
Math 762 Spring 2016
Final Exam Drew Armstrong

Problem 1. R-Algebra Generalities. Let R be a commutative ring.

(a) State the definition of an R-algebra.

An R-algebra is a pair (S, ϕ) where
• S is a ring,
• ϕ : R→ S is a ring homomorphism satisfying

imϕ ⊆ Z(S) = {s ∈ S : ∀ t ∈ S, st = ts}.

///

(b) State the definition of a commutative R-algebra.

An R-algebra (S, ϕ) is called commutative when S is a commutative ring. In this case
the condition imϕ ⊆ Z(S) is vacuous, so a commutative R-algebra is the same as a
homomorphism of commutative rings ϕ : R→ S. ///

(c) Let R[A] denote the free commutative R-algebra generated by the set A. State its
definition. (Such a thing exists, but please don’t prove this.)

The free commutative R-algebra generated by the set A consists of a commutative
R-algebra R → R[A] and a set function A → R[A] satisfying the following univeral
property:

For all commutative R-algebras R → S and all set functions A → S there exists a
unique ring homomorphism ϕ : R→ S such that
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///

(d) Let R-CAlg be the category of commutative R-algebras and let R-Mod be the category
of R-modules. State the definition of the “forgetful functor” U : R-CAlg→ R-Mod.

Given a commutative R-algebra ϕ : R→ S, we let U(S) denote the R-module consist-
ing of the pair (|S|, λ), where |S| is the underlying abelian group of S and λ is the ring
homomorphism

λ : R→ EndAb(|S|)
defined by λr(s) := ϕ(r)s = sϕ(r) for all s ∈ |S|. ///



(e) State what it means for the functor F : R-Mod→ R-CAlg to be left adjoint to U . (Such
a functor exists, but don’t prove this.)

We say that F : R-Mod→ R-CAlg is left adjoint to U : R-CAlg→ R-Mod if we have a
family of bijections

τM,S : HomR-Mod(M,U(S))
∼−→ HomR-CAlg(F (M), S)

that is “natural” in the arguments M ∈ R-Mod and S ∈ R-CAlg. ///

(f) Assume without proof that that R[A] = F (R⊕A) (which is true) and assume that “⊗R”
is the name of the coproduct in the category R-CAlg (which is also true). In this case
explain why we have an isomorphism of R-algebras:

R[A tB] ∼= R[A]⊗R R[B].

The key fact is that left adjoint functors commute with colimits. Since coproducts
are examples of colimits, and since the coproducts in Set, R-Mod, R-CAlg are t,⊕,⊗R,
respectively, we have the following chain of R-algebra isomorphisms:

R[A tB] ∼= F (R⊕AtB)

∼= F (R⊕A ⊕R⊕B)

∼= F (R⊕A)⊗R F (R⊕B)

∼= R[A]⊗R R[B].

///

Problem 2. Evaluation of Polynomials. Let R be a commutative ring and define R[X] =
R[x1, . . . , xn] where X = (x1, . . . , xn) is an n-tuple of variables. For each A ∈ Rn we will write
ϕA : R[X]→ R for the canonical evaluation map. Now for each “formal polynomial” f(X) ∈
R[X] we can define a “polynomial function” ϕf : Rn → R by ϕf (A) := ϕA(f(X)) = f(A). In
summary, we have a function

ϕ : R[X]→ HomSet(R
n, R).

(a) Prove that ϕ is a ring homomorphism. [Hint: Don’t do much.]

If we define a commutative ring structure on HomSet(R
n, R) by “pointwise” addition

and multiplication, then for all f(X), g(X) ∈ K[X] and A ∈ Rn we have

ϕf+g(A) = (f + g)(A) = f(A) + g(A) = ϕf (A) + ϕg(A) =: (ϕf + ϕg)(A)

and

ϕfg(A) = (fg)(A) = f(A)g(A) = ϕf (A)ϕg(A) =: (ϕf · ϕg)(A),

hence it follows that ϕf+g = ϕf +ϕg and ϕfg = ϕf ·ϕg. Then note that for all A ∈ Rn

we have ϕ1(A) = 1 = 1(A), so that ϕ1 = 1. ///

[Remark: Maybe I did too much?]

(b) If R is an infinite integral domain and if n = 1, prove that ϕ is injective. [Hint: By
part (a) you only need to show that kerϕ = 0. Use the fact (proved on HW1) that a
polynomial f(x) ∈ R[x] of degree m has at most m roots in R.]



Proof. Suppose that f(x) ∈ kerϕ ⊆ R[x]. This means that for all a ∈ R we have
ϕf (a) = f(a) = 0. Since R is infinite we have found infinitely many distinct roots of
the polynomial f(x). Since R is an integral domain, this implies that f(x) = 0. �

(c) If R is an infinite integral domain, prove that ϕ is injective for any n. [Hint:
Induction on part (b). Use the fact that R[x1, . . . , xn−1] is an infinite integral domain.]

Proof. Assume for induction that the map ϕ : R[x1, . . . , xn−1] → HomSet(R
n−1, R)

is injective. Now consider f(X) =
∑

i gi(x1, . . . , xn−1)x
i
n ∈ R[X] and assume that

f(X) ∈ kerϕ ⊆ R[X], i.e., that ϕf (A) = f(A) = 0 for all A = (a1, . . . , an) ∈ Rn.
If we fix (a1, . . . , an−1), then as an ranges over R we see that

∑
i gi(a1, . . . , an−1)x

i
n ∈

R[xn] has infinitely many roots in the integral domain R. By part (b) this implies that
gi(a1, . . . , an−1) = 0 for all i. Then as (a1, . . . , an−1) ranges over Rn−1 we find that each
gi(x1, . . . , xn−1) determines the zero function Rn−1 → R. By induction this implies
that each gi(x1, . . . , xn−1) is the zero polynomial, hence f(X) = 0. �

Problem 3. Persistence of Identities. Let R be a commutative ring and consider two
matrices A,B ∈ Matn(R). When R is a field we know that det(AB) = det(A)det(B); in this
problem you will prove that the same result holds without any hypothesis on R.

(a) Explain why the category Z-CAlg of commutative Z-algebras is just the category of
commutative rings.

A commutative Z-algebra is a pair (S, ϕ) where S is a commutative ring and ϕ : Z→ S
is a ring homomorphism. But since Z is the initial object in the category of rings, the
homomorphism ϕ is redundant. A morphism of Z-algebras (S1, ϕ1) → (S2, ϕ2) is a
ring homomorphism Φ : S1 → S2 such that Φ ◦ ϕ1 = ϕ2. But since ϕ1 and ϕ2 are
redundant, Φ is just a ring homomorphism. ///

(b) Consider two n2-tuples of variables X = (xij) and Y = (yk`) and the commutative
polynomial ring Z[X,Y ] in 2n2 variables. For any two matrices A = (aij), B = (bk`) ∈
Matn(R) explain why there exists a unique ring homomorphism

ϕA,B : Z[X,Y ]→ R

such that ϕA,B(xij) = aij and ϕA,B(yk`) = bk` for all i, j, k, ` ∈ {1, . . . , n}. [Hint: (a).]

Thinking of R as a Z-algebra by part (a) and thinking of Z[X,Y ] as the free Z-algebra
from Problem 1(c) gives us a unique “evaluation” Z-algebra homomorphism. But, by
part (a), Z-algebra homomorphisms are just ring homomorphisms. ///

(c) Consider the formal polynomial f(X,Y ) := det(XY )−det(X)det(Y ) ∈ Z[X,Y ]. Prove
that for all matrices A,B ∈ Matn(R) we have f(A,B) := ϕA,B(f(X,Y )) = 0. [Hint:
You can assume that this is true when R is a field. Use part (b) and Problem 2(c) to
show that f(X,Y ) is actually the zero element of Z[X,Y ].]

Proof. Let K be any infinite field. Since K is a field we have f(A,B) = 0 for all
matrices A,B ∈ Matn(K). Then since K is an infinite domain, Problem 2(c) implies
that f(X,Y ) is the zero element of Z[X,Y ]. Finally, for any commutative ring R and
any matrices A,B ∈ Matn(R) we have

f(A,B) = ϕA,B(f(X,Y )) = ϕA,B(0) = 0.

�



Problem 4. Modules over a PID. Let R be a PID and let T ∈ R-Mod be a finitely
generated torsion module. The Fundamental Theorem says that there exist (unique) ideals
(1) 6= (f1) ⊇ (f2) ⊇ · · · ⊇ (fd) 6= (0) such that T ∼= ⊕iR/(fi).

(a) Define the set AnnR(T ) := {r ∈ R : ∀ t ∈ T, rt = 0} ⊆ R. Prove that this is an ideal of
R (called the annihilator ideal of the module).

Proof. Consider any s1, s2 ∈ AnnR(T ) and r ∈ R. Then for all t ∈ T we have

(s1 + rs2)t = s1t+ rs2t = 0 + r0 = 0,

and it follows that s1 + rs2 ∈ AnnR(T ) as desired. �

(b) Prove that (fd) ⊆ AnnR(T ).

Proof. Consider any r ∈ (fd). Since (f1) ⊇ (f2) ⊇ · · · ⊇ (fd) we have r ∈ (fi) for all
i ∈ {1, . . . , d}. Then for any t = (s1 + (f1), . . . , sd + (fd)) ∈ T we have

rt = (rs1 + (f1), . . . , rsd + (fd)) = (0 + (f1), . . . , 0 + (fd))

and it follows that r ∈ AnnR(T ). �

(c) Prove that AnnR(T ) ⊆ (fd). [Hint: If r ∈ AnnR(T ) then, in particular, r annihilates
the element (1 + (f1), . . . , 1 + (fd)).]

Proof. Suppose that r ∈ AnnR(T ). Then in particular we have

(0 + (f1), . . . , 0 + (fd)) = r(1 + (f1), . . . , 1 + (fd)) = (r + (f1), . . . , r + (fd)).

Since r + (fd) = 0 + (fd) we conclude that r ∈ (fd). �

(d) Let K be a field and consider a matrix A ∈ Matn(K). Explain how this defines a
K[x]-module structure on the vector space V := Kn.

The K-module structure on V is carried by a ring homomorphism

λ : K → EndAb(V )

and we want to extend this to a ring homomorphism λ′ : K[x] → EndAb(V ). Since
imλ ⊆ Z(EndAb(V )) we have a natural K-algebra structure on EndAb(V ). Then since
K[x] is the free K-algebra there exists a unique such λ′ sending x 7→ A. ///

[Remark: For gory details see HW1 Problem 3(a).]

(e) Since the module V from part (d) is a finitely generated torsion K[x]-module and since
K[x] is a PID (don’t prove either of these statements) we obtain a decomposition V ∼=
⊕iK[x]/(fi(x)) for some unique non-constant monic polynomials f1(x)|f2(x)| · · · |fd(x).
Prove that fd(x) is the minimal polynomial of A. [Hint: Use (b) and (c).]

Proof. From (b) and (c) we know that (fd(x)) = AnnK[x](V ). On ther other hand,

AnnK[x](V ) =
{
f(x) ∈ K[x] : ∀ v ∈ V, λf(x)(v) = 0

}
= {f(x) ∈ K[x] : ∀ v ∈ V, f(A)v = 0}
= {f(x) ∈ K[x] : f(A) = 0}
= (mA(x)).

Since fd(x) and mA(x) are both monic we conclude that fd(x) = mA(x). �


