Problem 1. R-Algebra Generalities. Let R be a commutative ring.

(a) State the definition of an *R*-algebra.

An *R*-algebra is a pair (S, φ) where

• S is a ring,

defined

• $\varphi: R \rightarrow S$ is a ring homomorphism satisfying

$$\operatorname{im} \varphi \subseteq Z(S) = \{ s \in S : \forall t \in S, st = ts \}.$$

///

(b) State the definition of a commutative *R*-algebra.

An *R*-algebra (S, φ) is called commutative when *S* is a commutative ring. In this case the condition im $\varphi \subseteq Z(S)$ is vacuous, so a commutative *R*-algebra is the same as a homomorphism of commutative rings $\varphi : R \to S$.

(c) Let R[A] denote the free commutative R-algebra generated by the set A. State its definition. (Such a thing exists, but please don't prove this.)

The free commutative *R*-algebra generated by the set *A* consists of a commutative *R*-algebra $R \to R[A]$ and a set function $A \to R[A]$ satisfying the following universal property:

For all commutative R-algebras $R \to S$ and all set functions $A \to S$ there exists a unique ring homomorphism $\varphi : R \to S$ such that

///

(d) Let *R*-CAlg be the category of commutative *R*-algebras and let *R*-Mod be the category of *R*-modules. State the definition of the "forgetful functor" U : R-CAlg $\rightarrow R$ -Mod.

Given a commutative R-algebra $\varphi : R \to S$, we let U(S) denote the R-module consisting of the pair $(|S|, \lambda)$, where |S| is the underlying abelian group of S and λ is the ring homomorphism

$$\lambda: R \to \operatorname{End}_{\mathsf{Ab}}(|S|)$$

by $\lambda_r(s) := \varphi(r)s = s\varphi(r)$ for all $s \in |S|$. ///

(e) State what it means for the functor F : R-Mod $\rightarrow R$ -CAlg to be left adjoint to U. (Such a functor exists, but don't prove this.)

We say that F : R-Mod $\rightarrow R$ -CAlg is left adjoint to U : R-CAlg $\rightarrow R$ -Mod if we have a family of bijections

$$\tau_{M,S} : \operatorname{Hom}_{R\operatorname{\mathsf{-Mod}}}(M, U(S)) \xrightarrow{\sim} \operatorname{Hom}_{R\operatorname{\mathsf{-CAlg}}}(F(M), S)$$

that is "natural" in the arguments $M \in R$ -Mod and $S \in R$ -CAlg. ///

(f) Assume without proof that that $R[A] = F(R^{\oplus A})$ (which is true) and assume that " \otimes_R " is the name of the **coproduct** in the category *R*-CAlg (which is also true). In this case explain why we have an isomorphism of *R*-algebras:

$$R[A \sqcup B] \cong R[A] \otimes_R R[B].$$

The key fact is that left adjoint functors commute with colimits. Since coproducts are examples of colimits, and since the coproducts in Set, *R*-Mod, *R*-CAlg are $\sqcup, \oplus, \otimes_R$, respectively, we have the following chain of *R*-algebra isomorphisms:

$$R[A \sqcup B] \cong F(R^{\oplus A \sqcup B})$$

$$\cong F(R^{\oplus A} \oplus R^{\oplus B})$$

$$\cong F(R^{\oplus A}) \otimes_R F(R^{\oplus B})$$

$$\cong R[A] \otimes_R R[B].$$
////

Problem 2. Evaluation of Polynomials. Let R be a commutative ring and define $R[X] = R[x_1, \ldots, x_n]$ where $X = (x_1, \ldots, x_n)$ is an n-tuple of variables. For each $A \in R^n$ we will write $\varphi_A : R[X] \to R$ for the canonical evaluation map. Now for each "formal polynomial" $f(X) \in R[X]$ we can define a "polynomial function" $\varphi_f : R^n \to R$ by $\varphi_f(A) := \varphi_A(f(X)) = f(A)$. In summary, we have a function

$$\varphi: R[X] \to \operatorname{Hom}_{\mathsf{Set}}(\mathbb{R}^n, \mathbb{R}).$$

(a) Prove that φ is a ring homomorphism. [Hint: Don't do much.]

If we define a commutative ring structure on $\operatorname{Hom}_{\mathsf{Set}}(\mathbb{R}^n, \mathbb{R})$ by "pointwise" addition and multiplication, then for all $f(X), g(X) \in K[X]$ and $A \in \mathbb{R}^n$ we have

$$\varphi_{f+g}(A) = (f+g)(A) = f(A) + g(A) = \varphi_f(A) + \varphi_g(A) = :(\varphi_f + \varphi_g)(A)$$

and

$$\varphi_{fg}(A) = (fg)(A) = f(A)g(A) = \varphi_f(A)\varphi_g(A) =: (\varphi_f \cdot \varphi_g)(A),$$

hence it follows that $\varphi_{f+g} = \varphi_f + \varphi_g$ and $\varphi_{fg} = \varphi_f \cdot \varphi_g$. Then note that for all $A \in \mathbb{R}^n$ we have $\varphi_1(A) = 1 = 1(A)$, so that $\varphi_1 = 1$.

[Remark: Maybe I did too much?]

(b) If R is an **infinite integral domain** and if n = 1, prove that φ is injective. [Hint: By part (a) you only need to show that ker $\varphi = 0$. Use the fact (proved on HW1) that a polynomial $f(x) \in R[x]$ of degree m has at most m roots in R.]

Proof. Suppose that $f(x) \in \ker \varphi \subseteq R[x]$. This means that for all $a \in R$ we have $\varphi_f(a) = f(a) = 0$. Since R is infinite we have found infinitely many distinct roots of the polynomial f(x). Since R is an integral domain, this implies that f(x) = 0. \Box

(c) If R is an **infinite integral domain**, prove that φ is injective for any n. [Hint: Induction on part (b). Use the fact that $R[x_1, \ldots, x_{n-1}]$ is an infinite integral domain.] *Proof.* Assume for induction that the map $\varphi : R[x_1, \ldots, x_{n-1}] \to \operatorname{Hom}_{\mathsf{Set}}(R^{n-1}, R)$ is injective. Now consider $f(X) = \sum_i g_i(x_1, \ldots, x_{n-1}) x_n^i \in R[X]$ and assume that $f(X) \in \ker \varphi \subseteq R[X]$, i.e., that $\varphi_f(A) = f(A) = 0$ for all $A = (a_1, \ldots, a_n) \in R^n$.

If we fix (a_1, \ldots, a_{n-1}) , then as a_n ranges over R we see that $\sum_i g_i(a_1, \ldots, a_{n-1})x_n^i \in R[x_n]$ has infinitely many roots in the integral domain R. By part (b) this implies that $g_i(a_1, \ldots, a_{n-1}) = 0$ for all i. Then as (a_1, \ldots, a_{n-1}) ranges over R^{n-1} we find that each $g_i(x_1, \ldots, x_{n-1})$ determines the zero function $R^{n-1} \to R$. By induction this implies that each $g_i(x_1, \ldots, x_{n-1})$ is the zero polynomial, hence f(X) = 0.

Problem 3. Persistence of Identities. Let R be a commutative ring and consider two matrices $A, B \in \text{Mat}_n(R)$. When R is a field we know that $\det(AB) = \det(A)\det(B)$; in this problem you will prove that the same result holds without any hypothesis on R.

(a) Explain why the category Z-CAlg of commutative Z-algebras is just the category of commutative rings.

A commutative \mathbb{Z} -algebra is a pair (S, φ) where S is a commutative ring and $\varphi : \mathbb{Z} \to S$ is a ring homomorphism. But since \mathbb{Z} is the initial object in the category of rings, the homomorphism φ is redundant. A morphism of \mathbb{Z} -algebras $(S_1, \varphi_1) \to (S_2, \varphi_2)$ is a ring homomorphism $\Phi : S_1 \to S_2$ such that $\Phi \circ \varphi_1 = \varphi_2$. But since φ_1 and φ_2 are redundant, Φ is just a ring homomorphism. ///

(b) Consider two n^2 -tuples of variables $X = (x_{ij})$ and $Y = (y_{k\ell})$ and the commutative polynomial ring $\mathbb{Z}[X, Y]$ in $2n^2$ variables. For any two matrices $A = (a_{ij}), B = (b_{k\ell}) \in Mat_n(R)$ explain why there exists a **unique ring homomorphism**

$$\varphi_{A,B}: \mathbb{Z}[X,Y] \to R$$

such that $\varphi_{A,B}(x_{ij}) = a_{ij}$ and $\varphi_{A,B}(y_{k\ell}) = b_{k\ell}$ for all $i, j, k, \ell \in \{1, \ldots, n\}$. [Hint: (a).]

Thinking of R as a \mathbb{Z} -algebra by part (a) and thinking of $\mathbb{Z}[X, Y]$ as the free \mathbb{Z} -algebra from Problem 1(c) gives us a unique "evaluation" \mathbb{Z} -algebra homomorphism. But, by part (a), \mathbb{Z} -algebra homomorphisms are just ring homomorphisms. ///

(c) Consider the formal polynomial $f(X, Y) := \det(XY) - \det(X)\det(Y) \in \mathbb{Z}[X, Y]$. Prove that for all matrices $A, B \in \operatorname{Mat}_n(R)$ we have $f(A, B) := \varphi_{A,B}(f(X, Y)) = 0$. [Hint: You can assume that this is true when R is a field. Use part (b) and Problem 2(c) to show that f(X, Y) is actually the zero element of $\mathbb{Z}[X, Y]$.]

Proof. Let K be any infinite field. Since K is a field we have f(A, B) = 0 for all matrices $A, B \in Mat_n(K)$. Then since K is an infinite domain, Problem 2(c) implies that f(X, Y) is the zero element of $\mathbb{Z}[X, Y]$. Finally, for any commutative ring R and any matrices $A, B \in Mat_n(R)$ we have

$$f(A,B) = \varphi_{A,B}(f(X,Y)) = \varphi_{A,B}(0) = 0.$$

Problem 4. Modules over a PID. Let R be a PID and let $T \in R$ -Mod be a finitely generated torsion module. The Fundamental Theorem says that there exist (unique) ideals $(1) \neq (f_1) \supseteq (f_2) \supseteq \cdots \supseteq (f_d) \neq (0)$ such that $T \cong \bigoplus_i R/(f_i)$.

(a) Define the set $\operatorname{Ann}_R(T) := \{r \in R : \forall t \in T, rt = 0\} \subseteq R$. Prove that this is an ideal of R (called the annihilator ideal of the module).

Proof. Consider any $s_1, s_2 \in \operatorname{Ann}_R(T)$ and $r \in R$. Then for all $t \in T$ we have

$$(s_1 + rs_2)t = s_1t + rs_2t = 0 + r0 = 0,$$

and it follows that $s_1 + rs_2 \in \operatorname{Ann}_R(T)$ as desired.

(b) Prove that $(f_d) \subseteq \operatorname{Ann}_R(T)$.

Proof. Consider any $r \in (f_d)$. Since $(f_1) \supseteq (f_2) \supseteq \cdots \supseteq (f_d)$ we have $r \in (f_i)$ for all $i \in \{1, ..., d\}$. Then for any $t = (s_1 + (f_1), ..., s_d + (f_d)) \in T$ we have

$$rt = (rs_1 + (f_1), \dots, rs_d + (f_d)) = (0 + (f_1), \dots, 0 + (f_d))$$

and it follows that $r \in \operatorname{Ann}_R(T)$.

(c) Prove that $\operatorname{Ann}_R(T) \subseteq (f_d)$. [Hint: If $r \in \operatorname{Ann}_R(T)$ then, in particular, r annihilates the element $(1 + (f_1), \ldots, 1 + (f_d))$.]

Proof. Suppose that
$$r \in \operatorname{Ann}_R(T)$$
. Then in particular we have
 $(0 + (f_1), \dots, 0 + (f_d)) = r(1 + (f_1), \dots, 1 + (f_d)) = (r + (f_1), \dots, r + (f_d)).$
Since $r + (f_d) = 0 + (f_d)$ we conclude that $r \in (f_d)$.

(d) Let K be a field and consider a matrix $A \in Mat_n(K)$. Explain how this defines a K[x]-module structure on the vector space $V := K^n$.

The K-module structure on V is carried by a ring homomorphism

$$\lambda: K \to \operatorname{End}_{\mathsf{Ab}}(V)$$

and we want to extend this to a ring homomorphism $\lambda' : K[x] \to \operatorname{End}_{Ab}(V)$. Since im $\lambda \subseteq Z(\operatorname{End}_{Ab}(V))$ we have a natural K-algebra structure on $\operatorname{End}_{Ab}(V)$. Then since K[x] is the free K-algebra there exists a unique such λ' sending $x \mapsto A$. ///

[Remark: For gory details see HW1 Problem 3(a).]

(e) Since the module V from part (d) is a finitely generated torsion K[x]-module and since K[x] is a PID (don't prove either of these statements) we obtain a decomposition $V \cong$ $\oplus_i K[x]/(f_i(x))$ for some unique non-constant monic polynomials $f_1(x)|f_2(x)|\cdots|f_d(x)$. Prove that $f_d(x)$ is the minimal polynomial of A. [Hint: Use (b) and (c).]

Proof. From (b) and (c) we know that $(f_d(x)) = \operatorname{Ann}_{K[x]}(V)$. On the other hand,

$$\operatorname{Ann}_{K[x]}(V) = \{ f(x) \in K[x] : \forall v \in V, \lambda_{f(x)}(v) = 0 \}$$

= $\{ f(x) \in K[x] : \forall v \in V, f(A)v = 0 \}$
= $\{ f(x) \in K[x] : f(A) = 0 \}$
= $(m_A(x)).$

Since $f_d(x)$ and $m_A(x)$ are both monic we conclude that $f_d(x) = m_A(x)$.