Math 762 Spring 2016
Final Exam Drew Armstrong

Problem 1. R-Algebra Generalities. Let R be a commutative ring.

(a)

(b)

State the definition of an R-algebra.

An R-algebra is a pair (S, ¢) where
e S is aring,
e ©: R — S is aring homomorphism satisfying

imp CZ(S)={se S:Vtes, st=ts}
/1]

State the definition of a commutative R-algebra.

An R-algebra (5, ¢) is called commutative when S is a commutative ring. In this case
the condition im¢ C Z(S) is vacuous, so a commutative R-algebra is the same as a
homomorphism of commutative rings ¢ : R — S. ///

Let R[A] denote the free commutative R-algebra generated by the set A. State its
definition. (Such a thing exists, but please don’t prove this.)

The free commutative R-algebra generated by the set A consists of a commutative
R-algebra R — R[A] and a set function A — R[A] satisfying the following univeral

property:

For all commutative R-algebras R — S and all set functions A — S there exists a
unique ring homomorphism ¢ : R — S such that

/1]

Let R-CAlg be the category of commutative R-algebras and let R-Mod be the category
of R-modules. State the definition of the “forgetful functor” U : R-CAlg — R-Mod.

Given a commutative R-algebra ¢ : R — S, we let U(S) denote the R-module consist-
ing of the pair (|S|, \), where |S| is the underlying abelian group of S and A is the ring
homomorphism

AR — EndAb(|S|)
defined by A, (s) := ¢(r)s = sp(r) for all s € |S]. ///



(e) State what it means for the functor F' : R-Mod — R-CAlg to be left adjoint to U. (Such
a functor exists, but don’t prove this.)

We say that F': R-Mod — R-CAlg is left adjoint to U : R-CAlg — R-Mod if we have a
family of bijections

Tar,s - Hompmoed (M, U(S)) = Homp_caig(F (M), S)
that is “natural” in the arguments M € R-Mod and S € R-CAlg. ///

(f) Assume without proof that that R[A] = F(R®4) (which is true) and assume that “®p”
is the name of the coproduct in the category R-CAlg (which is also true). In this case
explain why we have an isomorphism of R-algebras:

R[AU B = R[A] ®p, R|[B).

The key fact is that left adjoint functors commute with colimits. Since coproducts
are examples of colimits, and since the coproducts in Set, R-Mod, R-CAlg are LI, &, ®g,
respectively, we have the following chain of R-algebra isomorphisms:

R[A U B] = F(R®AUB)

~ F(R* & R®P)
= F(R*) o F(R*P)
=~ R[A] ®r R[B].
/1]
Problem 2. Evaluation of Polynomials. Let R be a commutative ring and define R[X| =
Rlzy,...,x,) where X = (z1,...,2,) is an n-tuple of variables. For each A € R" we will write

@A R[X] — R for the canonical evaluation map. Now for each “formal polynomial” f(X) €
R[X] we can define a “polynomial function” ¢y : R" — R by ¢(A) := ¢a(f(X)) = f(A). In
summary, we have a function

¢ : R[X] — Homset (R", R).

(a) Prove that ¢ is a ring homomorphism. [Hint: Don’t do much.]

If we define a commutative ring structure on Homge (R", R) by “pointwise” addition
and multiplication, then for all f(X),¢(X) € K[X] and A € R™ we have

Prg(A) = (F +9)(A) = F(A) + 9(A) = s (A) + @4(A) =: (¢f + ¥g)(A)
and
vrg(A) = (F9)(A) = f(A)g(A) = ws(A)py(A) =: (¢5 - @g)(A);
hence it follows that v 4 = ¢+ ¢y and ¢y = @5 - pg. Then note that for all A € R"
we have p1(A) =1=1(A), so that ¢1 = 1. ///
[Remark: Maybe | did too much?]

(b) If R is an infinite integral domain and if n = 1, prove that ¢ is injective. [Hint: By
part (a) you only need to show that ker p = 0. Use the fact (proved on HW1) that a
polynomial f(x) € R[z] of degree m has at most m roots in R.]



Proof. Suppose that f(z) € kerp C R[z]. This means that for all @ € R we have
¢¢(a) = f(a) = 0. Since R is infinite we have found infinitely many distinct roots of
the polynomial f(x). Since R is an integral domain, this implies that f(z) = 0. O

If R is an infinite integral domain, prove that ¢ is injective for any n. [Hint:
Induction on part (b). Use the fact that R[z1,...,z,—1] is an infinite integral domain. |

Proof. Assume for induction that the map ¢ : R[z1,...,7, 1] — Homse (R, R)
is injective. Now consider f(X) = >, gi(21,...,2p—1)2!, € R[X] and assume that
f(X) € kerp C R[X], i.e., that ps(A) = f(A) =0 for all A= (a1,...,a,) € R".

If we fix (a1, ..., an—1), then as a, ranges over R we see that >, gi(a1, ... L an_1)T! €
R[z,] has infinitely many roots in the integral domain R. By part (b) this implies that
gi(ai,...,a,_1) = 0for all i. Then as (a1,...,a,_1) ranges over R"~! we find that each
gi(z1,...,2n_1) determines the zero function R"~! — R. By induction this implies
that each g;(z1,...,2,—1) is the zero polynomial, hence f(X) = 0. O

Problem 3. Persistence of Identities. Let R be a commutative ring and consider two
matrices A, B € Mat,,(R). When R is a field we know that det(AB) = det(A)det(B); in this
problem you will prove that the same result holds without any hypothesis on R.

(a)

Explain why the category Z-CAlg of commutative Z-algebras is just the category of
commutative rings.

A commutative Z-algebra is a pair (S, ¢) where S is a commutative ring and ¢ : Z — S
is a ring homomorphism. But since Z is the initial object in the category of rings, the
homomorphism ¢ is redundant. A morphism of Z-algebras (S1,¢p1) — (S2,¢2) is a
ring homomorphism ® : S — Sy such that ® o p; = . But since 1 and o are
redundant, ® is just a ring homomorphism. ///

Consider two n’-tuples of variables X = (z;;) and Y = (yrs) and the commutative
polynomial ring Z[X, Y] in 2n? variables. For any two matrices A = (a;;), B = (bgs) €
Mat,,(R) explain why there exists a unique ring homomorphism

vap:ZLX, Y| = R

such that v p(zij) = a;; and @4 p(yke) = bie for all 4,5, k, £ € {1,...,n}. [Hint: (a).]

Thinking of R as a Z-algebra by part (a) and thinking of Z[X, Y] as the free Z-algebra
from Problem 1(c) gives us a unique “evaluation” Z-algebra homomorphism. But, by
part (a), Z-algebra homomorphisms are just ring homomorphisms. /]/

Consider the formal polynomial f(X,Y") := det(XY)—det(X)det(Y) € Z[X,Y]. Prove
that for all matrices A, B € Mat,(R) we have f(A, B) := ¢ p(f(X,Y)) = 0. [Hint:
You can assume that this is true when R is a field. Use part (b) and Problem 2(c) to
show that f(X,Y) is actually the zero element of Z[X, Y] ]

Proof. Let K be any infinite field. Since K is a field we have f(A,B) = 0 for all
matrices A, B € Mat,(K). Then since K is an infinite domain, Problem 2(c) implies
that f(X,Y) is the zero element of Z[X,Y]. Finally, for any commutative ring R and
any matrices A, B € Mat,(R) we have

f(A,B) = ¢aB(f(X,Y)) = pa5(0) = 0.



Problem 4. Modules over a PID. Let R be a PID and let T € R-Mod be a finitely
generated torsion module. The Fundamental Theorem says that there exist (unique) ideals

(1) # (f1) 2 (f2) 2 -+ 2 (fa) # (0) such that T'= & R/(fi).

(a)

Define the set Anng(7T) :={r € R:Vt € T,rt =0} C R. Prove that this is an ideal of
R (called the annihilator ideal of the module).

Proof. Consider any s1,s2 € Anng(7T') and r € R. Then for all ¢t € T we have
(s1+rso)t =s1t+rsot =0+70=0,
and it follows that s; + rse € Anng(7') as desired. O

Prove that (f;) € Anng(T).

Proof. Consider any r € (fg). Since (f1) 2 (f2) 2 -+ 2 (fa) we have r € (f;) for all
i€{l,...,d}. Then for any t = (s1 + (f1),...,8a+ (fa)) € T we have

rt = (rs1+ (f1),-- -, rsa+ (fa)) = 0+ (f1),--., 0+ (fa))
and it follows that r € Anng(7T). O

Prove that Anng(7T) C (fg). [Hint: If » € Anng(T") then, in particular, » annihilates
the element (1+ (f1),...,1+ (fa)).]

Proof. Suppose that r € Anng(7). Then in particular we have

(0+(f1)7a0+(fd)) :r(l—i_(fl)v"'?l—i_(fd)) = <T+(f1)7"'7r+(fd))‘
Since r + (f4) = 0+ (fq) we conclude that r € (fg). O

Let K be a field and consider a matrix A € Mat, (K). Explain how this defines a
K[z]-module structure on the vector space V := K".

The K-module structure on V is carried by a ring homomorphism

AN K — End/_\b(V)

and we want to extend this to a ring homomorphism X : K[z] — Endap(V). Since
im A C Z(Endap(V')) we have a natural K-algebra structure on Endap(V). Then since
K|[z] is the free K-algebra there exists a unique such X sending z — A. ///

[Remark: For gory details see HW1 Problem 3(a).]

Since the module V' from part (d) is a finitely generated torsion K [x]-module and since
K[x] is a PID (don’t prove either of these statements) we obtain a decomposition V' =
®;K[z]/(fi(x)) for some unique non-constant monic polynomials fi(z)|fz2(x)|- - | fa(x).
Prove that f;(z) is the minimal polynomial of A. [Hint: Use (b) and (c).]

Proof. From (b) and (c) we know that (fy(r)) = Anngj,)(V). On ther other hand,
Anngp, (V) = {f(z) € K[z] : Vv € V, Ap(y(v) = 0}
={f(x) € K[z] : Vv eV, f(A)v =0}
= {f(x) € K[z] : f(A) = 0}
= (ma(z)).

Since fq(z) and ma(x) are both monic we conclude that fy(z) = ma(z). O



