Problem 1. Categories. Let \mathcal{C} be a category.
(a) Define what it means for two objects $X, Y \in \mathcal{C}$ to be isomorphic.

We say that $X, Y \in \mathcal{C}$ are isomorphic if there exist morphisms $\alpha: X \rightarrow Y$ and $\beta: Y \rightarrow X$ such that $\alpha \circ \beta=\operatorname{id}_{Y}$ and $\beta \circ \alpha=\operatorname{id}_{X}$.
(b) Define initial objects in \mathcal{C}.

We say that $X \in \mathcal{C}$ is an initial object if for all objects $Y \in \mathcal{C}$ we have $\left|\operatorname{Hom}_{\mathcal{C}}(X, Y)\right|=1$.
(c) Prove that any two initial objects $X, Y \in \mathcal{C}$ are isomorphic.

Let $X, Y \in \mathcal{C}$ be initial objects. By definition there exist (unique) morphisms $\alpha: X \rightarrow$ Y and $\beta: Y \rightarrow X$. Now consider the morphism $\alpha \circ \beta: Y \rightarrow Y$. Since $\left|\operatorname{Hom}_{\mathcal{C}}(Y, Y)\right|=1$ we must have $\alpha \circ \beta=\operatorname{id}_{Y}$. Similarly, since $\left|\operatorname{Hom}_{\mathcal{C}}(X, X)\right|=1$ we have $\beta \circ \alpha=\operatorname{id}_{X}$. We conclude that X and Y are isomorphic.

Problem 2. Quotients. Let \sim be an equivalence relation on a set S.
(a) Define what it means for $\pi: S \rightarrow Q$ to be a \sim-quotient map.

We say that a function $\pi: S \rightarrow Q$ is a \sim-quotient map if

- For all $x, y \in S$ we have $(x \sim y) \Rightarrow(\pi(x)=\pi(y))$.
- Given a function $\varphi: S \rightarrow T$ satisfying $(x \sim y) \Rightarrow(\varphi(x)=\varphi(y))$ for all $x, y \in$ S, there exists a unique function $\bar{\varphi}: Q \rightarrow T$ such that the following diagram commutes:

(b) Prove that a \sim-quotient map exists and say in what sense it is unique.

Given $x \in S$ we define the equivalence class $[x]:=\{y \in S: x \sim y\}$. Now consider the set of equivalence classes $S / \sim:=\{[x]: x \in S\}$. Since $(x \sim y) \Rightarrow([x]=[y])$, the prescription $\pi(x):=[x]$ determines a well-defined function $\pi: S \rightarrow S / \sim$ satisfying the first property of a \sim-quotient map.

To establish the second property, let $\varphi: S \rightarrow T$ be any function satisfying $(x \sim y) \Rightarrow$ $(\varphi(x)=\varphi(y))$. If there exists a function $\bar{\varphi}: S / \sim \rightarrow T$ satisfying the commutative diagram it must satisfy the prescription $\bar{\varphi}([x])=\varphi(x)$ for all $x \in S$. Then since $([x]=[y]) \Rightarrow(x \sim y) \Rightarrow(\varphi(x)=\varphi(y))$, this prescription does define a function. ///

A quotient map is unique in the following sense: Let $\pi_{1}: S \rightarrow Q_{1}$ and $\pi_{2}: S \rightarrow Q_{2}$ be two \sim-quotient maps. Then there exists a unique bijection $Q_{1} \longleftrightarrow Q_{2}$ such that the following diagram commutes:

The uniqueness follows from Problem 1(c).
Problem 3. First Isomorphism Theorem. Let $N \unlhd G$ be a normal subgroup.
(a) Define the universal property of a group quotient $\pi: G \rightarrow G / N$ and say in what sense a quotient is unique.

If $\varphi: G \rightarrow G^{\prime}$ is any group homomorphism such that $N \subseteq \operatorname{ker} \varphi$, then there exists a unique group homomorphism $\bar{\varphi}: G / N \rightarrow G^{\prime}$ such that the following diagram commutes:

If $p: G \rightarrow Q$ is any other " N-quotient" satisfying this universal property then there exists a unique group isomorphism $G / N \stackrel{\sim}{\longleftrightarrow} Q$ such that the following diagram commutes:

(b) Now let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Use the universal property from part (a) to prove that $G / \operatorname{ker} \varphi \approx \operatorname{im} \varphi$. [Hint: You can assume that the quotient $\pi: G \rightarrow G / \operatorname{ker} \varphi$ from part (a) exists.]

Since $\operatorname{ker} \varphi \unlhd G$ we have the standard quotient map $\pi: G \rightarrow G / \operatorname{ker} \varphi$. I claim that the homomorphism $\varphi: G \rightarrow \operatorname{im} \varphi$ is another "ker φ-quotient" map. Indeed, if $p: G \rightarrow G^{\prime}$ is any group homomorphism such that $\operatorname{ker} \varphi \subseteq \operatorname{ker} p$ then any homomorphism $\bar{p}: \operatorname{im} \varphi \rightarrow$ Q such that

must satisfy the prescription $\bar{p}(\varphi(g))=p(g)$ for all $g \in G$. Certainly this \bar{p} will be a homomorphism if it is well-defined, and it is well-defined because for all $g, h \in G$ we have

$$
(\varphi(g)=\varphi(h)) \Rightarrow\left(g h^{-1} \in \operatorname{ker} \varphi\right) \Rightarrow\left(g h^{-1} \in \operatorname{ker} p\right) \Rightarrow(p(g)=p(h)) .
$$

Now the isomorphism $G / \operatorname{ker} \varphi \approx \operatorname{im} \varphi$ follows from the uniqueness of quotients. ///

Problem 4. Group Products. Consider a group G with subgroups $H, K \subseteq G$.
(a) Prove that $H K:=\{h k: h \in H, k \in K\}$ is a subgroup of G if and only if $H K=K H$.

First assume that we have $H K=K H$. To show that $H K$ is a subgroup consider any two elements $h_{1} k_{1}, h_{2} k_{2} \in H K$. Since $k_{1} k_{2}^{-1} h_{2}^{-1} \in K H \subseteq H K$, there exist $h \in H$ and $k \in K$ such that $k_{1} k_{2}^{-1} h_{2}^{-1}=h k$. Then we have

$$
\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)^{-1}=h_{1}\left(k_{1} k_{2}^{-1} h_{2}^{-1}\right)=h_{1} h k \in H K,
$$

as desired.
Conversely, assume that $H K \subseteq G$ is a subgroup. To prove that $H K=K H$, first consider an element $h k \in H K$. Since $H K$ is a group there exists $h^{\prime} k^{\prime} \in H K$ such that $h k h^{\prime} k^{\prime}=1$, hence $h k=\left(k^{\prime}\right)^{-1}\left(h^{\prime}\right)^{-1} \in K H$ as desired. Next, consider any element $k h \in K H$. Since $k=1 k \in H K$ and $h=h 1 \in H K$ and since $H K$ is a subgroup we obtain $k h \in H K$ as desired. ///
(b) Prove that the multiplication map $\mu: H \times K \rightarrow H K$ is injective if and only if $H \cap K=1$.

First assume that multiplication $\mu: H \times K \rightarrow H K$ is injective and consider any element $g \in H \cap K$. Note that $g \in H$ and $g^{-1} \in K$ so we can apply multiplication to get $\mu\left(g, g^{-1}\right)=g g^{-1}=1$. But we also have $\mu(1,1)=1$, so injectivity of μ implies that $(1,1)=\left(g, g^{-1}\right)$, hence $g=1$.

Conversely, assume that $H \cap K=1$ and suppose that $\mu\left(h_{1}, k_{1}\right)=\mu\left(h_{2}, k_{2}\right)$ (i.e., $\left.h_{1} k_{1}=h_{2} k_{2}\right)$ for some $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$. Then we have

$$
h_{1} k_{1}=h_{2} k_{2} \quad \Longrightarrow \quad h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1} \in H \cap K .
$$

Since $H \cap K=1$ this implies that $h_{2}^{-1} h_{1}=k_{2} k_{1}^{-1}=1$, hence $h_{1}=h_{2}$ and $k_{1}=k_{2}$. It follows that $\left(h_{1}, k_{1}\right)=\left(h_{2}, k_{2}\right)$ and we conclude that μ is injective. ///

Problem 5. Short Exact Sequences. Let K be a field and consider the following short exact sequence of groups:

$$
\mathbf{1} \longrightarrow \mathrm{SL}_{n}(K) \xrightarrow{i} \mathrm{GL}_{n}(K) \xrightarrow{\text { det }} K^{\times} \longrightarrow \mathbf{1} .
$$

(a) Find an explicit section of the determinant map $\mathrm{GL}_{n}(K) \rightarrow K^{\times}$and conclude that $\mathrm{GL}_{n}(K) \approx \mathrm{SL}_{n}(K) \rtimes K^{\times}$.

Given $\alpha \in K^{\times}$we will define the matrix

$$
s(\alpha):=\left(\begin{array}{cccc}
\alpha & & & 0 \\
& 1 & & \\
& & \ddots & \\
0 & & & 1
\end{array}\right) .
$$

Note that for all $\alpha, \beta \in K^{\times}$we have $s(\alpha) s(\beta)=s(\alpha \beta)$ and $\operatorname{det}(s(\alpha))=\alpha$, so that $s: K^{\times} \rightarrow \mathrm{GL}_{n}(K)$ is a section. We conclude from the splitting lemma on HW3 that

$$
\mathrm{GL}_{n}(K) \approx \mathrm{SL}_{n}(K) \rtimes K^{\times} .
$$

(b) Now assume that $K=\mathbb{R}$ and n is odd. In this case find an explicit retraction of the inclusion $\operatorname{map} \mathrm{SL}_{n}(\mathbb{R}) \rightarrow \mathrm{GL}_{n}(\mathbb{R})$ and conclude that $\mathrm{GL}_{n}(\mathbb{R}) \approx \mathrm{SL}_{n}(\mathbb{R}) \times \mathbb{R}^{\times}$. [Hint: Since n is odd, every $\alpha \in \mathbb{R}^{\times}$has an obvious n-th root.]
First note that since n is odd, every $\alpha \in \mathbb{R}^{\times}$has a unique n-th root in \mathbb{R}^{\times}. This defines a function $\sqrt[n]{\cdot}: \mathbb{R}^{\times} \rightarrow \mathbb{R}^{\times}$. Then since the product of n-th roots is an n-th root, uniqueness implies that $\sqrt[n]{\cdot}$ is a group homomorphism. [For a general field K and general n this is not possible.]

Now given an invertible matrix $A \in \mathrm{GL}_{n}(\mathbb{R})$ we will define

$$
r(A):=\frac{1}{\sqrt[n]{\operatorname{det}(A)}} \cdot A
$$

Since A is an $n \times n$ matrix we have

$$
\begin{aligned}
\operatorname{det}(r(A)) & =\operatorname{det}\left(\frac{1}{\sqrt[n]{\operatorname{det}(A)}} \cdot A\right) \\
& =\left(\frac{1}{\sqrt[n]{\operatorname{det}(A)}}\right)^{n} \operatorname{det}(A) \\
& =\frac{1}{\operatorname{det}(A)} \cdot \operatorname{det}(A) \\
& =1
\end{aligned}
$$

hence $r(A) \in \mathrm{SL}_{n}(\mathbb{R})$. Since $\sqrt[n]{ }$. is a function we obtain a function $r: \mathrm{GL}_{n}(\mathbb{R}) \rightarrow$ $\mathrm{SL}_{n}(\mathbb{R})$. Then since $\sqrt[n]{\cdot}$ is a homomorphism we have

$$
\begin{aligned}
r(A) r(B) & =\frac{1}{\sqrt[n]{\operatorname{det}(A)}} \cdot A \cdot \frac{1}{\sqrt[n]{\operatorname{det}(B)}} \cdot B \\
& =\frac{1}{\sqrt[n]{\operatorname{det}(A)}} \cdot \frac{1}{\sqrt[n]{\operatorname{det}(B)}} \cdot A B \\
& =\frac{1}{\sqrt[n]{\operatorname{det}(A) \operatorname{det}(B)}} \cdot A B \\
& =\frac{1}{\sqrt[n]{\operatorname{det}(A B)}} \cdot A B \\
& =r(A B),
\end{aligned}
$$

for all $A, B \in \mathrm{GL}_{n}(\mathbb{R})$, hence r is a homomorphism. Finally, since $r(i(A))=r(A)=A$ for all $A \in \mathrm{SL}_{n}(\mathbb{R})$ we conclude that r is a retraction of the inclusion map $i: \mathrm{SL}_{n}(\mathbb{R}) \rightarrow$ $\mathrm{GL}_{n}(\mathbb{R})$. It follows from the splitting lemma proved in class that

$$
\mathrm{GL}_{n}(\mathbb{R}) \approx \mathrm{SL}_{n}(\mathbb{R}) \times \mathbb{R}^{\times}
$$

[Remark: This is a pretty special isomorphism. I asked MathOverflow for a topological or geometric interpretation but I didn't get one yet.]

