Problem 1. Modularity. Let $(\mathscr{L}, \leq, \wedge, \vee, 0, 1)$ be a lattice. For all $x, y \in \mathscr{L}$ we define the closed interval $[x, y] := \{z \in \mathscr{L} : x \leq z \leq y\}.$

(a) Prove that for all $a, b \in \mathscr{L}$ we have a Galois connection

z

$$a \lor (-) : [0, b] \rightleftharpoons [a, 1] : (-) \land b.$$

In other words, show that for all $x \in [0, b]$ and $y \in [a, 1]$ we have

$$x \le (y \land b) \iff (a \lor x) \le y.$$

(b) Given elements $x, y, z \in \mathscr{L}$ with $z \leq y$, there are two possible ways to map the element x into the interval [z, y]: by meeting with y and then joining with z, or by joining with z and then meeting with y. Prove that these two images are related by

$$\lor (x \land y) \le (z \lor x) \land y$$

as in the following picture:

We will say that $(a, b) \in \mathscr{L}^2$ is a modular pair if for all $x \leq b$ and $a \leq y$ the inequality (1) becomes an **equality**; that is, if we have

(2)
$$x \lor (a \land b) = (x \lor a) \land b$$
, and

(3)

We will say that $a \in \mathscr{L}$ is a modular element if (a, b) is a modular pair for all $b \in \mathscr{L}$.

(c) If (a, b) is a modular pair, prove that the Galois connection from part (a) restricts to an isomorphism of lattices

$$[a \wedge b, b] \approx [a, a \vee b].$$

 $a \lor (b \land y) = (a \lor b) \land y.$

Problem 2. Normal \Rightarrow Modular. Let G be a group and consider its lattice $\mathscr{L}(G)$ of subgroups. Let $H, N \in \mathscr{L}(G)$ with $N \leq G$.

(a) Prove that N is a modular element of the lattice $\mathscr{L}(G)$ and conclude from Problem 1 that we have an isomorphism of lattices

$$[H \land N, H] \approx [N, H \lor N].$$

(b) Prove that the lattice isomorphism from part (a) lifts to an isomorphism of groups

$$\frac{H}{H \wedge N} \approx \frac{H \vee N}{N}$$

[Hint: Since $N \trianglelefteq G$ we have $H \lor N = HN$ and $N \trianglelefteq HN$. Consider the function $\varphi: H \to HN/N$ defined by $\varphi(h) = (h1)N$.]

Problem 3. Modular \neq **Normal.** Consider the dihedral group D_6 and the cyclic group $\mathbb{Z}/3\mathbb{Z}$. Prove that we have an isomorphism of lattices

$$\mathscr{L}(D_6) \approx \mathscr{L}(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}).$$

Conclude that a modular element of the subgroup lattice is not necessarily normal.

Problem 4. A Zappa–Szép Product. Let $H, K \subseteq G$ be subgroups. We say that G is a Zappa–Szép product of H and K (and we write $G = H \bowtie K$) if $H \land K = 1$, $H \lor K = G$, and neither of H or K is normal in G.

(a) Let $H, K \subseteq G$ be finite subgroups, at least one of which is normal in G. Prove that

$$|H| \cdot |K| = |HK| \cdot |H \cap K|.$$

[Hint: Use Problem 2(b).]

- (b) Prove that the result of part (a) holds even in the case when both of H and K are non-normal. [Hint: Let H act by left multiplication on the set of left cosets G/K. Show that HK is the disjoint union of cosets in the orbit of $K \in G/K$. How many such cosets are there?]
- (c) Consider a cycle $c = (i_1 i_2 \cdots i_k) \in S_n$ and a permutation $\pi \in S_n$. Prove that

$$\pi c \pi^{-1} = (\pi(i_1)\pi(i_2)\cdots\pi(i_k))$$

Use this fact to describe the conjugacy classes of S_n .

(d) Let $G = S_4$, $H = \langle (1234), (12)(34) \rangle$, and $K = \langle (123) \rangle$. Prove that $G = H \bowtie K$. [Hint: Show that $H \approx D_8$ and $K \approx \mathbb{Z}/3\mathbb{Z}$. Now use parts (b) and (c).]

Problem 5. Right-Split Exact Sequences. A short exact sequence in the category of groups is a sequence of groups and homomorphisms of the form

$$\mathbf{1} \longrightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \longrightarrow \mathbf{1}$$

that satisfies ker $\alpha = 1$, im $\alpha = \ker \beta$, and im $\beta = H$. Given such a sequence, prove that the following two conditions are equivalent.

- (1) There exists a group homomorphism $s: H \to G$ such that $\beta \circ s = \mathrm{id}_H$. [This s is called a section of β .] In this case we say that the short exact sequence is right-split.
- (2) There exists a homomorphism $\varphi : H \to \operatorname{Aut}(N)$ and an isomorphism $\gamma : N \rtimes_{\varphi} H \to G$ such that the following diagram commutes:

The maps in the top row are the obvious ones.

[Hint: To prove that $(1) \Rightarrow (2)$, consider any $h \in H$ and $n \in N$. Prove that there exists a unique $n' \in N$ such that $s(h)\alpha(n)s(h^{-1}) = \alpha(n')$. Call it $\varphi_h(n) := n'$. Show that this defines a group homomorphism $\varphi : H \to \operatorname{Aut}(N)$. Now define a function $\gamma : N \rtimes_{\varphi} H \to G$ by $\gamma(n,h) := \alpha(n)s(h)$ and show that this is an isomorphism. To prove that $(2) \Rightarrow (1)$, define a function $s : H \to G$ by $s(h) := \gamma(1, h)$ and show that it has the desired properties.]