈M, s ∈ S

}
with the equivalence relation[m

s

]
=
[n
t

]
⇐⇒ ∃u ∈ S, u(sn− tm) = 0.

(a) Prove that this is indeed an equivalence relation.
(b) Prove that the operations[m

s

]
+
[n
t

]
=

[
sn+ tm

st

]
and r

[m
s

]
=
[rm
s

]
are well-defined.

(c) Prove that the operations from part (b) make S−1M into an R-module and that the
map M → S−1M defined by m 7→ [m/1] is an R-module homomorphism.

Proof. (a): Since 1 ∈ S we have for all m ∈ M and s ∈ S that 1(sm − sm) = 1 · 0 = 0 and
hence [m/s] = [m/s]. Also, given m,n ∈M and s, t, u ∈ S we have

u(sn− tm) = 0 ⇐⇒ u(tm− sn) = 0

and hence [m/s] = [t/n] if and only if [t/n] = [m/s]. We have shown that the relation
is reflexive and symmetric. To show that the relation is transitive, assume that we have
[m/s] = [m′/s′] and [m′/s′] = [m′′, s′′] for some m,m′,m′′ ∈ M and s, s′, s′′ ∈ S. Thus by
definition there exist u, v ∈ S such that

u(sm′ − s′m) = 0 and v(s′m′′ − s′′m′) = 0.

Then we have

0 = vs′′ · 0 + us · 0



= (vs′′)(u(sm′ − s′m)) + (us)(v(s′m′′ − s′′m′))
= �����
vs′′usm′ − vs′′us′m+ usvs′m′′ −�����

usvs′′m′

= uvs′sm′′ − uvs′s′′m
= (uvs′)(sm′′ − s′′m),

and since uvs′ ∈ S this implies that [m/s] = [m′′/s′′] as desired. [Note that the commutativity
of R was heavily used here. I don’t see how we could possibly do without it.]

(b): Suppose that we have [m/s] = [m′/s′] and [n/t] = [n′/t′] for some m,m′, n, n′ ∈ M
and s, s′, t, t′ ∈ S. Thus by definition there exist u, v ∈ S such that

u(sm′ − s′m) = 0 and v(tn′ − t′n) = 0.

To prove that scalar multiplication is well-defined, consider any r ∈ R and note that

u(srm′ − s′rm) = ru(sm′ − s′m) = ru · 0 = 0,

hence [rm/s] = [rm′/s′]. To prove that addition is well-defined note that we have uv ∈ S with

(uv)(st(t′m′ + s′n′)− s′t′(tm+ sn)) = uvstt′m′ + uvsts′n′ − uvs′t′tm− uvs′t′sn
= vtt′(u(sm′ − s′m)) + uss′(v(tn′ − t′n))

= vtt′ · 0 + uss′ · 0
= 0,

hence [(tm+ sn)/st] = [(t′m′ + s′n′)/s′t′].
(c): To see that (S−1M,+) is an abelian group first note that addition is commutative.

Indeed, for all [m/s] and [n/t] in S−1M we have[m
s

]
+
[n
t

]
=

[
sn+ tm

st

]
=

[
tm+ sn

ts

]
=
[n
t

]
+
[m
s

]
.

Note that [0/1] is an identity element since for all [m/s] ∈ S−1M we have [0/1] + [m/s] =
[(1m+ s0)/1s] = [m/s], and inverses are given by −[m/s] = [(−m)/s] since we have [m/s] +
[(−m)/s] = [(s(−m) + sm)/ss] = [0/ss] = [0/1]. Finally, note that addition is associative
since for all [m/s], [m′/s′] and [m′′/s′′] in S−1M we have[m

s

]
+

([
m′

s′

]
+

[
m′′

s′′

])
=
[m
s

]
+

[
s′m′′ + s′′m′

s′s′′

]
=

[
s(s′m′′ + s′′m′) + (s′s′′)m

s(s′s′′)

]
=

[
(ss′)m′′ + s′′(sm′ + s′m)

(ss′)s′′

]
=

[
sm′ + s′m

ss′

]
+

[
m′′

s′′

]
=

([m
s

]
+

[
m′

s′

])
+

[
m′′

s′′

]
.

Now for all r ∈ R define the function ϕr : S−1M → S−1M by [m/s] 7→ [rm/s]. From part
(b) we know that this function is well-defined. To see that ϕr ∈ EndAb(S−1M) note that for
all [m/s] and [n/t] in S−1M we have

r
([m

s

]
+
[n
t

])
= r

[
sn+ tm

st

]



=

[
r(sn+ tm)

st

]
=

[
srn+ trm

st

]
=
[rm
s

]
+
[rn
t

]
= r

[m
s

]
+ r

[n
t

]
.

Then to see that ϕ : R→ EndAb(S−1M) is a ring homomorphism first note that for all [m/s] ∈
S−1M we have 1[m/s] = [m/s] = idS−1M ([m/s]). Then note that for all [m/s] ∈ S−1M and
r1, r2 ∈ R we have

(r1r2)
[m
s

]
=

[
(r1r2)m

s

]
=

[
r1(r2m)

s

]
= r1

[r2m
s

]
= r1

(
r2

[m
s

])
,

and

r1

[m
s

]
+ r2

[m
s

]
=
[r1m
s

]
+
[r2m
s

]
=

[
sr1m+ sr2m

ss

]
=

[
s(r1 + r2)m

ss

]
=

[
(r1 + r2)m

s

]
= (r1 + r2)

[m
s

]
.

Finally, to see that m 7→ [m/1] is an R-module homomorphism M → S−1M note that for
all m,n ∈M and r ∈ R we have[

m+ rn

1

]
=
[m

1

]
+
[rn

1

]
=
[m

1

]
+ r

[n
1

]
.

�

[Remark: I’ve never seen that proof written out in full (you’re welcome, internet). Proving that the
relation “∃u ∈ S, u(sn− tm) = 0 ” is transitive is definitely the trickiest part. Seeing the details
emphasizes that the naive definition of localization doesn’t generalize to noncommutative rings.
In that case I suppose one would try to generalize the universal property of localization. We’ll talk
about the universal property later when we discuss “restriction and extension of scalars”.]

Problem 4. Rank Exists Over a Domain. LetR be an integral domain and let S = R\{0}.
Then we can identify the field of fractions K = Frac(R) with the localization S−1R. Let M
be any R-module and let A ⊆M be any subset.

(a) Show that we can regard S−1M as a K-module.
(b) If A is R-linearly independent in M prove that the image of A under M → S−1M

(let’s call it S−1A) is K-linearly independent in S−1M .
(c) If A ⊆ M is a maximal R-linearly independent subset prove that S−1A ⊆ S−1M

is a maximal K-linearly independent subset. Conclude that any two such sets have
the same cardinality. [Hint: Let A ⊆ M be R-linearly independent. Then we know
from part (a) that S−1A ⊆ S−1M is K-linearly independent. Suppose there exists



n ∈ S−1M \ S−1A such that S−1A ∪ {n} is K-linearly independent. Then we can
write n = [m/s] for some m ∈ M \ A and s ∈ S. Show that the set A ∪ {m} ⊆ M is
R-linearly independent.]

Proof. (a): We know from Problem 3 that S−1M is an R-module under the action r[m/s] =
[rm/s]. To extend this to a K-module we will define[a

b

] [m
s

]
:=
[am
bs

]
for all a ∈ R, m ∈ M , and b, s ∈ S = R \ {0}. To see that this operation is well-defined
suppose that we have [a/b] = [a′/b′] in S−1R and [m/s] = [m′/s′] in S−1M . That is, suppose
there exist u, v ∈ S such that

u(ba′ − ab′) = 0R and v(sm′ − s′m) = 0M .

Now define the module element n := sab′m′ ∈M and observe that

(uv)(bsa′m′ − b′s′am) = (uv)(bsa′m′ − n+ n− b′s′am)

= uvbsa′m′ − uvn+ uvn− uvb′s′am
= v(u(bsa′m′ − n)) + u(v(n− b′s′am))

= v(u(sba′m′ − sab′m′)) + u(v(sab′m′ − b′s′am))

= vs(u(ba′ − ab′))m′ + uab′(v(sm′ − s′m))

= vs · 0R ·m′ + uab′ · 0M
= 0M .

Since uv ∈ S this implies that [(am)/(bs)] = [(a′m′)/(b′s′)] as desired. Next, observe that for
all [a/b], [a′/b′] ∈ S−1R and [m/s], [m′/s′] ∈ S−1M we have[a

b

]([m
s

]
+

[
m′

s′

])
=
[a
b

] [sm′ + s′m

ss′

]
=

[
a(sm′ + s′m)

b(ss′)

]
=

[
ba(sm′ + s′m)

bbss′

]
=

[
(bs)(am′) + (bs′)(am)

(bs)(bs′)

]
=
[am
bs

]
+

[
am′

bs′

]
=
[a
b

] [m
s

]
+
[a
b

] [m′
s′

]
,

and ([a
b

]
+

[
a′

b′

]) [m
s

]
=

[
ba′ + b′a

bb′

] [m
s

]
=

[
(ba′ + b′a)m

bb′s

]
=

[
s(ba′ + b′a)m

sbb′s

]



=

[
(bs)(a′m) + (b′s)(am)

(bs)(b′s)

]
=
[am
bs

]
+

[
a′m

b′s

]
=
[a
b

] [m
s

]
+

[
a′

b′

] [m
s

]
,

and, finally,[a
b

]([a′
b′

] [m
s

])
=
[a
b

] [a′m
b′s

]
=

[
a(a′m)

b(b′s)

]
=

[
(aa′)m

(bb′)s

]
=

[
aa′

bb′

] [m
s

]
=

([a
b

] [a′
b′

]) [m
s

]
.

[Remark: I wrote the proof of (a) so that it applies to general commutative rings R, general
R-modules M , and general submonoids S ⊆ R. I will emphasize that I’ve never seen a full proof
of this written out (you’re welcome, internet).]

(b): Let the set A = {ma}a∈A ⊆M be R-linearly independent and consider the set

S−1A :=
{[ma

1

]}
a∈A
⊆ S−1M.

If S−1A is not K-linearly independent then we have a nontrivial linear relation

(2)
∑
a∈A

[
ra
sa

] [ma

1

]
=

[
0M
1

]
for some fractions [ra/sa] ∈ K. Note that [ra/sa] = [0R/1] if and only if ra = 0R and recall
from the definition of linear dependence that we must have ra = 0R for all but finitely many
a ∈ A. Now consider the product of denominators s :=

∏
a∈A sa taken over the finitely many

fractions whose numerator is nonzero. Since R is an integral domain we must have s 6= 0R.
Now act on both sides of (2) by the scalar [s/1] ∈ K to get

(3)
∑
a∈A

[
sra
sa

] [ma

1

]
=

[
0M
1

]
.

For each a ∈ A we will define the (nonzero) element ŝa :=
∏
b∈A\{a} sb, so that [sra/sa] =

[ŝara/1]. Thus (3) becomes

(4)
∑
a∈A

[
ŝara

1

] [ma

1

]
=

[
0M
1

]
.

Finally, since the relation (2) was assumed to be nontrivial there exists a′ ∈ A such that ra′ 6=
0R and then since R is a domain we have ŝa′ra′ 6= 0R. It follows that [ŝa′ra′/1] 6= [0R/1] and
we conclude that (4) is a nontrivial R-linear relation among the elements of A. Contradiction.

(c): Now suppose that A = {ma}a∈A ⊆ M is a maximal R-linearly independent set. We
know from part (b) that the set S−1A = {[ma/1]}a∈A ⊆ S−1M is K-linearly independent. I
claim, in fact, that S−1A ⊆ S−1M is a maximal K-linearly independent set. To prove this,
suppose for contradiction that there exists an element [m/s] ∈ S−1M \ S−1A such that the
set S−1A ∪ {[m/s]} is K-linearly independent. Note that m 6∈ A since otherwise we would
have a nontrivial K-linear relation [

1

s

] [m
1

]
=
[m
s

]
among the elements of S−1A ∪ {[m/s]}, contradicting the maximality of S−1A. But now we
will show that the set A ∪ {m} ⊆ M is R-linearly independent, which will contradict the



maximality of A. To do this, suppose that we have an R-linear relation

rm+
∑
a∈A

rama = 0M

for some elements r, ra ∈ R. Since [r/1][m/1] = [rs/1][m/s], this induces the K-linear relation[rs
1

] [m
s

]
+
∑
a∈A

[ra
1

] [ma

1

]
=

[
0M
1

]
.

But we assumed that the set S−1A ∪ {[m/s]} is K-linearly independent so this implies that
[ra/1] = [0R/1] (and hence ra = 0R) for all a ∈ A and that [rs/1] = [0R/1] (and hence
rs = 0R). Since s 6= 0R and since R is an integral domain this implies that r = 0R.

We conclude that S−1A is a maximal K-linearly independent subset of the K-vector space
S−1M . Finally, suppose that B is any other maximal R-linearly independent subset of M ,
so that S−1B is another maximal K-linearly independent subset of S−1M . Since K is a field
this implies that S−1A and S−1B are also minimal K-generating sets for S−1M , hence they
are bases. Then from the Steinitz Exchange Lemma we conclude that

|A| = |S−1A| = |S−1B| = |B|.

�

[Remark: And that’s that. Believe it or not, this is the shortest proof I could find that the rank
of a module over an integral domain is well-defined. If you know of a shorter proof please tell me.
But please fill in all the details first to make sure that it really is shorter.]

Problem 5. The Category R-Alg. Let R be a ring. We define an R-algebra as a pair (ι, S)
where S is a ring and ι : R→ S is a ring homomorphism such that im ι ⊆ Z(S). A morphism
of R-algebras ϕ : (ι1, S1)→ (ι2, S2) is defined as a ring homomorphism ϕ : S1 → S2 such that

S1
ϕ // S2

R

ι1

``

ι2

>>

(a) Explain why Z-Alg = Rng.
(b) Prove that an R-algebra (ι, S) is also an R-module in a natural way (i.e. by forgetting

the monoid structure on S).
(c) Conversely, given any set A there exists an R-algebra R〈A〉 (called the free R-algebra

generated by A) with the following universal property: For all set functions f : A→ S
there exists a unique R-algebra homomorphism ϕ : R〈A〉 → S such that

A

||

f

��
R〈A〉

ϕ // S

R

bb @@

If |A| = n then we can identify R〈A〉 with the R-algebra R〈x1, . . . , xn〉 of polynomials
in the n noncommuting indeterminates x1, . . . , xn. Use this idea to find the initial
object in the category R-Alg.



(d) Given a subset A ⊆ S of an R-algebra, let iA : R〈A〉 → S be the unique R-algebra
morphism defined in part (c). If iA is injective we say that the set A is R-algebraically
independent in S and if iA is surjective we say A is an R-algebraic generating set for
S. If iA is bijective we say that A is an R-algebra basis for S. Prove that an algebra
basis is necessarily a maximal algebraically independent set and a minimal algebraic
generating set. [To make notation easier you can assume that the basis is finite.]

Proof. This is one of those problems that doesn’t ask you to do much; just to stare at some
definitions and try to make sense of them. Unfortunately, there are various different definitions
of the word “algebra” and I got them kind of muddled. Here are the standard possibilities:

(A1) An R-algebra is a ring homomorphism ι : R→ S between general rings.
(A2) An R-algebra is a ring homomorphism ι : R → S where R is commutative and im ι is

contained in the center of S.
(A3) An R-algebra is a ring homomorphism ι : R→ S between commutative rings.

The definition I gave was similar to (A2) but I didn’t require R to be commutative. We’ll see
in a moment why that’s probably not a good definition.

(a): Let R = Z and let ι : R → S be an R-algebra under either of the definitions (A1) or
(A2). That is, let S be a general ring with a ring homomorphism ι : Z → S. Since Z is the
initial object in the category of rings we know that ι is uniquely determined so it gives us no
extra information. If ϕ : S1 → S2 is any ring homomorphism if ι1 : Z → S1 and ι2 : Z → S2
are the unique homomorphisms from Z then by uniqueness we must have ι2 = ϕ ◦ ι1 and the
following diagram commutes:

S1
ϕ // S2

Z
ι1

__

ι2

??

We conclude that objects of Z-Alg are just rings and morphisms in Z-Alg are just ring ho-
momorphisms, hence Z-Alg = Rng. If we use definition (A3) then Z-Alg is isomorphic to the
category of commutative rings.

(b): Let ι : R→ S be an R-algebra under any of the three standard definitions and let |S|
denote the underlying abelian group of the ring S. Now consider the function λ that sends
an element r ∈ R to the function λr : |S| → |S| defined by λr(s) := ι(r)s. Note that λr is an
endomorphism of (|S|,+, 0) since for all s, t ∈ |S| we have

λr(s+ t) = ι(r)(s+ t) = ι(r)s+ ι(r)t = λr(s) + λr(t).

Thus we have defined a function λ : R→ EndAb(|S|). To see that this is a ring homomorphism
note that for all r1, r2 ∈ R and s ∈ |S| we have

λr1+r2(s) = ι(r1 + r2)s = (ι(r1) + ι(r2))s = ι(r1)s+ ι(r2)s = λr1(s) + λr2(s),

and

λr1r2(s) = ι(r1r2)s = (ι(r1)ι(r2))s = ι(r1)(ι(r2)s) = λr1(λr2(s)),

and, finally,

λ1R(s) = ι(1R)s = 1S · s = s.

(c): The word “conversely” here is supposed to suggest that we can also turn an R-module
into an R-algebra in a canonical way. This should be a “free functor” R-Mod→R-Alg that is
left adjoint to the “forgetful functor” R-Alg→R-Mod described in part (b). But then I didn’t
describe how to do this.



Instead, I described how to form the “free R-algebra” generated by a set A. The description
of this free object will differ depending on the definition of R-algebra that you choose, but
the general intuition is that free R-algebras are multivariate polynomial rings with coefficients
from R. Suppose |A| = n. Then definition (A1) yields the ring R〈x1, . . . , xn〉 of polynomials
in the n noncommuting indeterminates x1, . . . , xn with coefficients from the ring R. These
polynomials are a notational nightmare to write down. If we assume in the definition that the
function f : A→ S satisfies im f ⊆ Z(S) then we obtain the ring R[x1, . . . , xn] of polynomials
in n commuting indeterminates. We can express these as finite sums

f(x1, . . . , xn) =
∑
α

rαx
α

where α = (i1, . . . , in) ∈ Nn is a multi-index and xα := xi11 x
i2
2 · · ·xinn . The other definitions

of R-algebra yield various permutations of these ideas where coefficients and indeterminates
are allowed or not allowed to commute among themselves or with each other. [Unfortunately,
the category I defined seems not to have free objects because the putative homomorphism
R→ R〈A〉 would not map R into the center of R〈A〉.]

That was just me talking. I asked you to take this idea and use it to find the initial object
in R-Alg. The punchline is that the initial object (when it exists) will be R itself. Proof idea:
We can think of R as the ring of polynomials R〈∅〉 in zero indeterminates. Since for each ring
S there is a unique set function ∅ → S, the universal property of free algebras will guarantee
that there is a unique R-algebra morphism R〈∅〉 → S. [Unfortunately this initial object does
not exist for the definition of R-algebra that I gave because if R is not commutative then the
identity morphism R→ R = R〈∅〉 does not send R into the center of itself.]

(d): Let ι : R → S be an R-algebra and consider a subset A = {s1, . . . , sn} ⊆ S.
Choose some definition of R-algebra so the free algebra is isomorphic to a ring of polyno-
mials R〈x1, . . . , xn〉 in n indeterminates. In this case the canonical R-algebra homomorphism
iA : R〈x1, . . . , xn〉 → S is called evaluation at A. For simplicity we will denote it as

f(x1, . . . , xn) 7→ f(s1, . . . , sn).

Now assume that A is an algebra basis, i.e., an algebraically independent algebraic generating
set. To show that A is maximally algebraically independent, consider any s ∈ S \A. Since A
is algebraically generating there exists a polynomial f(x1, . . . , xn) ∈ R〈x1, . . . , xn〉 such that

s = f(s1, . . . , sn).

This nontrivial polynomial relation shows that the set A ∪ {s} is not algebraically inde-
pendent. To show that A is a minimal algebraic generating set, consider any si ∈ A and
assume for contradiction that A\{si} is also a generating set. Then there exists a polynomial
f(x1, . . . , xn) ∈ R〈x1, . . . , xn〉 such that

si = f(s1, . . . , sn),

which is a nontrivial polynomial relation among the elements of A. Contradiction. �

[Remark: I’ll admit that this problem was nonsense. I just wanted to get you thinking about
the concept of multivariate polynomials and algebraic independence, and how these concepts are
analogous to vector spaces and linear independence. The theories are formally similar and there
is even an analogue of Steinitz Exchange for certain kinds of algebras, leading to the notion of
“transcendence degree”. It’s a good exercise to try to prove Steinitz Exchange for general algebras
to see how it fails. The attempt to make it work will force you to accept the tricky concept of
“integral dependence”.]


