Problem 1. Modularity. Let $(\mathscr{L}, \leq, \wedge, \vee, 0,1)$ be a lattice. For all $x, y \in \mathscr{L}$ we define the closed interval $[x, y]:=\{z \in \mathscr{L}: x \leq z \leq y\}$.
(a) Prove that for all $a, b \in \mathscr{L}$ we have a Galois connection

$$
a \vee(-):[0, b] \rightleftarrows[a, 1]:(-) \wedge b
$$

In other words, show that for all $x \in[0, b]$ and $y \in[a, 1]$ we have

$$
x \leq(y \wedge b) \Longleftrightarrow(a \vee x) \leq y
$$

(b) Given elements $x, y, z \in \mathscr{L}$ with $z \leq y$, there are two possible ways to map the element x into the interval $[z, y]$: by meeting with y and then joining with z, or by joining with z and then meeting with y. Prove that these two images are related by

$$
\begin{equation*}
z \vee(x \wedge y) \leq(z \vee x) \wedge y \tag{1}
\end{equation*}
$$

as in the following picture:

We will say that $(a, b) \in \mathscr{L}^{2}$ is a modular pair if for all $x \leq b$ and $a \leq y$ the inequality (1) becomes an equality; that is, if we have

$$
\begin{align*}
& x \vee(a \wedge b)=(x \vee a) \wedge b, \quad \text { and } \tag{2}\\
& a \vee(b \wedge y)=(a \vee b) \wedge y . \tag{3}
\end{align*}
$$

We will say that $a \in \mathscr{L}$ is a modular element if (a, b) is a modular pair for all $b \in \mathscr{L}$.
(c) If (a, b) is a modular pair, prove that the Galois connection from part (a) restricts to an isomorphism of lattices

$$
[a \wedge b, b] \approx[a, a \vee b]
$$

Problem 2. Normal \Rightarrow Modular. Let G be a group and consider its lattice $\mathscr{L}(G)$ of subgroups. Let $H, N \in \mathscr{L}(G)$ with $N \unlhd G$.
(a) Prove that N is a modular element of the lattice $\mathscr{L}(G)$ and conclude from Problem 1 that we have an isomorphism of lattices

$$
[H \wedge N, H] \approx[N, H \vee N] .
$$

(b) Prove that the lattice isomorphism from part (a) lifts to an isomorphism of groups

$$
\frac{H}{H \wedge N} \approx \frac{H \vee N}{N}
$$

[Hint: Since $N \unlhd G$ we have $H \vee N=H N$ and $N \unlhd H N$. Consider the function $\varphi: H \rightarrow H N / N$ defined by $\varphi(h)=(h 1) N$.

Problem 3. Modular \nRightarrow Normal. Consider the dihedral group D_{6} and the cyclic group $\mathbb{Z} / 3 \mathbb{Z}$. Prove that we have an isomorphism of lattices

$$
\mathscr{L}\left(D_{6}\right) \approx \mathscr{L}(\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}) .
$$

Conclude that a modular element of the subgroup lattice is not necessarily normal.

Problem 4. A Zappa-Szép Product. Let $H, K \subseteq G$ be subgroups. We say that G is a Zappa-Szép product of H and K (and we write $G=H \bowtie K$) if $H \wedge K=1, H \vee K=G$, and neither of H or K is normal in G.
(a) Let $H, K \subseteq G$ be finite subgroups, at least one of which is normal in G. Prove that

$$
|H| \cdot|K|=|H K| \cdot|H \cap K| .
$$

[Hint: Use Problem 2(b).]
(b) Prove that the result of part (a) holds even in the case when both of H and K are non-normal. [Hint: Let H act by left multiplcation on the set of left cosets G / K. Show that $H K$ is the disjoint union of cosets in the orbit of $K \in G / K$. How many such cosets are there?]
(c) Consider a cycle $c=\left(i_{1} i_{2} \cdots i_{k}\right) \in S_{n}$ and a permutation $\pi \in S_{n}$. Prove that

$$
\pi c \pi^{-1}=\left(\pi\left(i_{1}\right) \pi\left(i_{2}\right) \cdots \pi\left(i_{k}\right)\right) .
$$

Use this fact to describe the conjugacy classes of S_{n}.
(d) Let $G=S_{4}, H=\langle(1234),(12)(34)\rangle$, and $K=\langle(123)\rangle$. Prove that $G=H \bowtie K$. [Hint: Show that $H \approx D_{8}$ and $K \approx \mathbb{Z} / 3 \mathbb{Z}$. Now use parts (b) and (c).]

Problem 5. Right-Split Exact Sequences. A short exact sequence in the category of groups is a sequence of groups and homomorphisms of the form

$$
\mathbf{1} \longrightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow \mathbf{1}
$$

that satisfies $\operatorname{ker} \alpha=1, \operatorname{im} \alpha=\operatorname{ker} \beta$, and $\operatorname{im} \beta=H$. Given such a sequence, prove that the following two conditions are equivalent.
(1) There exists a group homomorphism $s: H \rightarrow G$ such that $\beta \circ s=\operatorname{id}_{H}$. [This s is called a section of β.] In this case we say that the short exact sequence is right-split.
(2) There exists a homomorphism $\varphi: H \rightarrow \operatorname{Aut}(N)$ and an isomorphism $\gamma: N \rtimes_{\varphi} H \rightarrow G$ such that the following diagram commutes:

The maps in the top row are the obvious ones.
[Hint: To prove that (1) $\Rightarrow(2)$, consider any $h \in H$ and $n \in N$. Prove that there exists a unique $n^{\prime} \in N$ such that $s(h) \alpha(n) s\left(h^{-1}\right)=\alpha\left(n^{\prime}\right)$. Call it $\varphi_{h}(n):=n^{\prime}$. Show that this defines a group homomorphism $\varphi: H \rightarrow \operatorname{Aut}(N)$. Now define a function $\gamma: N \rtimes_{\varphi} H \rightarrow G$ by $\gamma(n, h):=\alpha(n) s(h)$ and show that this is an isomorphism. To prove that $(2) \Rightarrow(1)$, define a function $s: H \rightarrow G$ by $s(h):=\gamma(1, h)$ and show that it has the desired properties.]

