On this homework you will further explore the idea of Galois connections. We will begin by defining a notion of Galois connection for general posets. Let (P, \leq) and (Q, \leq) be posets. A pair of maps $*: P \rightleftarrows Q: *$ is called a Galois connection if it satisfies the following property:

$$
\text { for all } p \in P \text { and } q \in Q \text { we have } p \leq q^{*} \Longleftrightarrow q \leq p^{*}
$$

Problem 1. Equivalent Definition. Prove that a pair of maps $*: P \rightleftarrows Q: *$ is a Galois connection (as defined above) if and only if the following two statements hold:

- For all $p \in P$ and $q \in Q$ we have

$$
p \leq p^{* *} \quad \text { and } \quad q \leq q^{* *} .
$$

- For all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ we have

$$
p_{1} \leq p_{2} \Longrightarrow p_{2}^{*} \leq p_{1}^{*} \quad \text { and } \quad q_{1} \leq q_{2} \Longrightarrow q_{2}^{*} \leq q_{1}^{*} .
$$

[Hint: Since the statements come in dual pairs, you only have to prove half of them.]

Proof. Since the definition of Galois connection is symmetric with respect to P and Q, we never have to say which poset a given element comes from.

First, assume that for all elements x and y we have $x \leq y^{*} \Longleftrightarrow y \leq x^{*}$. Substituting $y=x^{*}$ tells us that $x \leq x^{* *} \Longleftrightarrow x^{*} \leq x^{*}$. Since $x^{*} \leq x^{*}$ is always true (by definition of partial order), we conclude that $x \leq x^{* *}$ for all elements x. Now consider any elements x_{1}, x_{2} such that $x_{1} \leq x_{2}$. From the previous remark we know that $x_{2} \leq x_{2}^{* *}$, and then by transitivity of partial order we have $x_{1} \leq x_{2}^{* *}=\left(x_{2}^{*}\right)^{*}$. Finally, our original assumption (with $x=x_{1}$ and $y=x_{2}^{*}$) implies that $x_{2}^{*} \leq x_{1}^{*}$.

Conversely, assume that for all elements x we have $x \leq x^{* *}$ and for all elements x_{1}, x_{2} we have $x_{1} \leq x_{2} \Longrightarrow x_{2}^{*} \leq x_{1}^{*}$. Now let x and y be any elements, and suppose that $x \leq y^{*}$. Applying $*$ to both sides gives $y^{* *} \leq x^{*}$. Then since $y \leq y^{* *}$, the transitivity of partial order implies that $y \leq x^{*}$. The implication $y \leq x^{*} \Longrightarrow x \leq y^{*}$ follows by switching the roles of x and y.

Recall that a lattice is a poset (P, \leq) in which every pair of elements $x, y \in P$ has a (necessarily unique) join $x \vee y$ and meet $x \wedge y$. By induction, any finite subset $A \subseteq P$ also has a join $\bigvee A \in P$ and meet $\bigwedge A \in P$.

Problem 2. Lattice Structure. Let $*: P \rightleftarrows Q: *$ be a Galois connection. If, in addition, P and Q happen to be lattices, prove that for all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ we have

- $p_{1}^{*} \vee p_{2}^{*} \leq\left(p_{1} \wedge p_{2}\right)^{*}$ and $q_{1}^{*} \vee q_{2}^{*} \leq\left(q_{1} \wedge q_{2}\right)^{*}$
- $p_{1}^{*} \wedge p_{2}^{*}=\left(p_{1} \vee p_{2}\right)^{*}$ and $q_{1}^{*} \wedge q_{2}^{*}=\left(q_{1} \vee q_{2}\right)^{*}$

Proof. Again, due to symmetry we won't worry which poset a given element comes from. We will freely use the result of Problem 1.

First note that for all elements x_{1}, x_{2} we have $x_{1} \wedge x_{2} \leq x_{1}$ and $x_{1} \wedge x_{2} \leq x_{2}$ by definition. Applying $*$ to both inequalities gives $x_{1}^{*} \leq\left(x_{1} \wedge x_{2}\right)^{*}$ and $x_{2}^{*} \leq\left(x_{1} \wedge x_{2}\right)^{*}$; in other words,
$\left(x_{1} \wedge x_{2}\right)^{*}$ is an upper bound of x_{1}^{*} and x_{2}^{*}. By the universal property of join (i.e., the join is the "least upper bound"), we conclude that

$$
x_{1}^{*} \vee x_{2}^{*} \leq\left(x_{1} \wedge x_{2}\right)^{*} .
$$

Similarly, we have $x_{1} \leq x_{1} \vee x_{2}$ and $x_{2} \leq x_{1} \vee x_{2}$ by definition. Applying $*$ to both sides gives $\left(x_{1} \vee x_{2}\right)^{*} \leq x_{1}^{*}$ and $\left(x_{1} \vee x_{2}\right)^{*} \leq x_{2}^{*}$; in other words, $\left(x_{1} \vee x_{2}\right)^{*}$ is a lower bound of x_{1}^{*} and x_{2}^{*}. By the universal property of meets (i.e., the meet is the "greatest lower bound"), we conclude that

$$
\left(x_{1} \vee x_{2}\right)^{*} \leq x_{1}^{*} \wedge x_{2}^{*}
$$

Finally, note that we have $x_{1}^{*} \wedge x_{2}^{*} \leq x_{1}^{*}$ and $x_{1}^{*} \wedge x_{2}^{*} \leq x_{2}^{*}$ by definition. By the definition of Galois connection this implies that $x_{1} \leq\left(x_{1}^{*} \wedge x_{2}^{*}\right)^{*}$ and $x_{2} \leq\left(x_{1}^{*} \wedge x_{2}^{*}\right)^{*}$; in other words, $\left(x_{1}^{*} \wedge x_{2}^{*}\right)^{*}$ is an upper bound of x_{1} and x_{2}. By the universal property of join this implies that $x_{1} \vee x_{2} \leq\left(x_{1}^{*} \wedge x_{2}^{*}\right)^{*}$. Applying the definition of Galois connection once more gives

$$
x_{1}^{*} \wedge x_{2}^{*} \leq\left(x_{1} \vee x_{2}\right)^{*},
$$

and putting together the previous two results gives

$$
x_{1}^{*} \wedge x_{2}^{*}=\left(x_{1} \vee x_{2}\right)^{*} .
$$

In the next problem you will show that the first inequalities are sometimes strict.
Problem 3. Counterexample. Consider the usual topology on the set of real numbers \mathbb{R}. Let $\mathscr{O} \subseteq 2^{\mathbb{R}}$ be the collection of open sets and let $\mathscr{C} \subseteq 2^{\mathbb{R}}$ be the collection of closed sets. Let $-: 2^{\mathbb{R}} \rightarrow 2^{\mathbb{R}}$ be the "topological closure" and let $\circ: 2^{\mathbb{R}} \rightarrow 2^{\mathbb{R}}$ be the "topological interior". One can check (you don't need to) that for all $O \in \mathscr{O}$ and $C \in \mathscr{C}$ we have

$$
O \subseteq C^{\circ} \Longleftrightarrow O^{-} \subseteq C
$$

In other words, we have a Galois connection $-: \mathscr{O} \rightleftarrows \mathscr{C}: \circ$ where \mathscr{O} is partially ordered by inclusion ($" \leq "=" \subseteq "$) and \mathscr{C} is partially ordered by reverse-inclusion (" $\leq "=" \supseteq ")$. Note that \mathscr{O} is a lattice with $\wedge=\cap$ and $\vee=\cup$, whereas \mathscr{C} is a lattice with $\wedge=\cup$ and $\vee=\cap$.

In this case, find specific elements $O_{1}, O_{2} \in \mathscr{O}$ and $C_{1}, C_{2} \in \mathscr{C}$ such that

$$
O_{1}^{-} \vee O_{2}^{-} \lesseqgtr\left(O_{1} \wedge O_{2}\right)^{-} \quad \text { and } \quad C_{1}^{\circ} \vee C_{2}^{\circ} \lesseqgtr\left(C_{1} \wedge C_{2}\right)^{\circ} .
$$

Proof. First I'll verify that that this is a Galois connection (even though I didn't ask you to do so). Consider $O \in \mathscr{O}$ and $C \in \mathscr{C}$, and suppose that $O \subseteq C^{\circ}$. Since $C^{\circ} \subseteq C$ (property of interior) transitivity implies $O \subseteq C$. Then applying - gives $O^{-} \subseteq C^{-}$(property of closure). Since $C^{-}=C$ (definition of closed) we get $O^{-} \subseteq C$ as desired. The other direction is similar.

Recall that we are regarding \mathscr{C} as a poset under reverse-inclusion, so that $\wedge=\cup$ and $\vee=\cap$. Thus we are looking for two open sets O_{1}, O_{2} such that

$$
\left(O_{1} \cap O_{2}\right)^{-} \subsetneq O_{1}^{-} \cap O_{2}^{-}
$$

I will take the open intervals $O_{1}=(0,1)$ and $O_{2}=(1,2)$. Then we have $O_{1} \cap O_{2}=\emptyset$ so that $\left(O_{1} \cap O_{2}\right)^{-}=\emptyset^{-}=\emptyset$. On the other hand, the closures are the closed intervals $O_{1}^{-}=[0,1]$ and $O_{2}^{-}=[0,2]$ so that $O_{1}^{-} \cap O_{2}^{-}=\{1\}$, which is strictly bigger than \emptyset.

We are also looking for two closed sets C_{1}, C_{2} such that

$$
C_{1}^{\circ} \cup C_{2}^{\circ} \subsetneq\left(C_{1} \cup C_{1}\right)^{\circ} .
$$

I will take the closed intervals $C_{1}=[0,1]$ and $C_{2}=[1,2]$. The interiors are the open intervals $C_{1}^{\circ}=(0,1)$ and $C_{2}^{\circ}=(1,2)$ so that $C_{1}^{\circ} \cup C_{2}^{\circ}=(0,1) \cup(1,2)$. On the other hand we have $C_{1} \cup C_{2}=[0,2]$ so that $\left(C_{1} \cup C_{2}\right)^{\circ}=(0,2)$, which is strictly bigger than $(0,1) \cup(1,2)$.
[Remark: The result of Problem 5 below will imply that there is an isomorphism between the subposet $\mathscr{C}^{\circ} \subseteq \mathscr{O}$ of "०- closed sets" and the subposet $\mathscr{O}^{-} \subseteq \mathscr{C}$ of "-o closed" sets. You might wonder (as I did) what kind of sets these are. I found out that the elements of \mathscr{C}° are called "regular open sets" and the elements of \mathscr{O}^{-}are called "regular closed sets". I wasn't able to learn much about them except for the following facts: (1) \mathscr{O}^{-}and \mathscr{C}° are Boolean lattices, (2) convex sets and their complements are regular.]

Now you will investigate under what conditions the first inequalities in Problem 2 become equalities.

Problem 4. Closed Elements. Let $*: P \rightleftarrows Q: *$ be a Galois connection between lattices P and Q. We will say that $p \in P$ (resp. $q \in Q$) is $* *$-closed if $p^{* *}=p\left(\right.$ resp. $\left.q^{* *}=q\right)$.
(a) Prove that the meet of any two $* *$-closed elements is $* *$-closed.
(b) Prove that the following two conditions are equivalent:

- The join of any two $* *$-closed elements is $* *$-closed.
- For all $* *$-closed elements $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ we have

$$
p_{1}^{*} \vee p_{2}^{*}=\left(p_{1} \wedge p_{2}\right)^{*} \quad \text { and } \quad q_{1}^{*} \vee q_{2}^{*}=\left(q_{1} \wedge q_{2}\right)^{*} .
$$

Proof. For part (a) assume that x_{1} and x_{2} are $* *$-closed, i.e., that $x_{1}^{* *}=x_{1}$ and $x_{2}^{* *}=x_{2}$. By definition of meet we have $x_{1} \wedge x_{2} \leq x_{1}$ and $x_{1} \wedge x_{2} \leq x_{2}$ and since $* *$ preserves order [because * reverses order; see Problem 1] this implies that $\left(x_{1} \wedge x_{2}\right)^{* *} \leq x_{1}^{* *}=x_{1}$ and $\left(x_{1} \wedge x_{2}\right)^{* *} \leq x_{2}^{* *}=x_{2}$. In other words, $\left(x_{1} \wedge x_{2}\right)^{* *}$ is a lower bound of x_{1} and x_{2}. Since $x_{1} \wedge x_{2}$ is the greatest lower bound this implies that $\left(x_{1} \wedge x_{2}\right)^{* *} \leq x_{1} \wedge x_{2}$. Combining this with the fact that $x_{1} \wedge x_{2} \leq\left(x_{1} \wedge x_{2}\right)^{* *}$ [see Problem 1] gives

$$
\left(x_{1} \wedge x_{2}\right)^{* *}=x_{1} \wedge x_{2} .
$$

In other words, $x_{1} \wedge x_{2}$ is $* *$-closed.
For part (b) first assume that for all x_{1}, x_{2} we have $x_{1}^{*} \vee x_{2}^{*}=\left(x_{1} \wedge x_{2}\right)^{*}$. We will show that the join of any two $* *$-closed elements is $* *$-closed. So let y_{1}, y_{2} be any two $* *$-closed elements, i.e., let $y_{1}^{* *}=y_{1}$ and $y_{2}^{* *}=y_{2}$. Then we have $y_{1}=x_{1}^{*}$ and $y_{2}=x_{2}^{*}$ where $x_{1}=y_{1}^{*}$ and $x_{2}=y_{2}^{*}$, so that

$$
y_{1} \vee y_{2}=x_{1}^{*} \vee x_{2}^{*}=\left(x_{1} \wedge x_{2}\right)^{*},
$$

and this is $* *$-closed because $\left(x_{1} \wedge x_{2}\right)^{* * *}=\left(x_{1} \wedge x_{2}\right)^{*}$ [see Problem 5(a)].
Conversely, assume the join of any two $* *$-closed elements is $* *$-closed and consider any **-closed elements x_{1}, x_{2}. We will show that $x_{1}^{*} \vee x_{2}^{*}=\left(x_{1} \wedge x_{2}\right)^{*}$. To do this, first note that by definition of join we have $x_{1}^{*} \leq x_{1}^{*} \vee x_{2}^{*}$ and $x_{2}^{*} \leq x_{1}^{*} \vee x_{2}^{*}$. Applying $*$ to both inequalities gives $\left(x_{1}^{*} \vee x_{2}^{*}\right)^{*} \leq x_{1}^{* *}=x_{1}$ and $\left(x_{1}^{*} \vee x_{2}^{*}\right)^{*} \leq x_{2}^{* *}=x_{2}$. In other words, $\left(x_{1}^{*} \vee x_{2}^{*}\right)^{*}$ is a lower bound of x_{1} and x_{2}. Since $x_{1} \wedge x_{2}$ is the greatest lower bound, this implies that

$$
\begin{equation*}
\left(x_{1}^{*} \vee x_{2}^{*}\right)^{*} \leq x_{1} \wedge x_{2} \tag{1}
\end{equation*}
$$

Since x_{1}^{*} and x_{2}^{*} are $* *$-closed [see Problem 5(a)] we have by assumption that $x_{1}^{*} \vee x_{2}^{*}$ is also **-closed. Finally, apply $*$ to both sides of (1) to get

$$
\left(x_{1} \wedge x_{2}\right)^{*} \leq\left(x_{1}^{*} \vee x_{2}^{*}\right)^{* *}=x_{1}^{*} \vee x_{2}^{*} .
$$

Combining this with the inequality $x_{1}^{*} \vee x_{2}^{*} \leq\left(x_{1} \wedge x_{2}\right)^{*}$ [see Problem 2] gives the result.
Finally, let's put everything together. Basically, if we have a Galois connection between lattices in which joins of closed elements are closed, then this restricts to an isomorphism on their sublattices of closed elements. If (P, \leq) is a poset we'll use the notation P^{op} for the same set of elements with the opposite partial order (and hence with meets and joins switched).

Problem 5. Galois Correspondence. Let $*: P \rightleftarrows Q: *$ be a Galois connection between lattices P and Q. Denote the image of $*: P \rightarrow Q$ by $P^{*} \subseteq Q$ and denote the image of $*: Q \rightarrow P$ by $Q^{*} \subseteq P$. We will think of these as subposets with the induced partial order.
(a) Prove that $Q^{*} \subseteq P$ and $P^{*} \subseteq Q$ are precisely the subposets of $* *$-closed elements.
(b) Prove that the restricted maps $*: Q^{*} \rightleftarrows P^{*}: *$ are an isomorphism of posets:

$$
Q^{*} \approx\left(P^{*}\right)^{\mathrm{op}} .
$$

(c) If, in addition, the join of any two $* *$-closed elements is $* *$-closed, prove that $Q^{*} \subseteq P$ and $P^{*} \subseteq Q$ are sublattices, and that the isomorphism from (b) is an isomorphism of lattices.

Proof. For part (a), consider an element x^{*} in the image of $*$. From Problem 2 we have $x^{*} \leq\left(x^{*}\right)^{* *}$. On the other hand, applying $*$ to both sides of the inequality $x \leq x^{* *}$ gives $\left(x^{*}\right)^{* *}=\left(x^{* *}\right)^{*} \leq x^{*}$. We conclude that $\left(x^{*}\right)^{* *}=x^{*}$, hence x^{*} is $* *$-closed. Conversely, let y be $* *$-closed. Since $y=y^{* *}=\left(y^{*}\right)^{*}$ we conclude that y is in the image of $*$.

For part (b) we first note that $*: Q^{*} \rightleftarrows P^{*}: *$ are inverse functions (and hence bijections). Indeed, given an element x^{*} in the image of $*$ then we know from part (a) that $\left(x^{*}\right)^{* *}=x^{*}$. Since $*$ reverses order [see Problem 1], we obtain a poset isomorphism $Q^{*} \approx\left(P^{*}\right)^{\text {op }}$.

For part (c) assume that the join of $* *$-closed elements is $* *$-closed. By part (a) and Problem $4(\mathrm{a})$ this implies that $Q^{*} \subseteq P$ and $P^{*} \subseteq Q$ are sublattices. Finally, Problems 2 and 4(b) imply that the poset isomorphism from part (b) is an isomorphism of lattices.
[Remark: For the purpose of this problem I defined a sublattice to be a subposet of a lattice closed under finite meets and joins. If the lattice has a 0 and 1 , I don't require that a sublattice contains these. For example, if P and Q have top elements 1_{P} and 1_{Q}, respectively, then it will follow that Q^{*} and P^{*} have the same top elements. However, the bottom elements of Q^{*} and P^{*} will be 1_{P}^{*} and 1_{Q}^{*}, respectively, which might not equal 0_{P} and 0_{Q} (see the picture below). An isomorphism of complete lattices would necessarily preserve 0 and 1 . Don't you hate all this terminology? Yeah, I'm done with lattice theory for a while.]

Epilogue: You might ask whether the definition of Galois connection given above is more general than the one discussed in class. The answer is: "yes and no". The answer is "yes" in the sense that this definition applies to more general posets. However, if P and Q happen to be Boolean lattices then the answer is "no". I will define a Boolean lattice as the collection of subsets of a set U, partially ordered by inclusion. Note that the lattice operations are $\wedge=\cap$ and $V=U$.

Problem 6. Boolean Galois Connections. Let S and T be sets and consider the corresponding Boolean lattices $P=2^{S}$ and $Q=2^{T}$. For any relation $R \subseteq S \times T$ and for any subsets $A \subseteq S$ and $B \subseteq T$ we will define the sets $A^{R} \subseteq T$ and $B^{R} \subseteq S$ as follows:

- $A^{R}=\{t \in T: \forall a \in A, a R t\}$
- $B^{R}=\{s \in S: \forall b \in B, s R b\}$

In class we called this an "abstract Galois connection" and we showed that it has many nice properties. Now let $*: P \rightleftarrows Q: *$ be a Galois connection of posets in the sense defined above. Prove that there exists a unique relation $R \subseteq S \times T$ such that for all $A \subseteq S$ and $B \subseteq T$ we have

$$
A^{*}=A^{R} \quad \text { and } \quad B^{*}=B^{R} .
$$

[Hint: Consider the singleton subsets of S and T. You will need to use the fact that the power set 2^{U} is a complete lattice, i.e., it is possible to take the intersection and union of arbitrary collections of subsets.]

Proof. Let S and T be sets and let $*: 2^{S} \rightleftarrows 2^{T}: *$ be a Galois connection of posets. That is, for all subsets $A \subseteq T$ and $B \subseteq T$ we have $A \subseteq B^{*} \Longleftrightarrow B \subseteq A^{*}$. In particular, for all elements $s \in S$ and $t \in T$ we have

$$
\{s\} \subseteq\{t\}^{*} \Longleftrightarrow\{t\} \subseteq\{s\}^{*} .
$$

Define the relation $R \subseteq S \times T$ by setting " $s R t$ " (i.e., " $(s, t) \in R$ ") whenever either of these equivalent conditions is true.

I claim that for all $A \subseteq S$ and $B \subseteq T$ we have $A^{*}=A^{R}$ and $B^{*}=B^{R}$. To see this, first note that $R: 2^{S} \rightleftarrows 2^{T}: R$ is a Galois connection and so it satisfies all of the properties proved in this homework. Indeed, for all subsets $A \subseteq S$ and $B \subseteq T$ we have

$$
\begin{aligned}
A \subseteq B^{R} & \Longleftrightarrow \forall a \in A, a \in B^{R} \\
& \Longleftrightarrow \forall a \in A, \forall b \in B, a R b \\
& \Longleftrightarrow \forall b \in B, \forall a \in A, a R b \\
& \Longleftrightarrow \forall b \in B, b \in A^{R} \\
& \Longleftrightarrow B \subseteq A^{R} .
\end{aligned}
$$

Now we observe that the result is true for singleton subsets. Indeed, we have

$$
\begin{aligned}
\{a\}^{R} & =\{t \in T: \forall s \in\{a\}, s R t\} \\
& =\{t \in T: a R t\} \\
& =\left\{t \in T:\{t\} \subseteq\{a\}^{*}\right\} \\
& =\left\{t \in T: t \in\{a\}^{*}\right\} \\
& =\{a\}^{*} .
\end{aligned}
$$

To finish the proof we will use the fact (details omitted) that the proof from Problem 2 can be generalized to show that for arbitrary collections of sets $\left\{X_{i}\right\}_{i \in I}$ we have

$$
\cap_{i \in I} X_{i}^{*}=\left(\cup_{i \in I} X_{i}\right)^{*} .
$$

Finally, for all subsets $A \subseteq S$ we have

$$
\begin{aligned}
A^{*} & =\left(\cup_{a \in A}\{a\}\right)^{*} \\
& =\cap_{a \in A}\{a\}^{*} \\
& =\cap_{a \in A}\{a\}^{R} \\
& =\left(\cup_{a \in A}\{a\}\right)^{R} \\
& =A^{R} .
\end{aligned}
$$

To see that the relation R is unique, suppose there exists another relation $R^{\prime} \subseteq S \times T$ with the same properties. Then for all $t \in T$ we have $\{t\}^{R}=\{t\}^{*}=\{t\}^{R^{\prime}}$, and hence for all $(s, t) \in S \times T$ we have

$$
s R t \Longleftrightarrow s \in\{t\}^{R} \Longleftrightarrow s \in\{t\}^{*} \Longleftrightarrow s \in\{t\}^{R^{\prime}} \Longleftrightarrow s R^{\prime} t
$$

[Remark: The theory of Galois connections between posets is a special case of the theory of adjoint functors between categories. If \mathcal{C} and \mathcal{D} are categories, then a pair of functors $F: \mathcal{C} \rightleftarrows \mathcal{D}: G$ is called an adjunction if there is a family of bijections $\operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \approx \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$ that is "natural" in X and Y. Recall that a poset is just a category in which $|\operatorname{Hom}(X, Y)| \in\{0,1\}$ for all X and Y, and we write " $X \leq Y$ " to mean that $|\operatorname{Hom}(X, Y)|=1$. Thus if \mathcal{C} and \mathcal{D} are posets then the condition $\operatorname{Hom}_{\mathcal{C}}(X, G(Y)) \approx \operatorname{Hom}_{\mathcal{D}}(F(X), Y)$ becomes $X \leq G(Y) \Longleftrightarrow F(X) \leq Y$. The results we found about Galois connections preserving lattice structure can be generalized by saying: G preserves limits and F preserves colimits.]

The slogan is "Adjoint functors arise everywhere".

Saunders Mac Lane

