Problem 1. Image and Preimage. Let $\varphi: G \rightarrow H$ be a group homomorphism and consider the Galois connection $\varphi: \mathscr{L}(G) \rightleftarrows \mathscr{L}(H): \varphi^{-1}$ between image and preimage. Prove that for all subgroups $A \in \mathscr{L}(G)$ and $B \in \mathscr{L}(H)$ we have

- $\varphi^{-1}(\varphi(A))=A \vee \operatorname{ker} \varphi$
- $\varphi\left(\varphi^{-1}(B)\right)=B \wedge \operatorname{im} \varphi$

Problem 2. Terminal Objects. Consider an object X in a category \mathcal{C}. We say that X is an initial object if for all objects Y we have $\left|\operatorname{Hom}_{\mathcal{C}}(X, Y)\right|=1$, and we say that X is a final object if for all objects Y we have $\left|\operatorname{Hom}_{\mathcal{C}}(Y, X)\right|=1$.
(a) Prove that any two initial objects (resp. final objects) are isomorphic in \mathcal{C}.
(b) Determine the initial and final objects in the category of sets.

Problem 3. Zero Objects and Zero Arrows. An object X in a category \mathcal{C} is called a zero object if it is both initial and final. Suppose that the category \mathcal{C} has a zero object 0 (which is unique up to isomorphism by Problem 1). Then between any two objects X and Y there is a unique zero arrow $0: X \rightarrow Y$ defined by

(a) Give an exmple of a category with no zero object.
(b) Describe the zero object and the zero arrows in the category of groups.

Problem 4. Universal Property of Kernels. Let \mathcal{C} be a category with a zero object 0 and consider any arrow $G \xrightarrow{\varphi} G^{\prime}$. Define a category \mathcal{C}_{φ} whose objects are pairs (K, α) satisfying the commutative diagram

and whose morphisms $\left(K_{1}, \alpha_{1}\right) \xrightarrow{\sigma}\left(K_{2}, \alpha_{2}\right)$ are arrows $K_{1} \xrightarrow{\sigma} K_{2}$ in \mathcal{C} satisfying

If this category has a final object (K, α) we will call it the kernel of $G \xrightarrow{\varphi} G^{\prime}$. (Note that the kernel consists of both an object K and an arrow $K \xrightarrow{\alpha} G$.)
(a) Verify that \mathcal{C}_{φ} is a category.
(b) Prove that every homomorphism in the category of groups has a kernel. [Hint: You already know what the kernel "should" be.]

Problem 5. Universal Property of Products. Let \mathcal{C} be a category. Given two objects A and B in \mathcal{C} we define a new category $\mathcal{C}_{A, B}$ whose objects are triples (P, f, g) of the form

and whose morphisms $\left(P_{1}, f_{1}, g_{1}\right) \xrightarrow{\sigma}\left(P_{2}, f_{2}, g_{2}\right)$ are arrows $P_{1} \xrightarrow{\sigma} P_{2}$ in \mathcal{C} satisfying

If this category has a final object (P, f, g) we will call it the product of A and B. (Note that the product consists of both the object P and the arrows f, g.)
(a) Verify that $\mathcal{C}_{A, B}$ is a category.
(b) Prove that products exist in the category of groups. [Hint: You already know what the product "should" be.]

Problem 6. Semi-Direct Products. Consider two groups N and G and a group homomorphism $\varphi: G \rightarrow \operatorname{Aut}_{G r p}(N)$. We use φ to define a binary operation on the Cartesian product set $N \times G$ as follows:

$$
\left(n_{1}, g_{1}\right) \bullet\left(n_{2}, g_{2}\right):=\left(n_{1} \varphi_{g_{1}}\left(n_{2}\right), g_{1} g_{2}\right) .
$$

Let $N \rtimes_{\varphi} G$ denote the triple $\left(N \times G, \bullet,\left(1_{N}, 1_{G}\right)\right.$. We call this the semi-direct product of N and G with respect to φ.
(a) Prove that $N \rtimes_{\varphi} G$ is a group.
(b) Identify N and G with subgroups of $N \rtimes_{\varphi} G$ via the maps $n \mapsto\left(n, 1_{G}\right)$ for $n \in N$ and and $g \mapsto\left(1_{N}, g\right)$ for $g \in G$. Prove that

$$
N \cap G=1, \quad N \unlhd N \rtimes_{\varphi} G, \quad \text { and } \quad N G=N \rtimes_{\varphi} G .
$$

(c) Finally, prove that for all $n \in N$ and $g \in G$ we have $\varphi_{g}(n)=g n g^{-1}$.

Problem 7. Dihedral Groups. A dihedral group is the semi-direct product of a cyclic group $\langle R\rangle$ of arbitrary order with a cyclic group $\langle F\rangle$ of order two via the homomorphism $\varphi:\langle F\rangle \rightarrow \operatorname{Aut}_{\mathrm{Grp}}(\langle R\rangle)$ defined by $\varphi_{F}(R)=R^{-1}$.

Now let G be a group containing two involutions $a, b \in G$ (i.e., $a, b \neq 1$ and $a^{2}, b^{2}=1$). Prove that the subgroup $\langle a, b\rangle \subseteq G$ generated by a and b is isomorphic to a dihedral group. [Hint: Let $F=a$ and $R=a b$.]

