
Math 761 Fall 2015
Homework 3 Drew Armstrong

Problem 1. Modularity. Let (L ,≤,∧,∨, 0, 1) be a lattice. For all x, y ∈ L we define the
closed interval [x, y] := {z ∈ L : x ≤ z ≤ y}.

(a) Prove that for all a, b ∈ L we have a Galois connection

a ∨ (−) : [0, b]� [a, 1] : (−) ∧ b.
In other words, show that for all x ∈ [0, b] and y ∈ [a, 1] we have

x ≤ (y ∧ b)⇐⇒ (a ∨ x) ≤ y.
(b) Given elements x, y, z ∈ L with z ≤ y, there are two possible ways to map the element

x into the interval [z, y]: by meeting with y and then joining with z, or by joining with
z and then meeting with y. Prove that these two images are related by

(1) z ∨ (x ∧ y) ≤ (z ∨ x) ∧ y
as in the following picture:

We will say that (a, b) ∈ L 2 is a modular pair if for all x ≤ b and a ≤ y the inequality
(1) becomes an equality; that is, if we have

x ∨ (a ∧ b) = (x ∨ a) ∧ b, and(2)

a ∨ (b ∧ y) = (a ∨ b) ∧ y.(3)

We will say that a ∈ L is a modular element if (a, b) is a modular pair for all b ∈ L .
(c) If (a, b) is a modular pair, prove that the Galois connection from part (a) restricts to

an isomorphism of lattices

[a ∧ b, b] ≈ [a, a ∨ b].

Problem 2. Normal ⇒ Modular. Let G be a group and consider its lattice L (G) of
subgroups. Let H,N ∈ L (G) with N EG.

(a) Prove that N is a modular element of the lattice L (G) and conclude from Problem 1
that we have an isomorphism of lattices

[H ∧N,H] ≈ [N,H ∨N ].

(b) Prove that the lattice isomorphism from part (a) lifts to an isomorphism of groups

H

H ∧N
≈ H ∨N

N
.

[Hint: Since N E G we have H ∨ N = HN and N E HN . Consider the function
ϕ : H → HN/N defined by ϕ(h) = (h1)N .]



Problem 3. Modular 6⇒ Normal. Consider the dihedral group D6 and the cyclic group
Z/3Z. Prove that we have an isomorphism of lattices

L (D6) ≈ L (Z/3Z× Z/3Z).

Conclude that a modular element of the subgroup lattice is not necessarily normal.

Problem 4. A Zappa–Szép Product. Let H,K ⊆ G be subgroups. We say that G is a
Zappa–Szép product of H and K (and we write G = H ./ K) if H ∧K = 1, H ∨K = G, and
neither of H or K is normal in G.

(a) Let H,K ⊆ G be finite subgroups, at least one of which is normal in G. Prove that

|H| · |K| = |HK| · |H ∩K|.
[Hint: Use Problem 2(b).]

(b) Prove that the result of part (a) holds even in the case when both of H and K are
non-normal. [Hint: Let H act by left multiplcation on the set of left cosets G/K. Show
that HK is the disjoint union of cosets in the orbit of K ∈ G/K. How many such
cosets are there?]

(c) Consider a cycle c = (i1i2 · · · ik) ∈ Sn and a permutation π ∈ Sn. Prove that

πcπ−1 = (π(i1)π(i2) · · ·π(ik)).

Use this fact to describe the conjugacy classes of Sn.
(d) Let G = S4, H = 〈(1234), (12)(34)〉, and K = 〈(123)〉. Prove that G = H ./ K. [Hint:

Show that H ≈ D8 and K ≈ Z/3Z. Now use parts (b) and (c).]

Problem 5. Right-Split Exact Sequences. A short exact sequence in the category of
groups is a sequence of groups and homomorphisms of the form

1 // N
α // G

β // H // 1

that satisfies kerα = 1, imα = kerβ, and imβ = H. Given such a sequence, prove that the
following two conditions are equivalent.

(1) There exists a group homomorphism s : H → G such that β ◦s = idH . [This s is called
a section of β.] In this case we say that the short exact sequence is right-split.

(2) There exists a homomorphism ϕ : H → Aut(N) and an isomorphism γ : N oϕH → G
such that the following diagram commutes:

1 // N //

idN
��

N oϕ H //

γ

��

H //

idH
��

1

1 // N
α // G

β // H // 1

The maps in the top row are the obvious ones.

[Hint: To prove that (1) ⇒ (2), consider any h ∈ H and n ∈ N . Prove that there exists
a unique n′ ∈ N such that s(h)α(n)s(h−1) = α(n′). Call it ϕh(n) := n′. Show that this
defines a group homomorphism ϕ : H → Aut(N). Now define a function γ : N oϕ H → G by
γ(n, h) := α(n)s(h) and show that this is an isomorphism. To prove that (2)⇒ (1), define a
function s : H → G by s(h) := γ(1, h) and show that it has the desired properties.]


