On this homework you will further explore the idea of Galois connections. We will begin by defining a notion of Galois connection for general posets. Let (P, \leq) and (Q, \leq) be posets. A pair of maps $*: P \rightleftarrows Q: *$ is called a Galois connection if it satisfies the following property:

$$
\text { for all } p \in P \text { and } q \in Q \text { we have } p \leq q^{*} \Longleftrightarrow q \leq p^{*}
$$

Problem 1. Equivalent Definition. Prove that a pair of maps $*: P \rightleftarrows Q: *$ is a Galois connection (as defined above) if and only if the following two statements hold:

- For all $p \in P$ and $q \in Q$ we have

$$
p \leq p^{* *} \quad \text { and } \quad q \leq q^{* *} .
$$

- For all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ we have

$$
p_{1} \leq p_{2} \Longrightarrow p_{2}^{*} \leq p_{1}^{*} \quad \text { and } \quad q_{1} \leq q_{2} \Longrightarrow q_{2}^{*} \leq q_{1}^{*} .
$$

[Hint: Since the statements come in dual pairs, you only have to prove half of them.]
Recall that a lattice is a poset (P, \leq) in which every pair of elements $x, y \in P$ has a (necessarily unique) join $x \vee y$ and meet $x \wedge y$. By induction, any finite subset $A \subseteq P$ also has a join $\bigvee A \in P$ and meet $\bigwedge A \in P$.

Problem 2. Lattice Structure. Let $*: P \rightleftarrows Q: *$ be a Galois connection. If, in addition, P and Q happen to be lattices, prove that for all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ we have

- $p_{1}^{*} \vee p_{2}^{*} \leq\left(p_{1} \wedge p_{2}\right)^{*}$ and $q_{1}^{*} \vee q_{2}^{*} \leq\left(q_{1} \wedge q_{2}\right)^{*}$
- $p_{1}^{*} \wedge p_{2}^{*}=\left(p_{1} \vee p_{2}\right)^{*}$ and $q_{1}^{*} \wedge q_{2}^{*}=\left(q_{1} \vee q_{2}\right)^{*}$

In the next problem you will show that the first inequalities are sometimes strict.
Problem 3. Counterexample. Consider the usual topology on the set of real numbers \mathbb{R}. Let $\mathscr{O} \subseteq 2^{\mathbb{R}}$ be the collection of open sets and let $\mathscr{C} \subseteq 2^{\mathbb{R}}$ be the collection of closed sets. Let $-: 2^{\mathbb{R}} \rightarrow 2^{\mathbb{R}}$ be the "topological closure" and let $\circ: 2^{\mathbb{R}} \rightarrow 2^{\mathbb{R}}$ be the "topological interior". One can check (you don't need to) that for all $O \in \mathscr{O}$ and $C \in \mathscr{C}$ we have

$$
O \subseteq C^{\circ} \Longleftrightarrow O^{-} \subseteq C
$$

In other words, we have a Galois connection $-: \mathscr{O} \rightleftarrows \mathscr{C}: \circ$ where \mathscr{O} is partially ordered by inclusion ($" \leq "=" \subseteq "$) and \mathscr{C} is partially ordered by reverse-inclusion ($" \leq "=" \supseteq "$). Note that \mathscr{O} is a lattice with $\wedge=\cap$ and $\vee=\cup$, whereas \mathscr{C} is a lattice with $\wedge=\cup$ and $\vee=\cap$.

In this case, find specific elements $O_{1}, O_{2} \in \mathscr{O}$ and $C_{1}, C_{2} \in \mathscr{C}$ such that

$$
O_{1}^{-} \vee O_{2}^{-} \lesseqgtr\left(O_{1} \wedge O_{2}\right)^{-} \quad \text { and } \quad C_{1}^{\circ} \vee C_{2}^{\circ} \lesseqgtr\left(C_{1} \wedge C_{2}\right)^{\circ} .
$$

Now you will investigate under what conditions the first inequalities in Problem 2 become equalities.

Problem 4. Closed Elements. Let $*: P \rightleftarrows Q: *$ be a Galois connection between lattices P and Q. We will say that $p \in P$ (resp. $q \in Q$) is $* *$-closed if $p^{* *}=p\left(\right.$ resp. $\left.q^{* *}=q\right)$.
(a) Prove that the meet of any two $* *$-closed elements is $* *$-closed.
(b) Prove that the following two conditions are equivalent:

- The join of any two $* *$-closed elements is $* *$-closed.
- For all $* *$-closed elements $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ we have

$$
p_{1}^{*} \vee p_{2}^{*}=\left(p_{1} \wedge p_{2}\right)^{*} \quad \text { and } \quad q_{1}^{*} \vee q_{2}^{*}=\left(q_{1} \wedge q_{2}\right)^{*}
$$

Finally, let's put everything together. Basically, if we have a Galois connection between lattices in which joins of closed elements are closed, then this restricts to an isomorphism on their sublattices of closed elements. If (P, \leq) is a poset we'll use the notation P^{op} for the same set of elements with the opposite partial order (and hence with meets and joins switched).

Problem 5. Galois Correspondence. Let $*: P \rightleftarrows Q: *$ be a Galois connection between lattices P and Q. Denote the image of $*: P \rightarrow Q$ by $P^{*} \subseteq Q$ and denote the image of *: $Q \rightarrow P$ by $Q^{*} \subseteq P$. We will think of these as subposets with the induced partial order.
(a) Prove that $Q^{*} \subseteq P$ and $P^{*} \subseteq Q$ are precisely the subposets of $* *$-closed elements.
(b) Prove that the restricted maps $*: Q^{*} \rightleftarrows P^{*}: *$ are an isomorphism of posets:

$$
Q^{*} \approx\left(P^{*}\right)^{\mathrm{op}}
$$

(c) If, in addition, the join of any two $* *$-closed elements is $* *$-closed, prove that $Q^{*} \subseteq P$ and $P^{*} \subseteq Q$ are sublattices, and that the isomorphism from (b) is an isomorphism of lattices.

Epilogue: You might ask whether the definition of Galois connection given above is more general than the one discussed in class. The answer is: "yes and no". The answer is "yes" in the sense that this definition applies to more general posets. However, if P and Q happen to be Boolean lattices then the answer is "no". I will define a Boolean lattice as the collection of subsets of a set U, partially ordered by inclusion. Note that the lattice operations are $\wedge=\cap$ and $\vee=U$.

Problem 6. Boolean Galois Connections. Let S and T be sets and consider the corresponding Boolean lattices $P=2^{S}$ and $Q=2^{T}$. For any relation $R \subseteq S \times T$ and for any subsets $A \subseteq S$ and $B \subseteq T$ we will define the sets $A^{R} \subseteq T$ and $B^{R} \subseteq S$ as follows:

- $A^{R}=\{t \in T: \forall a \in A, a R t\}$
- $B^{R}=\{s \in S: \forall b \in B, s R b\}$

In class we called this an "abstract Galois connection" and we showed that it has many nice properties. Now let $*: P \rightleftarrows Q: *$ be a Galois connection of posets in the sense defined above. Prove that there exists a unique relation $R \subseteq S \times T$ such that for all $A \subseteq S$ and $B \subseteq T$ we have

$$
A^{*}=A^{R} \quad \text { and } \quad B^{*}=B^{R} .
$$

[Hint: Consider the singleton subsets of S and T. You will need to use the fact that the power set 2^{U} is a complete lattice, i.e., it is possible to take the intersection and union of arbitrary collections of subsets.]

Remark: The theory of Galois connections between posets is a special case of the theory of adjoint functors between categories. Maybe I will say something about this later; maybe not.

