Problem 1. R-Algebra Generalities. Let R be a commutative ring.
(a) State the definition of an R-algebra.

An R-algebra is a pair (S, φ) where

- S is a ring,
- $\varphi: R \rightarrow S$ is a ring homomorphism satisfying

$$
\operatorname{im} \varphi \subseteq Z(S)=\{s \in S: \forall t \in S, s t=t s\}
$$

(b) State the definition of a commutative R-algebra.

An R-algebra (S, φ) is called commutative when S is a commutative ring. In this case the condition $\operatorname{im} \varphi \subseteq Z(S)$ is vacuous, so a commutative R-algebra is the same as a homomorphism of commutative rings $\varphi: R \rightarrow S$.
(c) Let $R[A]$ denote the free commutative R-algebra generated by the set A. State its definition. (Such a thing exists, but please don't prove this.)

The free commutative R-algebra generated by the set A consists of a commutative R-algebra $R \rightarrow R[A]$ and a set function $A \rightarrow R[A]$ satisfying the following univeral property:

For all commutative R-algebras $R \rightarrow S$ and all set functions $A \rightarrow S$ there exists a unique ring homomorphism $\varphi: R \rightarrow S$ such that

(d) Let R-CAlg be the category of commutative R-algebras and let R-Mod be the category of R-modules. State the definition of the "forgetful functor" $U: R$-CAlg $\rightarrow R$-Mod.

Given a commutative R-algebra $\varphi: R \rightarrow S$, we let $U(S)$ denote the R-module consisting of the pair $(|S|, \lambda)$, where $|S|$ is the underlying abelian group of S and λ is the ring homomorphism

$$
\lambda: R \rightarrow \operatorname{End}_{\mathrm{Ab}}(|S|)
$$

defined by $\lambda_{r}(s):=\varphi(r) s=s \varphi(r)$ for all $s \in|S|$.
(e) State what it means for the functor $F: R$-Mod $\rightarrow R$-CAlg to be left adjoint to U. (Such a functor exists, but don't prove this.)

We say that $F: R$-Mod $\rightarrow R$-CAlg is left adjoint to $U: R$-CAlg $\rightarrow R$-Mod if we have a family of bijections

$$
\tau_{M, S}: \operatorname{Hom}_{R-\operatorname{Mod}}(M, U(S)) \xrightarrow{\sim} \operatorname{Hom}_{R-\mathrm{CAlg}}(F(M), S)
$$

that is "natural" in the arguments $M \in R$-Mod and $S \in R$-CAlg.
(f) Assume without proof that that $R[A]=F\left(R^{\oplus A}\right)$ (which is true) and assume that " \otimes_{R} " is the name of the coproduct in the category R-CAlg (which is also true). In this case explain why we have an isomorphism of R-algebras:

$$
R[A \sqcup B] \cong R[A] \otimes_{R} R[B] .
$$

The key fact is that left adjoint functors commute with colimits. Since coproducts are examples of colimits, and since the coproducts in Set, R-Mod, R-CAlg are $\sqcup, \oplus, \otimes_{R}$, respectively, we have the following chain of R-algebra isomorphisms:

$$
\begin{aligned}
R[A \sqcup B] & \cong F\left(R^{\oplus A \sqcup B}\right) \\
& \cong F\left(R^{\oplus A} \oplus R^{\oplus B}\right) \\
& \cong F\left(R^{\oplus A}\right) \otimes_{R} F\left(R^{\oplus B}\right) \\
& \cong R[A] \otimes_{R} R[B] .
\end{aligned}
$$

Problem 2. Evaluation of Polynomials. Let R be a commutative ring and define $R[X]=$ $R\left[x_{1}, \ldots, x_{n}\right]$ where $X=\left(x_{1}, \ldots, x_{n}\right)$ is an n-tuple of variables. For each $A \in R^{n}$ we will write $\varphi_{A}: R[X] \rightarrow R$ for the canonical evaluation map. Now for each "formal polynomial" $f(X) \in$ $R[X]$ we can define a "polynomial function" $\varphi_{f}: R^{n} \rightarrow R$ by $\varphi_{f}(A):=\varphi_{A}(f(X))=f(A)$. In summary, we have a function

$$
\varphi: R[X] \rightarrow \operatorname{Homset}_{\mathrm{set}}\left(R^{n}, R\right)
$$

(a) Prove that φ is a ring homomorphism. [Hint: Don't do much.]

If we define a commutative ring structure on $\operatorname{Hom}_{\mathrm{Set}}\left(R^{n}, R\right)$ by "pointwise" addition and multiplication, then for all $f(X), g(X) \in K[X]$ and $A \in R^{n}$ we have

$$
\varphi_{f+g}(A)=(f+g)(A)=f(A)+g(A)=\varphi_{f}(A)+\varphi_{g}(A)=:\left(\varphi_{f}+\varphi_{g}\right)(A)
$$

and

$$
\varphi_{f g}(A)=(f g)(A)=f(A) g(A)=\varphi_{f}(A) \varphi_{g}(A)=:\left(\varphi_{f} \cdot \varphi_{g}\right)(A),
$$

hence it follows that $\varphi_{f+g}=\varphi_{f}+\varphi_{g}$ and $\varphi_{f g}=\varphi_{f} \cdot \varphi_{g}$. Then note that for all $A \in R^{n}$ we have $\varphi_{1}(A)=1=1(A)$, so that $\varphi_{1}=1$.
[Remark: Maybe I did too much?]
(b) If R is an infinite integral domain and if $n=1$, prove that φ is injective. [Hint: By part (a) you only need to show that $\operatorname{ker} \varphi=0$. Use the fact (proved on HW1) that a polynomial $f(x) \in R[x]$ of degree m has at most m roots in R.]

Proof. Suppose that $f(x) \in \operatorname{ker} \varphi \subseteq R[x]$. This means that for all $a \in R$ we have $\varphi_{f}(a)=f(a)=0$. Since R is infinite we have found infinitely many distinct roots of the polynomial $f(x)$. Since R is an integral domain, this implies that $f(x)=0$.
(c) If R is an infinite integral domain, prove that φ is injective for any n. [Hint: Induction on part (b). Use the fact that $R\left[x_{1}, \ldots, x_{n-1}\right]$ is an infinite integral domain.]

Proof. Assume for induction that the map $\varphi: R\left[x_{1}, \ldots, x_{n-1}\right] \rightarrow \operatorname{Homset}_{\text {Set }}\left(R^{n-1}, R\right)$ is injective. Now consider $f(X)=\sum_{i} g_{i}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{i} \in R[X]$ and assume that $f(X) \in \operatorname{ker} \varphi \subseteq R[X]$, i.e., that $\varphi_{f}(A)=f(A)=0$ for all $A=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$.

If we fix $\left(a_{1}, \ldots, a_{n-1}\right)$, then as a_{n} ranges over R we see that $\sum_{i} g_{i}\left(a_{1}, \ldots, a_{n-1}\right) x_{n}^{i} \in$ $R\left[x_{n}\right]$ has infinitely many roots in the integral domain R. By part (b) this implies that $g_{i}\left(a_{1}, \ldots, a_{n-1}\right)=0$ for all i. Then as $\left(a_{1}, \ldots, a_{n-1}\right)$ ranges over R^{n-1} we find that each $g_{i}\left(x_{1}, \ldots, x_{n-1}\right)$ determines the zero function $R^{n-1} \rightarrow R$. By induction this implies that each $g_{i}\left(x_{1}, \ldots, x_{n-1}\right)$ is the zero polynomial, hence $f(X)=0$.

Problem 3. Persistence of Identities. Let R be a commutative ring and consider two matrices $A, B \in \operatorname{Mat}_{n}(R)$. When R is a field we know that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$; in this problem you will prove that the same result holds without any hypothesis on R.
(a) Explain why the category \mathbb{Z}-CAlg of commutative \mathbb{Z}-algebras is just the category of commutative rings.

A commutative \mathbb{Z}-algebra is a pair (S, φ) where S is a commutative ring and $\varphi: \mathbb{Z} \rightarrow S$ is a ring homomorphism. But since \mathbb{Z} is the initial object in the category of rings, the homomorphism φ is redundant. A morphism of \mathbb{Z}-algebras $\left(S_{1}, \varphi_{1}\right) \rightarrow\left(S_{2}, \varphi_{2}\right)$ is a ring homomorphism $\Phi: S_{1} \rightarrow S_{2}$ such that $\Phi \circ \varphi_{1}=\varphi_{2}$. But since φ_{1} and φ_{2} are redundant, Φ is just a ring homomorphism.
(b) Consider two n^{2}-tuples of variables $X=\left(x_{i j}\right)$ and $Y=\left(y_{k \ell}\right)$ and the commutative polynomial ring $\mathbb{Z}[X, Y]$ in $2 n^{2}$ variables. For any two matrices $A=\left(a_{i j}\right), B=\left(b_{k \ell}\right) \in$ $\operatorname{Mat}_{n}(R)$ explain why there exists a unique ring homomorphism

$$
\varphi_{A, B}: \mathbb{Z}[X, Y] \rightarrow R
$$

such that $\varphi_{A, B}\left(x_{i j}\right)=a_{i j}$ and $\varphi_{A, B}\left(y_{k \ell}\right)=b_{k \ell}$ for all $i, j, k, \ell \in\{1, \ldots, n\}$. [Hint: (a).]
Thinking of R as a \mathbb{Z}-algebra by part (a) and thinking of $\mathbb{Z}[X, Y]$ as the free \mathbb{Z}-algebra from Problem 1(c) gives us a unique "evaluation" \mathbb{Z}-algebra homomorphism. But, by part (a), \mathbb{Z}-algebra homomorphisms are just ring homomorphisms. //
(c) Consider the formal polynomial $f(X, Y):=\operatorname{det}(X Y)-\operatorname{det}(X) \operatorname{det}(Y) \in \mathbb{Z}[X, Y]$. Prove that for all matrices $A, B \in \operatorname{Mat}_{n}(R)$ we have $f(A, B):=\varphi_{A, B}(f(X, Y))=0$. [Hint: You can assume that this is true when R is a field. Use part (b) and Problem 2(c) to show that $f(X, Y)$ is actually the zero element of $\mathbb{Z}[X, Y]$.]

Proof. Let K be any infinite field. Since K is a field we have $f(A, B)=0$ for all matrices $A, B \in \operatorname{Mat}_{n}(K)$. Then since K is an infinite domain, Problem 2(c) implies that $f(X, Y)$ is the zero element of $\mathbb{Z}[X, Y]$. Finally, for any commutative ring R and any matrices $A, B \in \operatorname{Mat}_{n}(R)$ we have

$$
f(A, B)=\varphi_{A, B}(f(X, Y))=\varphi_{A, B}(0)=0 .
$$

Problem 4. Modules over a PID. Let R be a PID and let $T \in R$-Mod be a finitely generated torsion module. The Fundamental Theorem says that there exist (unique) ideals $(1) \neq\left(f_{1}\right) \supseteq\left(f_{2}\right) \supseteq \cdots \supseteq\left(f_{d}\right) \neq(0)$ such that $T \cong \oplus_{i} R /\left(f_{i}\right)$.
(a) Define the set $\operatorname{Ann}_{R}(T):=\{r \in R: \forall t \in T, r t=0\} \subseteq R$. Prove that this is an ideal of R (called the annihilator ideal of the module).
Proof. Consider any $s_{1}, s_{2} \in \operatorname{Ann}_{R}(T)$ and $r \in R$. Then for all $t \in T$ we have

$$
\left(s_{1}+r s_{2}\right) t=s_{1} t+r s_{2} t=0+r 0=0,
$$

and it follows that $s_{1}+r s_{2} \in \operatorname{Ann}_{R}(T)$ as desired.
(b) Prove that $\left(f_{d}\right) \subseteq \operatorname{Ann}_{R}(T)$.

Proof. Consider any $r \in\left(f_{d}\right)$. Since $\left(f_{1}\right) \supseteq\left(f_{2}\right) \supseteq \cdots \supseteq\left(f_{d}\right)$ we have $r \in\left(f_{i}\right)$ for all $i \in\{1, \ldots, d\}$. Then for any $t=\left(s_{1}+\left(f_{1}\right), \ldots, s_{d}+\left(f_{d}\right)\right) \in T$ we have

$$
r t=\left(r s_{1}+\left(f_{1}\right), \ldots, r s_{d}+\left(f_{d}\right)\right)=\left(0+\left(f_{1}\right), \ldots, 0+\left(f_{d}\right)\right)
$$

and it follows that $r \in \operatorname{Ann}_{R}(T)$.
(c) Prove that $\operatorname{Ann}_{R}(T) \subseteq\left(f_{d}\right)$. [Hint: If $r \in \operatorname{Ann}_{R}(T)$ then, in particular, r annihilates the element $\left(1+\left(f_{1}\right), \ldots, 1+\left(f_{d}\right)\right)$.]
Proof. Suppose that $r \in \operatorname{Ann}_{R}(T)$. Then in particular we have

$$
\left(0+\left(f_{1}\right), \ldots, 0+\left(f_{d}\right)\right)=r\left(1+\left(f_{1}\right), \ldots, 1+\left(f_{d}\right)\right)=\left(r+\left(f_{1}\right), \ldots, r+\left(f_{d}\right)\right) .
$$

Since $r+\left(f_{d}\right)=0+\left(f_{d}\right)$ we conclude that $r \in\left(f_{d}\right)$.
(d) Let K be a field and consider a matrix $A \in \operatorname{Mat}_{n}(K)$. Explain how this defines a $K[x]$-module structure on the vector space $V:=K^{n}$.

The K-module structure on V is carried by a ring homomorphism

$$
\lambda: K \rightarrow \operatorname{End}_{\mathrm{Ab}}(V)
$$

and we want to extend this to a ring homomorphism $\lambda^{\prime}: K[x] \rightarrow \operatorname{End}_{\mathrm{Ab}}(V)$. Since $\operatorname{im} \lambda \subseteq Z\left(\operatorname{End}_{\mathrm{Ab}}(V)\right)$ we have a natural K-algebra structure on $\operatorname{End}_{\mathrm{Ab}}(V)$. Then since $K[x]$ is the free K-algebra there exists a unique such λ^{\prime} sending $x \mapsto A$.
[Remark: For gory details see HW1 Problem 3(a).]
(e) Since the module V from part (d) is a finitely generated torsion $K[x]$-module and since $K[x]$ is a PID (don't prove either of these statements) we obtain a decomposition $V \cong$ $\oplus_{i} K[x] /\left(f_{i}(x)\right)$ for some unique non-constant monic polynomials $f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{d}(x)$. Prove that $f_{d}(x)$ is the minimal polynomial of A. [Hint: Use (b) and (c).]
Proof. From (b) and (c) we know that $\left(f_{d}(x)\right)=\operatorname{Ann}_{K[x]}(V)$. On ther other hand,

$$
\begin{aligned}
\operatorname{Ann}_{K[x]}(V) & =\left\{f(x) \in K[x]: \forall v \in V, \lambda_{f(x)}(v)=0\right\} \\
& =\{f(x) \in K[x]: \forall v \in V, f(A) v=0\} \\
& =\{f(x) \in K[x]: f(A)=0\} \\
& =\left(m_{A}(x)\right) .
\end{aligned}
$$

Since $f_{d}(x)$ and $m_{A}(x)$ are both monic we conclude that $f_{d}(x)=m_{A}(x)$.

