Problem 1. Limits and Colimits. Let \mathcal{C} be any category and let \mathcal{I} be a small category. A diagram of shape \mathcal{I} in \mathcal{C} is just a covariant functor $D : \mathcal{I} \to \mathcal{C}$. The limit of the diagram (if it exists) is a structure $\lim D = (L, \{\lambda_I\}_{I \in \mathcal{I}})$ where

- $L \in \mathcal{C}$ is an object and $\lambda_I : L \to D(\mathcal{I})$ are morphisms such that for all objects $I, J \in \mathcal{I}$ and morphisms $\alpha \in \operatorname{Hom}_{\mathcal{I}}(I, J)$ we have $D(\alpha) \circ \lambda_I = \lambda_J$.
- If $M \in \mathcal{C}$ is another object with morphisms $\mu_I : M \to D(\mathcal{I})$ satisfying the first property, then **there exists a unique morphism** $M \to L$ such that:

In other words, the limit $\varprojlim D$ is a final object in a certain category (of "cones"). We define the colimit $\lim D$ by reversing all arrows in the definition.

- (a) Given objects $A, B \in \mathcal{C}$, express the categorical product $A \times B$ as a limit.
- (b) Suppose there exists a zero object $0 \in \mathcal{C}$. Given a morphism $\varphi : X \to Y$ in \mathcal{C} , express the categorical kernel of φ as a limit.
- (c) (Optional) Let R be a ring and think of $\mathcal{I} = (\mathbb{N}, \leq)$ as a category with a unique arrow $i \to j$ for each $i \leq j$ in \mathbb{N} . Now let $D : \mathcal{I} \to R$ -Mod be a diagram in which each morphism $D(\alpha)$ is injective. Prove that the colimit $\lim D$ exists.

Problem 2. Length Equals Dimension For Vector Spaces. Consider a field K and a vector space $V \in K$ -Vec. Recall that a composition series of length n is a chain of subspaces

$$0 = V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_n = V$$

in which each quotient V_{i+1}/V_i is simple (i.e. has no nontrivial subspaces). Prove that V has a composition series of length n if and only if it has a basis of size n. Hence the length of a vector space is the same as its dimension.

Problem 3. Localization of a Module. Let M be a module over a commutative ring R and let $S \subseteq R$ be a submonoid. Then we define the set of "fractions"

$$S^{-1}M := \left\{ \left[\frac{m}{s}\right] : m \in M, s \in S \right\}$$

with the equivalence relation

$$\left[\frac{m}{s}\right] = \left[\frac{n}{t}\right] \quad \Longleftrightarrow \quad \exists \, u \in S, \, u(sn-tm) = 0.$$

- (a) Prove that this is indeed an equivalence relation.
- (b) Prove that the operations

$$\left[\frac{m}{s}\right] + \left[\frac{n}{t}\right] = \left[\frac{tm+sn}{st}\right] \quad \text{and} \quad r\left[\frac{m}{s}\right] = \left[\frac{rm}{s}\right]$$

are well-defined.

(c) Prove that the operations from part (b) make $S^{-1}M$ into an *R*-module and that the map $M \to S^{-1}M$ defined by $m \mapsto [m/1]$ is an *R*-module homomorphism.

Problem 4. Rank Exists Over a Domain. Let R be an integral domain and let $S = R \setminus \{0\}$. Then we can identify the field of fractions K = Frac(R) with the localization $S^{-1}R$. Let M be any R-module and let $A \subseteq M$ be any subset.

- (a) Show that we can regard $S^{-1}M$ as a K-module.
- (b) If A is R-linearly independent in M prove that the image of A under $M \to S^{-1}M$ (let's call it $S^{-1}A$) is K-linearly independent in $S^{-1}M$.
- (c) If $A \subseteq M$ is a **maximal** *R*-linearly independent subset prove that $S^{-1}A \subseteq S^{-1}M$ is a **maximal** *K*-linearly independent subset. Conclude that any two such sets have the same cardinality. [Hint: Let $A \subseteq M$ be *R*-linearly independent. Then we know from part (a) that $S^{-1}A \subseteq S^{-1}M$ is *K*-linearly independent. Suppose there exists $n \in S^{-1}M \setminus S^{-1}A$ such that $S^{-1}A \cup \{n\}$ is *K*-linearly independent. Then we can write n = [m/s] for some $m \in M \setminus A$ and $s \in S$. Show that the set $A \cup \{m\} \subseteq M$ is *R*-linearly independent.]

Problem 5. The Category *R*-Alg. Let *R* be a ring. We define an *R*-algebra as a pair (ι, S) where *S* is a ring and $\iota : R \to S$ is a ring homomorphism such that im $\iota \subseteq Z(S)$. A morphism of *R*-algebras $\varphi : (\iota_1, S_1) \to (\iota_2, S_2)$ is defined as a ring homomorphism $\varphi : S_1 \to S_2$ such that

- (a) Explain why \mathbb{Z} -Alg = Rng.
- (b) Prove that an *R*-algebra (ι, S) is also an *R*-module in a natural way (i.e. by forgetting the monoid structure on S).
- (c) Conversely, given any set A there exists an R-algebra R⟨A⟩ (called the free R-algebra generated by A) with the following universal property: For all set functions f : A → S there exists a unique R-algebra homomorphism φ : R⟨A⟩ → S such that

If |A| = n then we can identify $R\langle A \rangle$ with the *R*-algebra $R\langle x_1, \ldots, x_n \rangle$ of polynomials in the *n* **noncommuting indeterminates** x_1, \ldots, x_n . Use this idea to find the initial object in the category *R*-Alg.

(d) Given a subset A ⊆ S of an R-algebra, let i_A : R⟨A⟩ → S be the unique R-algebra morphism defined in part (c). If i_A is injective we say that the set A is R-algebraically independent in S and if i_A is surjective we say A is an R-algebraic generating set for S. If i_A is bijective we say that A is an R-algebra basis for S. Prove that an algebra basis is necessarily a maximal algebraically independent set and a minimal algebraic generating set. [To make notation easier you can assume that the basis is finite.]