Math 762 Spring 2016
Homework 2 Drew Armstrong

Problem 1. Limits and Colimits. Let C be any category and let Z be a small category. A
diagram of shape Z in C is just a covariant functor D : Z — C. The limit of the diagram (if it
exists) is a structure Im D = (L,{A1}1e7) where

e [ € Cisanobject and \; : L — D(Z) are morphisms such that for all objects I,J € Z
and morphisms a € Homz (I, J) we have D(«) o A\j = A .

e If M € C is another object with morphisms uy : M — D(Z) satisfying the first property,
then there exists a unique morphism M — L such that:
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In other words, the limit lim D is a final object in a certain category (of “cones”). We define
the colimit hgrl D by reversing all arrows in the definition.
(a) Given objects A, B € C, express the categorical product A x B as a limit.
(b) Suppose there exists a zero object 0 € C. Given a morphism ¢ : X — Y in C, express
the categorical kernel of ¢ as a limit.
(c) (Optional) Let R be a ring and think of Z = (N, <) as a category with a unique arrow
t — j for each ¢ < j in N. Now let D : Z — R-Mod be a diagram in which each
morphism D(«) is injective. Prove that the colimit lim D exists.

Problem 2. Length Equals Dimension For Vector Spaces. Consider a field K and a
vector space V € K-Vec. Recall that a composition series of length n is a chain of subspaces

O=WecWVic --CVy=V

in which each quotient V;y;/V; is simple (i.e. has no nontrivial subspaces). Prove that V has
a composition series of length n if and only if it has a basis of size n. Hence the length of a
vector space is the same as its dimension.

Problem 3. Localization of a Module. Let M be a module over a commutative ring R
and let S C R be a submonoid. Then we define the set of “fractions”

STINM = {[T} meM,se S}
S
with the equivalence relation

[%} = [%} <~ Jues ulsn—tm)=0.

(a) Prove that this is indeed an equivalence relation.
(b) Prove that the operations

) (5] = [ e o[- [

are well-defined.



(c) Prove that the operations from part (b) make S~!'M into an R-module and that the
map M — S~!M defined by m + [m/1] is an R-module homomorphism.

Problem 4. Rank Exists Over a Domain. Let R be an integral domain and let S = R\{0}.
Then we can identify the field of fractions K = Frac(R) with the localization S™'R. Let M
be any R-module and let A C M be any subset.

(a) Show that we can regard S™'M as a K-module.

(b) If A is R-linearly independent in M prove that the image of A under M — S~1M
(let’s call it S~!A) is K-linearly independent in S~'M.

(c) If A C M is a maximal R-linearly independent subset prove that S~'A4 C S~1M
is a maximal K-linearly independent subset. Conclude that any two such sets have
the same cardinality. [Hint: Let A C M be R-linearly independent. Then we know
from part (a) that S7'A C S~!M is K-linearly independent. Suppose there exists
n € ST'M \ S7'A such that ST'A U {n} is K-linearly independent. Then we can
write n = [m/s] for some m € M \ A and s € S. Show that the set AU {m} C M is
R-linearly independent.]

Problem 5. The Category R-Alg. Let R be a ring. We define an R-algebra as a pair (¢, 5)
where S is a ring and ¢ : R — S is a ring homomorphism such that im: C Z(S). A morphism
of R-algebras ¢ : (t1,51) — (2, S2) is defined as a ring homomorphism ¢ : S; — Sy such that

@ Sy
R
(a) Explain why Z-Alg = Rng.

(b) Prove that an R-algebra (¢, S) is also an R-module in a natural way (i.e. by forgetting
the monoid structure on S).

(c) Conversely, given any set A there exists an R-algebra R(A) (called the free R-algebra
generated by A) with the following universal property: For all set functions f: A — §
there exists a unique R-algebra homomorphism ¢ : R(A) — S such that

Si

If |A| = n then we can identify R(A) with the R-algebra R(z1,...,x,) of polynomials
in the n noncommuting indeterminates x1, ..., x,. Use this idea to find the initial
object in the category R-Alg.

(d) Given a subset A C S of an R-algebra, let i4 : R(A) — S be the unique R-algebra
morphism defined in part (c). If i4 is injective we say that the set A is R-algebraically
independent in S and if i4 is surjective we say A is an R-algebraic generating set for
S. If i4 is bijective we say that A is an R-algebra basis for S. Prove that an algebra
basis is necessarily a maximal algebraically independent set and a minimal algebraic
generating set. [To make notation easier you can assume that the basis is finite.]



