
Math 761 Fall 2015
Homework 2 Drew Armstrong

Problem 1. Image and Preimage. Let ϕ : G → H be a group homomorphism and
consider the Galois connection ϕ : L (G)� L (H) : ϕ−1 between image and preimage. Prove
that for all subgroups A ∈ L (G) and B ∈ L (H) we have

• ϕ−1(ϕ(A)) = A ∨ kerϕ
• ϕ(ϕ−1(B)) = B ∧ imϕ

Proof. Recall that in order to view ϕ : L (G) � L (H) : ϕ−1 as a Galois connection we will
regard L (H) as partially ordered by reverse-inclusion. Then we can apply all of the results
from the first homework.

First we will show that ϕ−1(ϕ(A)) = (A∨kerϕ). By general nonsense we know that ϕ−1 ◦ϕ
is a closure operator, hence A ⊆ ϕ−1(ϕ(A)). Also, we know that ϕ−1 is order-preserving, so
that {1H} ⊆ ϕ(A) implies

kerϕ = ϕ−1({1H}) ⊆ ϕ−1(ϕ(A)).

We conclude that ϕ−1(ϕ(A)) is an upper bound of A and kerϕ, hence it contains the least
upper bound:

(A ∨ kerϕ) ⊆ ϕ−1(ϕ(A)).

Conversely, consider any element g ∈ ϕ−1(ϕ(A)). By definition this means that ϕ(g) ∈ ϕ(A),
i.e., there exists a ∈ A such that ϕ(g) = ϕ(a). Since ϕ is a homomorphism this implies that
ϕ(a−1g) = 1 and hence a−1g ∈ kerϕ. Finally, since kerϕ E G we know that A kerϕ is a
subgroup of G, hence

g = a(a−1g) ∈ A kerϕ = A ∨ kerϕ.

We conclude that ϕ−1(ϕ(A)) ⊆ (A ∨ kerϕ).
Now we will show that ϕ(ϕ−1(B)) = (B∧ imϕ). By general nonsense we know that ϕ◦ϕ−1

is a closure operator, hence ϕ(ϕ−1(B)) ⊆ B. Also, we know that ϕ is order-preserving, so
that ϕ−1(B) ⊆ G implies

ϕ(ϕ−1(B)) ⊆ ϕ(G) = imϕ.

We conclude that ϕ(ϕ−1(B)) is a lower bound of B and imϕ, hence it is contained in the
greatest lower bound:

ϕ(ϕ−1(B)) ⊆ (B ∧ imϕ).

Conversely, consider any element h ∈ B ∧ imϕ = B ∩ imϕ. Since h ∈ imϕ, there exists g ∈ G
such that ϕ(g) = h. Then since ϕ(g) = h ∈ B we have g ∈ ϕ−1(B). Finally, applying ϕ gives

h = ϕ(g) ∈ ϕ(ϕ−1(B)).

We conclude that (B ∧ imϕ) ⊆ ϕ(ϕ−1(B)). �

[Remark: It follows from this that the “Galois closed” subgroups of G are those containing the
kernel and the “Galois closed” subgroups of H are those contained in the image.]

Problem 2. Terminal Objects. Consider an object X in a category C. We say that X is
an initial object if for all objects Y we have |HomC(X,Y )| = 1, and we say that X is a final
object if for all objects Y we have |HomC(Y,X)| = 1.

(a) Prove that any two initial objects (resp. final objects) are isomorphic in C.
(b) Determine the initial and final objects in the category of sets.



Proof. For part (a), let X and Y be objects in C. If X and Y are either both initial or both
final, then the sets

HomC(X,X), HomC(X,Y ), HomC(Y,X), HomC(Y, Y )

each contain exactly one arrow. Here is a picture of the four arrows:

XidX
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α
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Since β ◦ α ∈ HomC(X,X) we conclude that β ◦ α = idX , and since α ◦ β ∈ HomC(Y, Y ) we
conclude that α ◦ β = idY . It follows that α and β are inverse isomorphisms.

For part (b), consider the category Set of sets and functions. If S and T are sets, recall
that we can identify a function f : S → T with its graph f ⊆ S × T consisting of the pairs
(s, t) such that f(s) = t. Note that isomorphisms in Set are just bijections. [Remark: Let C
be a category. If we somehow replace each object in C by its isomorphism class we obtain a
new category called the skeleton of C. The skeleton of Set is called the category of cardinal
numbers.]

First let S = ∅ and consider any other set T . The empty graph ∅ ⊆ S × T defines a valid
function ∅ : S → T , and this is the only valid function. We conclude that ∅ is an initial object
in Set. The isomorphism class of ∅ is called 0.

Now let T = {t} be a singleton and consider any other set S. The only valid function
f : S → {t} is defined by f(s) = t for all s ∈ S. Thus any singleton is a final object in the
category Set. The isomorphism class of singletons is called 1.

�

Problem 3. Zero Objects and Zero Arrows. An object X in a category C is called a zero
object if it is both initial and final. Suppose that the category C has a zero object 0 (which is
unique up to isomorphism by Problem 1). Then between any two objects X and Y there is a
unique zero arrow 0 : X → Y defined by

X //

0

''
0 // Y

(a) Give an exmple of a category with no zero object.
(b) Describe the zero object and the zero arrows in the category of groups.

Proof. For part (a) we consider the category of sets. Recall from Problem 2(b) that the initial
objects in Set are the sets with zero elements and the final objects in Set are the sets with one
element. Since 0 6= 1 we conclude that this category has no zero objects.

For part (b) consider the category Grp of groups. Let 1 = {1} be a group with one element,
and consider any other group G. There is a unique set function ϕ : G → 1 sending every
element to 1 and this function is necessarily a group homomorphism. Also, if ϕ : 1→ G is a
group homomorphism then it must send 1 ∈ 1 to 1G ∈ G, and this property uniquely defines
ϕ. We conclude that 1 is the zero object in Grp. Now consider any two groups G and H. The
zero arrow (which we will call “1”) is defined by

G //

1

''
1 // H

This map sends every element of G to the identity element 1H ∈ H. �



Problem 4. Universal Property of Kernels. Let C be a category with a zero object 0
and consider any arrow ϕ : G → G′. Define a category Cϕ whose objects are pairs (K,α)
satisfying the commutative diagram

K α
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0
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G ϕ

// G′

and whose morphisms σ : (K1, α1)→ (K2, α2) are arrows σ : K1 → K2 in C satisfying
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If this category has a final object (K,α) we will call it the kernel of ϕ : G→ G′. (Note that
the kernel consists of both an object K and an arrow α : K → G.)

(a) Verify that Cϕ is a category.
(b) Prove that every homomorphism in the category of groups has a kernel. [Hint: You

already know what the kernel “should” be.]

Proof. For part (a) we must verify that morphisms in Cϕ can be composed and that every
object of Cϕ has an identity morphism. First, suppose that we have objects (K1, α1), (K2, α2),
and (K3, α3) with morphisms σ : (K1, α1) → (K2, α2) and τ : (K2, α2) → (K3, α3). I claim
that the arrow τσ : K1 → K3 in C defines a morphism τσ : (K1, α1)→ (K3, α3) in Cϕ. Indeed,
consider the following diagrams:
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One can check that the diagram on the left commutes. [Only the arrow τσ needs to be
checked.] Since this diagram commutes, it still commutes after deleting the object K2. The
associativity of composition in Cϕ is inherited from C. Now let (K,α) be any object in Cϕ and
consider the identity arrow idK : K → K in C. Note that the diagram
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commutes, so this defines a morphism id(K,α) : (K,α) → (K,α) in Cϕ. Finally, consider any
morphism σ : (K1, α1)→ (K2, α2) in Cϕ coming from σ : K1 → K2 in C. Since σidK1 = σ and
idK2σ = σ in C, it follows that σid(K1,α1) = σ and id(K2,α2)σ = σ in Cϕ. We conclude that Cϕ
is a category.

For part (b), consider any group homomorphism ϕ : G → G′. I claim that the arrow-
theoretic kernel is given by the set-theoretic kernel kerϕ and the inclusion homomorphism



i : kerϕ → G. To prove this, first note that the definition of kerϕ says exactly that the
following diagram commutes:

kerϕ
i
//

1

((
G ϕ

// G′

Thus (kerϕ, i) is an object in Grpϕ. Now consider any object (K,α) in Grpϕ. We want to show
that there exists a unique morphism ᾱ : (K,α) → (kerϕ, i) such that the following diagram
commutes:

K
1
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ᾱ
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To prove this, consider any element k ∈ K. If the map ᾱ exists then commutativity implies
i(ᾱ(k)) = α(k). On the other hand, since i is just the identity on kerϕ we must have i(ᾱ(k)) =
ᾱ(k). Thus ᾱ(k) is uniquely defined by ᾱ(k) := α(k) as long as α(k) ∈ kerϕ. And we certainly
do have α(k) ∈ kerϕ because commutativity of the diagram implies ϕ(α(k)) = 1 ∈ G′. �

[Remark: The definition of categorical “cokernel” is given by reversing all the arrows in the defi-
nition of categorical kernel. Every group homomorphism ϕ : G→ G′ has a cokernel given by the
projection π : G′ → G′/N ′, where N ′ is the normal closure of the image imϕ in G′.]

Problem 5. Universal Property of Products. Let C be a category. Given two objects A
and B in C we define a new category CA,B whose objects are triples (P, f, g) of the form

A

P

f 88

g &&
B

and whose morphisms σ : (P1, f1, g1)→ (P2, f2, g2) are arrows σ : P1 → P2 in C satisfying

A

P1
σ //
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If this category has a final object (P, f, g) we will call it the product of A and B. (Note that
the product consists of both the object P and the arrows f, g.)

(a) Verify that CA,B is a category.
(b) Prove that products exist in the category of groups. [Hint: You already know what

the product “should” be.]

Proof. For part (a) we must verify that morphisms in CA,B can be composed and that every
object of CA,B has an identity morphism. First, suppose that we have objects (P1, f1, g1),
(P2, f2, g2), and (P3, f3, g3) with morphisms σ : (P1, f1, g1)→ (P2, f2, g2) and τ : (P2, f2, g2)→



(P3, f3, g3). I claim that the arrow τσ : P1 → P3 in C defines a morphism τσ : (P1, f1, g1) →
(P3, f3, g3) in CA,B. Indeed, consider the following diagrams:
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One can check that the diagram on the left commutes. [Only the arrow τσ needs to be
checked.] Since this diagram commutes, it still commutes after deleting the object P2. The
associativity of composition in CA,B is inherited from C. Now let (P, f, g) be any object in
CA,B and consider the identity arrow idP : P → P in C. Note that the diagram

A

P
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f
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commutes, so this defines a morphism id(P,f,g) : (P, f, g)→ (P, f, g) in CA,B. Finally, consider
any morphism σ : (P1, f1, g1) → (P2, f2, g2) in CA,B coming from σ : P1 → P2 in C. Since
σidP1 = σ and idP2σ = σ in C, it follows that σid(P1,f1,g1) = σ and id(P2,f2,g2)σ = σ in CA,B.
We conclude that CA,B is a category.

For part (b), let A and B be groups and consider the direct prouct group A×B defined by

(a1, b1) • (a2, b2) := (a1a2, b1b2).

Let πA : A × B → A and πB : A × B → B be the projection homomorphisms defined by
πA(a, b) = a and πB(a, b) = b. I claim that the triple (A × B, πA, πB) is a final object in the
category GrpA,B. To prove this, consider any object (P, f, g) of GrpA,B. We want to show that
there exists a unique morphism f × g : (P, f, g) → (A × B, πA, πB) such that the following
diagram commutes:

A

P
f×g //

f
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g
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To prove this, consider any element p ∈ P . If the map f × g exists then we must have
(f×g)(p) = (pA, pB) for some elements pA ∈ A and pB ∈ B such that f(p) = πA(pA, pB) = pA
and g(p) = πB(pA, pB) = pB. Such elements pA and pB certainly do exist. �

[Remark: The definition of categorical “coproduct” is given by reversing all the arrows in the
definition of categorical product. Coproducts also exist in the category of groups. The coproduct
of groups A and B is called their “free product” A ∗B.]



Problem 6. Semi-Direct Products. Consider two groups N and G and a group homomor-
phism ϕ : G → AutGrp(N). We use ϕ to define a binary operation on the Cartesian product
set N ×G as follows:

(n1, g1) • (n2, g2) := (n1ϕg1(n2), g1g2).

Let N oϕ G denote the triple (N ×G, •, (1N , 1G)). We call this the semi-direct product of N
and G with respect to ϕ.

(a) Prove that N oϕ G is a group.
(b) Identify N and G with subgroups of N oϕ G via the maps n 7→ (n, 1G) for n ∈ N and

and g 7→ (1N , g) for g ∈ G. Prove that

N ∩G = 1, N EN oϕ G, and NG = N oϕ G.

(c) Finally, prove that for all n ∈ N and g ∈ G we have ϕg(n) = gng−1.

Proof. For part (a) we must show that the operation • is associative, with an identity element
and inverses. First note that for all n ∈ N and g ∈ G we have ϕg(1N ) = 1N (since ϕg
is a homomorphism) and ϕ1G(n) = n (since ϕ is a homomorphism). Then for any element
(n, g) ∈ N ×G we have

(1N , 1G) • (n, g) = (1Nϕ1G(n), 1Ng) = (n, g) = (nϕg(1N ), g1G) = (n, g) • (1N , 1G),

hence (1N , 1G) ∈ N ×G is an identity element. Next observe that the element (n, g) ∈ N ×G
has inverse (ϕg−1(n−1), g−1) because

(n, g) • (ϕg−1(n−1), g−1) = (nϕg(ϕg−1(n−1)), gg−1)

= (nϕgg−1(n−1), 1G)

= (nϕ1G(n−1), 1G)

= (nn−1, 1G)

= (1N , 1G).

and

(ϕg−1(n−1), g−1) • (n, g) = (ϕg−1(n−1)ϕg−1(n), g−1g)

= (ϕg−1(n−1n), 1G)

= (ϕg−1(1N ), 1G)

= (1N , 1G).

Finally, observe that for all n1, n2, n3 ∈ N and g1, g2, g3 ∈ G we have

[(n1, g1) • (n2, g2)] • (n3, g3) = (n1ϕg1(n2), g1g2) • (n3, g3)

= (n1ϕg1(n2)ϕg1g2(n3), g1g2g3)

= (n1ϕg1(n2)ϕg1(ϕg2(n3)), g1g2g3)

= (n1ϕg1(n2ϕg2(n3)), g1g2g3)

= (n1, g1) • (n2ϕg2(n3), g2g3)

= (n1, g1) • [(n2, g2) • (n3, g3)].

We conclude that (N ×H, •, (1N , 1G)) is a group.
For part (b) we will identify N and G with subgroups of NoϕG via the injective homomor-

phisms n 7→ (n, 1G) and g 7→ (1N , g). Under these identifications we will show that the external



semi-direct product agrees with the internal semi-direct product, i.e., N oϕG = N oG. First
note that N oϕ G = NG because for all (n, g) ∈ N ×G we have

n • g = (n, 1G) • (1N , g) = (nϕ1G(1N ), 1Gg) = (n1N , g) = (n, g).

Next note that N ∩ G = 1 because the only element simultaneously of the form (n, 1G) and
(1N , g) is (1N , 1G). Finally, note that N is normal in N oϕ G since for all (a, 1G) ∈ N and
(n, g) ∈ N ×G we have

(n, g) • (a, 1G) • (n, g)−1 = (n, g) • (a, 1G) • (ϕg−1(n−1), g−1)

= (nϕg(a), g1G) • (ϕg−1(n−1), g−1)

= (nϕg(a), g) • (ϕg−1(n−1), g−1)

= (nϕg(a)ϕg(ϕg−1(n−1)), gg−1)

= (nϕg(a)ϕgg−1(n−1), 1G)

= (nϕg(a)ϕ1G(n−1), 1G)

= (nϕg(a)n−1, 1G) ∈ N.

For part (c) we will verify that the conjugation action of the subgroup G on the normal
subgroup N agrees with the homomorphism ϕ : G → AutGrp(H) we used to define the semi-
direct product. Indeed, for all n ∈ N and g ∈ G the previous computation implies that

g • n • g−1 = (1N , g) • (n, 1G) • (1N , g)−1

= (1Nϕg(n)1−1
N , 1G)

= (ϕg(n), 1G)

= ϕg(n).

�

Problem 7. Dihedral Groups. A dihedral group is the semi-direct product of a cyclic
group 〈R〉 of arbitrary order with a cyclic group 〈F 〉 of order 2, via the homomorphism
ϕ : 〈F 〉 → AutGrp(〈R〉) defined by ϕF (R) = R−1.

Now let G be a group containing two involutions a, b ∈ G (i.e., a, b 6= 1 and a2, b2 = 1).
Prove that the subgroup 〈a, b〉 ⊆ G generated by a and b is isomorphic to a dihedral group.
[Hint: Let F = a and R = ab.]

Proof. First note that 〈a, b〉 contains the set {a, ab}, hence it must contain the group 〈a, ab〉 =
〈{a, ab}〉. Conversely, note that b = a(ab) ∈ 〈a, ab〉 so that 〈a, ab〉 contains the set {a, b}, and
hence the group 〈a, b〉 = 〈{a, b}〉. We conclude that 〈a, b〉 = 〈a, ab〉.

To prove that 〈a, ab〉 is dihedral we must show: (1) 〈ab〉E 〈a, ab〉, with a acting on 〈ab〉 by
inversion, (2) 〈a〉 ∩ 〈ab〉 = 1, and (3) 〈a, ab〉 = 〈a〉〈ab〉. Throughout we will use the fact that
a−1 = a and b−1 = b.

For (1), first note that (ab)(ba) = ab2a = a1a = a2 = 1 = b2 = b1b = ba2b = (ba)(ab),
hence (ab)−1 = ba. I claim that a(ab)na = (ab)−n for all n ∈ Z. Indeed, we have a(ab)0a =
a1a = a2 = 1 = (ab)−0. Now suppose for induction that we have a(ab)na = (ab)−n (hence



also (ab)n = a(ab)−na) for some n ≥ 1. Then we have

a(ab)n+1a = a(ab)n(ab)a

= [a(ab)na](ba)

= (ab)−n(ab)−1

= (ab)−(n+1)

(hence also (ab)n+1 = a(ab)−(n+1)a). It follows that 〈ab〉 E 〈a, ab〉, and moreover that the
element a acts on 〈ab〉 by inversion.

For (2), we want to show that a 6= (ab)n for all n ∈ Z. First note that we have a 6= (ab)0

(i.e., a 6= 1) and a 6= (ab)1 (i.e., b 6= 1). Now assume for induction that a = (ab)n+2. In this
case we have

a = (ab)(ab)n+1

1 = b(ab)n+1

1 = (ba)n+1b

b = (ba)n+1

b = (ba)(ba)n

1 = a(ba)n

1 = (ab)na

a = (ab)n.

We have shown that a 6= (ab)n ⇒ a 6= (ab)n+2. Combined with the initial conditions this
proves that a 6= (ab)n for all integers n ≥ 0. Then since a = a−1 we conclude that a 6= (ab)n

for all integers n < 0.
For (3), note that every element of the group 〈a, ab〉 = 〈a, b〉 has the form

a, ab, aba, abab, . . . , or b, ba, bab, baba, . . . .

In other words, every element has the form a(ba)n, (ab)n, (ba)nb, or (ba)n for some integer
n ≥ 0. Note that

a(ba)n = a(ab)−n ∈ 〈a〉〈ab〉,
(ab)n = 1(ab)n ∈ 〈a〉〈ab〉,
(ba)n = 1(ab)−n ∈ 〈a〉〈ab〉,

(ba)nb = aa(ba)nb = a(ab)n+1 ∈ 〈a〉〈ab〉.
We conclude that 〈a, ab〉 ⊆ 〈a〉〈ab〉, and hence 〈a, ab〉 = 〈a〉〈ab〉.

The fact that 〈a, b〉 is isomorphic to 〈F 〉nϕ 〈R〉 now follows from Problem 6. I won’t spell
out the details, and I don’t mind if you don’t either. �


