
Math 762 Spring 2016
Homework 1 Drew Armstrong

Problem 1. Infinite Products and Coproducts in Ab. We have seen that finite prod-
ucts and coproducts agree in Ab. However, the same is not true for infinite products and
coproducts. Let I be a set and let {Ai}i∈I be a family of abelian groups, each equal to some
fixed group A.

(a) Show that the set AI := HomSet(I, A) is an abelian group. Furthermore, show that we
can think of this group as the infinite product Πi∈IAi in the category Ab.

(b) Let A⊕I denote the subgroup of AI in which all but finitely many elements of I
are sent to the identity element 0 ∈ A. Show that we can think of A⊕I as the infinite
coproduct

⊕
i∈I Ai in the category Ab.

(c) Show that the inclusion A⊕I ⊆ AI can be strict. [Hint: Let A = Z/10Z and I = Z.]

Problem 2. What is a polynomial? Let (M, ·, 1M ) be a monoid and let (R,+, ◦, 0R, 1R) be
a ring. The monoid ring R[M ] is the abelian group R⊕M together with the following operation:
for all a, b ∈ R[M ] and m ∈M we define a ∗ b ∈ R[M ] by the formula

(a ∗ b)m :=
∑

m1·m2=m

am1 ◦ bm2 .

Note that the sum on the right exists because am1 ◦ bm2 = 0R for all but finitely many pairs
(m1,m2) ∈M2. One can check (you don’t need to) that this defines a ring structure on R[M ].

(a) Show that there is an obvious injective ring homomorphism R ↪→ R[M ].
(b) Thinking of (N,+, 0) as a monoid, prove that the monoid ring R[N] is isomorphic to

the polynomial ring in one variable R[x]. [Remark: In fact, we could think of R[N] as
the definition of the polynomial ring. I mean, what is x anyway?]

Problem 3. Evaluation of Polynomials. Let ϕ : R → S be a ring homomorphism and
assume that the image of ϕ is in the center of S:

imϕ ⊆ Z(S) := {t ∈ S : st = ts for all s ∈ S}.

(a) For all s ∈ S prove that there exists a unique ring homomorphism ϕs : R[x]→ S
satisfying ϕs(x) = s and ϕs(r) = ϕ(r) for all r ∈ R (thought of as a subring of R[x]
via Problem 2(a)). [Remark: When R ⊆ S is a subring with inclusion homomorphism
i : R ↪→ S we refer to the map is : R[x]→ S as evaluation at s.]

(b) Show that the result of part (a) can fail when the image of ϕ is not in the center of S.
[Remark: This is the place where the theories of commutative and noncommutative
rings begin to diverge.]

The next two problems illustrate an important difference between commutative and noncom-
mutative rings.

Problem 4. Descartes’ Theorem. Let R be a commutative ring and for all α ∈ R
consider the evaluation morphism iα : R[x] → R from Problem 3. For simplicity we will use
the notation “f(α)” := iα(f(x)).

(a) Given f(x) ∈ R[x] and α ∈ R, prove that we have f(α) = 0 if and only if f(x) =
(x− α)g(x) for some g(x) ∈ R[x]. [Hint: Use division with remainder.]



(b) If R is, furthermore, an integral domain (i.e., if ab = 0 implies a = 0 or b = 0) then the
degree function deg : R[x] \ {0} → N satisfies deg(fg) = deg(f) + deg(g). Use this fact
to prove that a polynomial of degree n over an integral domain has at most n distinct
roots. [Hint: Use part (a) and induction.]

Problem 5. The Original Noncommutative Ring. The ring (actually an R-algebra) of
quaternions was defined by William Rowan Hamilton on the 16th of October, 1843. He defined
it as the 4-dimensional R-vector space

H := {a1 + bi + cj + dk : a, b, c, d ∈ R},
where the abstract basis elements 1, i, j,k satisfy the relations

i2 = j2 = k2 = ijk = −1.

(a) Prove that H can be realized as a subring (actually an R-subalgebra) of the ring of
2× 2 matrices over C. [Hint: Let i ∈ C be the imaginary unit. Show that the R-linear
map defined on the basis by

1 7→
(

1 0
0 1

)
, i 7→

(
i 0
0 −i

)
, j 7→

(
0 1
−1 0

)
, k 7→

(
0 i
i 0

)
is injective. Then show that the relations are satisfied.]

(b) Use part (a) to compute the center Z(H).
(c) It seems that the polynomial x2 + 1 ∈ H[x] of degree 2 has at least three distinct

roots: i, j,k ∈ H. What’s the problem?

Problem 6. Monomorphisms and Epimorphisms. The notions of injective and sur-
jective functions are not categorically well-behaved. In a general category they should be
replaced with the notions of “monomorphism” and “epimorphism”.

Let α : X → Y be a morphism in a category C . We say that α is a monomorphism if for all
objects Z ∈ C and all morphisms β1, β2 : Z → X we have

α ◦ β1 = α ◦ β2 =⇒ β1 = β2.

We say α is an epimorphism if for all Z ∈ C and β1, β2 : Y → Z we have

β1 ◦ α = β2 ◦ α =⇒ β1 = β2.

(a) In the category Set, prove that monomorphisms are the same as injective functions
and epimorphisms are the same as surjective functions.

(b) In the category Rng, prove that an epimorphism may fail to be surjective.


