
Math 762 Spring 2016
Homework 1 Drew Armstrong

Problem 1. Infinite Products and Coproducts in Ab. We have seen that finite prod-
ucts and coproducts agree in Ab. However, the same is not true for infinite products and
coproducts. Let I be a set and let {Ai}i∈I be a family of abelian groups, each equal to some
fixed group A.

(a) Show that the set AI := HomSet(I, A) is an abelian group. Furthermore, show that we
can think of this group as the infinite product Πi∈IAi in the category Ab.

(b) Let A⊕I denote the subgroup of AI in which all but finitely many elements of I
are sent to the identity element 0 ∈ A. Show that we can think of A⊕I as the infinite
coproduct

⊕
i∈I Ai in the category Ab.

(c) Show that the inclusion A⊕I ⊆ AI can be strict. [Hint: Let A = Z/10Z and I = Z.]

Proof. For part (a), consider two functions a, b ∈ AI denoted by i 7→ ai and i 7→ bi. Then we
define the function “a+ b” ∈ AI by setting

(1) (a+ b)i := ai + bi for all i ∈ I.

The constant zero function 0 ∈ AI defined by 0i := 0A is an identity element for this operation,
and every function a ∈ AI has an inverse −a ∈ AI defined by (−a)i := −ai. Since associativity
is inherited from (A,+, 0A) this defines an abelian group structure on AI .

For each index i ∈ I note that the function πi : AI → Ai defined by πi(a) := ai is a
group homomorphism by (1). Now suppose we have an abelian group B together with group
homomorphisms ϕi : B → Ai for each i ∈ I. In this case I claim that there exists a unique
group homomorphism ϕ : B → AI satisfying

B ϕ
//

ϕi

((
AI πi

// Ai for all i ∈ I.

Indeed, given any element b ∈ B the condition πi(ϕ(b)) = ϕi(b) requires that we define the
function ϕ(b) ∈ AI by setting ϕ(b)i := ϕi(b) for all i ∈ I. To see that the resulting function
ϕ : B → AI is a group homomorphism note that for all b, c ∈ B and i ∈ I we have

ϕ(b+ c)i = ϕi(b+ c) = ϕi(b) + ϕi(c) = ϕ(b)i + ϕ(c)i = (ϕ(b) + ϕ(c))i,

and hence ϕ(b + c) = ϕ(b) + ϕ(c). We conclude that the pair (AI , {πi}i∈I) is the categorical
product

∏
i∈I Ai in Ab.

For part (b), define the subgroup A⊕I ⊆ AI consisting of functions a ∈ AI such that ai = 0
for all but finitely many i ∈ I (i.e., functions of “finite support”). Note that for each i ∈ I we
have a set function ιi : Ai → A⊕I defined by

ιi(a)j :=

{
a if i = j

0A if i 6= j
.

Note that for all a, c ∈ A we have

ιi(a+ b)i = a+ c = ιi(a)i + ιi(c)i = (ιi(a) + ιi(c))i

and for all j 6= i we have

ιi(a+ c)j = 0A = 0A + 0A = ιi(a)j + ιi(c)j = (ιi(a) + ιi(c))j



It follows that ιi(a + c) = ιi(a) + ιi(c) and we conclue that ιi is a group homomorphism.
Now suppose we have an abelian group B together with group homomorphisms ϕi : Ai → B
for each i ∈ I. In this case I claim that there exists a unique group homomorphism
ϕ : A⊕I → B satisfying

Ai ιi
//

ϕi

((
A⊕I ϕ

// B for all i ∈ I.

Indeed, given any function a ∈ A⊕I note that we can write a =
∑

i∈I ιi(ai), where the sum is
defined by (1). [The sum is finite because ai = 0A and hence ιi(ai) = 0A for all but finitely
many i ∈ I.] Now the requirement that ϕ ◦ ιi = ϕi for all i ∈ I implies that

(2) ϕ(a) = ϕ

(∑
i∈I

ιi(ai)

)
=
∑
i∈I

ϕ(ιi(ai)) =
∑
i∈I

ϕi(ai).

Note that the sum on the right exists because we have ai = 0A and hence ϕi(ai) = 0B
for all but finitely many i ∈ I. Hence the requirement (2) uniquely determines a function
ϕ : A⊕I → B. And this function ϕ is a group homomorphism since for all a, b ∈ A⊕I we have

ϕ(a+ b) =
∑
i∈I

ϕi((a+ b)i)

=
∑
i∈I

ϕi(ai + bi)

=
∑
i∈I

(ϕi(ai) + ϕi(bi))

=
∑
i∈I

ϕi(ai) +
∑
i∈I

ϕi(bi)

= ϕ(a) + ϕ(b).

We conclude that the pair (A⊕I , {ιi}i∈I) is the categorical coproduct
⊕

i∈I Ai in Ab.
The hint for part (c) was supposed to be cute, but maybe it was too cute. Anyway, if

A = Z/10Z and I = Z then we will think of a function a ∈ AI as a formal power series∑
i∈Z ai · 10i. If we choose one decimal expansion for each real number then we obtain an

inclusion R ⊆ AI . Similarly, each function of finite support a ∈ A⊕I determines a rational
number so we obtain an inclusion A⊕I ⊆ Q. Putting these together gives

A⊕I ⊆ Q ( R ⊆ AI .

�

Problem 2. What is a polynomial? Let (M, ·, 1M ) be a monoid and let (R,+, ◦, 0R, 1R) be
a ring. The monoid ring R[M ] is the abelian group R⊕M together with the following operation:
for all a, b ∈ R[M ] and m ∈M we define a ∗ b ∈ R[M ] by the formula

(a ∗ b)m :=
∑

m1·m2=m

am1 ◦ bm2 .

Note that the sum on the right exists because am1 ◦ bm2 = 0R for all but finitely many pairs
(m1,m2) ∈M2. One can check (you don’t need to) that this defines a ring structure on R[M ].

(a) Show that there is an obvious injective ring homomorphism R ↪→ R[M ].



(b) Thinking of (N,+, 0) as a monoid, prove that the monoid ring R[N] is isomorphic to
the polynomial ring in one variable R[x]. [Remark: In fact, we could think of R[N] as
the definition of the polynomial ring. I mean, what is x anyway?]

Proof. For part (a), consider an element r ∈ R. We will define a function r ∈ R[M ] with the
same name (to conserve notation) by setting

rm :=

{
r if m = 1M

0R if m 6= 1M
.

Note that this defines an injective homomorphism of abelian groups R ↪→ R[M ]. To show
that this is a ring homomorphism consider any r, s ∈ R. Then we have

(r ∗ s)1M =
∑

m∈M×

rm ◦ sm−1

where M× is the group of units of M . Since rm ◦sm−1 = 0R for all m 6= 1M , the sum evaluates
to (r ∗ s)1M = r1M ◦ s1M = r ◦ s. If m 6= 1M then m1 · m2 = m implies that m1 6= 1M or
m2 6= 1M and we have

(r ∗ s)m =
∑

m1·m2=m

rm1 ◦ sm2 =
∑

m1·m2=m

0R = 0R.

In summary, we conclude that (r ∗ s)m = (r ◦ s)m for all m ∈M .
For part (b), we will define a function P : R[N] → R[x] by sending the function a ∈ R[N]

to the polynomial P (a) :=
∑

n∈N anx
n. This function is bijective by the definition of R[x]

(omitted). To see that P is a ring homomorphism, first note that 1 ∈ R ⊆ R[N] gets sent to
P (1) = 1 ∈ R[x]. Then note that for all a, b ∈ R[M ] we have

P (a) + P (b) =

(∑
n∈N

anx
n

)
+

(∑
n∈N

bnx
n

)
=
∑
n∈N

(an + bn)xn

=
∑
n∈N

(a+ b)nx
n

= P (a+ b)

and

P (a)P (b) =

(∑
n∈N

anx
n

)(∑
n∈N

bnx
n

)

=
∑
n∈N

( ∑
n1+n2=n

an1 ◦ bn2

)
xn

=
∑
n∈N

(a ∗ b)nxn

= P (a ∗ b).

�



[Remark: If M and R have some topological structure then we can try to form a ring out of more
general kinds of functions M → R. For example, if M = (R,+, 0) and R = (R,+, ·, 0, 1) then we
can try to define the “convolution” of f, g : R→ R by

(f ∗ g)(x) :=

∫
f(t)g(x− t)dt.

As we see now, this is just a straightforward generalization of polynomial multiplication.]

Problem 3. Evaluation of Polynomials. Let ϕ : R → S be a ring homomorphism and
assume that the image of ϕ is in the center of S:

imϕ ⊆ Z(S) := {t ∈ S : st = ts for all s ∈ S}.
(a) For all s ∈ S prove that there exists a unique ring homomorphism ϕs : R[x]→ S

satisfying ϕs(x) = s and ϕs(r) = ϕ(r) for all r ∈ R (thought of as a subring of R[x]
via Problem 2(a)). [Remark: When R ⊆ S is a subring with inclusion homomorphism
i : R ↪→ S we refer to the map is : R[x]→ S as evaluation at s.]

(b) Show that the result of part (a) can fail when the image of ϕ is not in the center of S.
[Remark: This is the place where the theories of commutative and noncommutative
rings begin to diverge.]

Proof. For part (a), let ϕ : R → S be a ring homomorphism such that imϕ ⊆ Z(S) and let
i : R → R[x] be the injective homomorphism from Problem 2(a). For each s ∈ S we want to
show that there exists a unique ring homomorphism ϕs : R[x] → S such that ϕs(x) = s and
such that the following diagram commutes:

R
i
//

ϕ

((
R[x] ϕs

// S .

Given any polynomial
∑

n∈N anx
n ∈ R[x], the desired homomorphism ϕs must satisfy

(3) ϕs

(∑
n∈N

anx
n

)
=
∑
n∈N

ϕs(an)ϕs(x)n =
∑
n∈N

ϕ(an)sn.

Since we have an = 0r and hence ϕ(an)sn = 0S for all but finitely many n ∈ N the sum on the
right exists and the requirement (3) defines a function ϕs : R[x]→ S. To see that this function
ϕs is a ring homomorphism first note that it sends 1R ∈ R ⊆ R[x] to ϕ(1R)s0 = 1Ss

0 = 1S ∈ S.
Then note that for all polynomials

∑
n∈N anx

n and
∑

n∈N bnx
n we have

ϕs

(∑
n∈N

anx
n +

∑
n∈N

bnx
n

)
= ϕs

(∑
n∈N

(an + bn)xn

)
=
∑
n∈N

ϕ(an + bn)sn

=
∑
n∈N

(ϕ(an) + ϕ(bn))sn

=
∑
n∈N

ϕ(an)sn +
∑
n∈N

ϕ(bn)sn

= ϕs

(∑
n∈N

anx
n

)
+ ϕs

(∑
n∈N

bnx
n

)
.



Finally, since sϕ(r) = ϕ(r)s for all r ∈ R we have

ϕs

((∑
n∈N

anx
n

)(∑
n∈N

bnx
n

))
= ϕs

(∑
n∈N

( ∑
n1+n2=n

an1bn2

)
xn

)

=
∑
n∈N

ϕ

( ∑
n1+n2=n

an1bn2

)
sn

=
∑
n∈N

( ∑
n1+n2=n

ϕ(an1)ϕ(bn2)

)
sn

!
=

(∑
n∈N

ϕ(an)sn

)(∑
n∈N

ϕ(bn)sn

)

= ϕs

(∑
n∈N

anx
n

)
ϕs

(∑
n∈N

bnx
n

)
.

We used the commutativity of s in the step labeled (!).
For part (b), assume that the set function ϕs : R[x]→ S defined in (3) is a ring homomor-

phism and consider any r ∈ R. By applying ϕs to the polynomials x + r and x − r in R[x]
and their product (x− r)(x+ r) = x2 − r2 we obtain

ϕs(x+ r)ϕs(x− r) = (s+ ϕ(r))(s− ϕ(r)) = s2 + ϕ(r)s− sϕ(r)− ϕ(r)2

and
ϕs((x+ r)(x− r)) = ϕs(x

2 − r2) = s2 − ϕ(r)2.

Then since ϕs is a ring homomorphism we must have

ϕs(x+ r)ϕs(x− r) = ϕs((x+ r)(x− r))
s2 + ϕ(r)s− sϕ(r)− ϕ(r)2 = s2 − ϕ(r)2

ϕ(r)s = sϕ(r).

In conclusion, we have shown that if s ∈ S does not commute with the image of ϕ : R → S
then the set function ϕs : R[x]→ S defined in (3) is not a ring homomorphism. �

The next two problems illustrate an important difference between commutative and noncom-
mutative rings.

Problem 4. Descartes’ Theorem. Let R be a commutative ring and for all α ∈ R
consider the evaluation morphism iα : R[x] → R from Problem 3. For simplicity we will use
the notation “f(α)” := iα(f(x)).

(a) Given f(x) ∈ R[x] and α ∈ R, prove that we have f(α) = 0 if and only if f(x) =
(x− α)g(x) for some g(x) ∈ R[x]. [Hint: Use division with remainder.]

(b) If R is, furthermore, an integral domain (i.e., if ab = 0 implies a = 0 or b = 0) then the
degree function deg : R[x] \ {0} → N satisfies deg(fg) = deg(f) + deg(g). Use this fact
to prove that a polynomial of degree n over an integral domain has at most n distinct
roots. [Hint: Use part (a) and induction.]

Proof. For part (a), let α ∈ R and consider the polynomial x−α ∈ R[x]. Since this polynomial
is monic (its leading coefficient is a unit) there exist polynomials q(x), r(x) ∈ R[x] such that

• f(x) = (x− α)q(x) + r(x),



• r(x) = 0 or deg(r(x)) < deg(x− α).

The second condition implies that r(x) is a constant. Let’s call it r(x) = r ∈ R. Now apply
the ring homomorphism iα : R[x]→ R to get

f(α) = iα(f(x))

= iα((x− α)q(x) + r)

= iα(x− α)iα(q(x)) + iα(r)

= (α− α)q(α) + r

= r.

We conclude that f(x) = (x− α)q(x) + f(α) and it follows that f(α) = 0 if and only if f(x)
is divisible by (x− α) in R[x].

For part (b), let R be an integral domain and assume for induction that any polynomial
of degree n − 1 in R[x] has as most n − 1 distinct roots in R. Now consider a polynomial
f(x) ∈ R[x] of degree n. If f(x) has no roots then we are done. Otherwise, suppose there
exists α ∈ R such that f(α) = 0. By part (a) this means that we have

(4) f(x) = (x− α)g(x)

for some g(x) ∈ R[x], and since R is a domain we must have deg(g) = n − 1. Now suppose
that β 6= α is any other root of f(x). Evaluating equation (4) at β gives

f(β) = (β − α)g(β)

0 = (β − α)g(β).

Since β − α 6= 0 and since R is a domain this implies that g(β) = 0. But by induction there
can be at most n− 1 distinct such β and we conclude that f(x) has at most 1 + (n− 1) = n
distinct roots in R. �

Problem 5. The Original Noncommutative Ring. The ring (actually an R-algebra) of
quaternions was defined by William Rowan Hamilton on the 16th of October, 1843. He defined
it as the 4-dimensional R-vector space

H := {a1 + bi + cj + dk : a, b, c, d ∈ R},

where the abstract basis elements 1, i, j,k satisfy the relations

i2 = j2 = k2 = ijk = −1.

(a) Prove that H can be realized as a subring (actually an R-subalgebra) of the ring of
2× 2 matrices over C. [Hint: Let i ∈ C be the imaginary unit. Show that the R-linear
map defined on the basis by

1 7→
(

1 0
0 1

)
, i 7→

(
i 0
0 −i

)
, j 7→

(
0 1
−1 0

)
, k 7→

(
0 i
i 0

)
is injective. Then show that the relations are satisfied.]

(b) Use part (a) to compute the center Z(H).
(c) It seems that the polynomial x2 + 1 ∈ H[x] of degree 2 has at least three distinct

roots: i, j,k ∈ H. What’s the problem?



Proof. For part (a), let ϕ : H → Mat2×2(C) be the linear map defined in the hint. Then for
all a1 + bi + cj + dk ∈ H we have

ϕ(a1 + bi + cj + dk) = aϕ(1) + bϕ(i) + cϕ(j) + dϕ(k)

= a

(
1 0
0 1

)
+ b

(
i 0
0 −i

)
+ c

(
0 1
−1 0

)
+ d

(
0 i
i 0

)
=

(
a+ ib c+ id
−c+ id a− ib

)
.

Note that this function is injective since if we have

ϕ(a1 + bi + cj + dk) = ϕ(e1 + f i + gj + hk)(
a+ ib c+ id
−c+ id a− ib

)
=

(
e+ if g + ih
−g + ih e− if

)
then it follows that a + ib = e + if (hence a = e and b = f) and c + id = g + ih (hence
c = g and d = h), and we conclude that a1 + bi + cj + dk = e1 + f i + gj + hk. Now to show
that ϕ : H ↪→ Mat2×2(C) is a ring homomorphism it is sufficient to show that the images
ϕ(1), ϕ(i), ϕ(j), ϕ(k) satisfy Hamilton’s relations.

[Indeed, Hamilton’s definition can be expressed in modern terms as follows. Let R := R〈1, i, j,k〉
be the ring of polynomials in the noncommuting indeterminates 1, i, j,k and let I := 〈i2 +
1, j2 + 1,k2 + 1, ijk + 1〉 ⊆ R be the smallest two-sided ideal containing (i.e., generated by) the
set A :=

{
i2 + 1, j2 + 1,k2 + 1, ijk + 1

}
. Then we define

H :=
R

I
=

R

〈A〉
.

Moreover, this definition satisfies the following universal property: Let ϕ : R → S be any ring
homomorphism sending A to zero. Then it must also send I = 〈A〉 to zero and it follows that
there exists a unique ring homomorphism ϕ̄ : R/I → S such that

R

π

}}

ϕ

��
R/I

ϕ̄
// S

In our case we have S = Mat2×2(C) and ϕ : R→ S is the unique ring homomorphism defined by
the hint. By abuse of notation we have also written ϕ̄ = ϕ. Surely this is not the way Hamilton
thought about the problem.]

And this is verified by the following computations:

ϕ(i)2 =

(
i 0
0 −i

)2

=

(
−1 0
0 −1

)
= −ϕ(1),

ϕ(j)2 =

(
0 1
−1 0

)2

=

(
−1 0
0 −1

)
= −ϕ(1),

ϕ(k)2 =

(
0 i
i 0

)2

=

(
−1 0
0 −1

)
= −ϕ(1),

ϕ(i)ϕ(j)ϕ(k) =

(
i 0
0 −i

)(
0 1
−1 0

)(
0 i
i 0

)
=

(
−1 0
0 −1

)
= −ϕ(1).

For part (b), since ϕ is an injective ring homomorphism it is enough to find all α :=
a1 + bi + cj + dk ∈ H such that ϕ(α)ϕ(β) = ϕ(β)ϕ(β) for all β ∈ H. In particular we must



have

ϕ(α)ϕ(i) = ϕ(i)ϕ(α)(
a+ ib c+ id
−c+ id a− ib

)(
i 0
0 −i

)
=

(
i 0
0 −i

)(
a+ ib c+ id
−c+ id a− ib

)
(
ia− b −ic+ d
−ic− d −ia− b

)
=

(
ia− b ic− d
ic+ d −ia− b

)
,

which implies that −ic+ d = ic− d, hence c = 0 and d = 0. And we must also have

ϕ(α)ϕ(j) = ϕ(j)ϕ(α)(
a+ ib 0

0 a− ib

)(
0 1
−1 0

)
=

(
0 1
−1 0

)(
a+ ib 0

0 a− ib

)
(

0 a+ ib
−a+ ib 0

)
=

(
0 a− ib

−a− ib 0

)
,

which implies that a+ ib = a− ib, hence b = 0. We conclude that α = a1 + 0i + 0j + 0k. Thus
the center of H consists of the “purely real” quaterions:

Z(H) = {a1 + 0i + 0j + 0k : a ∈ R} ≈ R.
In particular, if α ∈ H is not purely real then the solution to Problem 3(b) shows that the
evaluation function ϕα : H[x] → H is not a ring homomorphism. Thus the proof of Problem
4, which assumes that evaluation is a homomorphism, fails in this case. This explains the
strange observation in part (c). �

[Remark: In fact, one can show that every purely imaginary quaternion ai + bj + ck ∈ H satisfying
a2 + b2 + c2 = 1 is a root of the polynomial x2 + 1 ∈ H[x]. That’s a lot of roots! In 1965 Gordon
and Motzkin showed how to fix this situation by proving that a polynomial of degree n over a
division ring D has roots in at most n conjugacy classes of D.]

Problem 6. Monomorphisms and Epimorphisms. The notions of injective and sur-
jective functions are not categorically well-behaved. In a general category they should be
replaced with the notions of “monomorphism” and “epimorphism”.

Let α : X → Y be a morphism in a category C . We say that α is a monomorphism if for all
objects Z ∈ C and all morphisms β1, β2 : Z → X we have

α ◦ β1 = α ◦ β2 =⇒ β1 = β2.

We say α is an epimorphism if for all Z ∈ C and β1, β2 : Y → Z we have

β1 ◦ α = β2 ◦ α =⇒ β1 = β2.

(a) In the category Set, prove that monomorphisms are the same as injective functions
and epimorphisms are the same as surjective functions.

(b) In the category Rng, prove that an epimorphism may fail to be surjective.

Proof. For part (a) consider two sets X,Y ∈ Set and a function α : X → Y .
We will first show that α is injective if and only if it is a monomorphism. So let α : X → Y

be injective and consider any functions β1, β2 : Z → X such that α ◦ β1 = α ◦ β2. Then for
any element z ∈ Z we have α(β1(z)) = α(β2(z)), and the fact that α is injective implies that
β1(z) = β2(z). We conclude that β1 = β2 and hence α is a monomorphism.

Conversely, let α : X → Y be a monomorphism and suppose that we have α(x1) = α(x2)
for some elements x1, x2 ∈ X. Now let Z = {∗} be a set with one element and consider the



functions β1, β2 : Z → X defined by β1(∗) := x1 and β2(∗) := x2. Since α ◦ β1 = α ◦ β2 as
functions, the fact that α is a monomorphism implies that β1 = β2, and hence x1 = β1(∗) =
β2(∗) = x2. We conclude that α is injective.

Next we will show that α is surjective if and only if it is an epimorphism. So let α : X → Y
be surjectve and consider any functions β1, β2 : Y → Z such that β1 ◦ α = β2 ◦ α. For any
element y ∈ Y there exists an element x ∈ X such that α(x) = y so that

β1(y) = β1(α(x)) = β2(α(x)) = β2(y).

We conclude that β1 = β2 and hence α is an epimorphism.
Conversely, suppose that α : X → Y is an epimorphism and consider a set Z = {0, 1} with

two elements. We will define functions β1, β2 : Y → Z by setting β1(y) := 1 for all y ∈ Y and

β2(y) :=

{
1 if y ∈ imα

0 if y 6∈ imα
.

Now observe that β1(α(x)) = 1 = β2(α(x)) for all x ∈ X and hence β1 ◦ α = β2 ◦ α. Since α
is an epimorphism this implies that β1 = β2. Finally, the fact that β2(y) = β1(y) = 1 for all
y ∈ Y implies that imα = Y , hence α is surjective.

For part (b), consider the unique ring homomorphism i : Z → Q. Clearly this is not a
surjection, but we will show that it is an epimorphism. Indeed, for any ring homomorphism
ϕ : Q→ R and any 0 6= q ∈ Z we must have ϕ (i(q))ϕ

(
i(q)−1

)
= ϕ

(
i(q)i(q)−1

)
= ϕ(1Q) = 1R

and hence ϕ
(
i(q)−1

)
= ϕ (i(q))−1. Now consider any two ring homomorphisms β1, β2 : Q→ R

such that β1 ◦ i = β2 ◦ i. Then for all p, q ∈ Z with q 6= 0 we have

β1

(
i(p)i(q)−1

)
= β1 (i(p))β1 (i(q))−1 = β2 (i(p))β2 (i(q))−1 = β2

(
i(p)i(q)−1

)
.

Since every element of Q can be written in the form i(p)i(q)−1 for some p, q ∈ Z this implies
that β1 = β2 and hence i : Z→ Q is an epimorphism. �


