On this homework you will further explore the idea of Galois connections. We will begin by defining a notion of Galois connection for general posets. Let (P, \leq) and (Q, \leq) be posets. A pair of maps $*: P \rightleftharpoons Q: *$ is called a Galois connection if it satisfies the following property:

for all $p \in P$ and $q \in Q$ we have $p \leq q^* \iff q \leq p^*$

Problem 1. Equivalent Definition. Prove that a pair of maps $*: P \rightleftharpoons Q : *$ is a Galois connection (as defined above) if and only if the following two statements hold:

• For all $p \in P$ and $q \in Q$ we have

$$p \le p^{**}$$
 and $q \le q^{**}$.

• For all $p_1, p_2 \in P$ and $q_1, q_2 \in Q$ we have

$$p_1 \leq p_2 \Longrightarrow p_2^* \leq p_1^*$$
 and $q_1 \leq q_2 \Longrightarrow q_2^* \leq q_1^*$.

[Hint: Since the statements come in dual pairs, you only have to prove half of them.]

Recall that a lattice is a poset (P, \leq) in which every pair of elements $x, y \in P$ has a (necessarily unique) join $x \lor y$ and meet $x \land y$. By induction, any finite subset $A \subseteq P$ also has a join $\bigvee A \in P$ and meet $\bigwedge A \in P$.

Problem 2. Lattice Structure. Let $*: P \rightleftharpoons Q : *$ be a Galois connection. If, in addition, P and Q happen to be **lattices**, prove that for all $p_1, p_2 \in P$ and $q_1, q_2 \in Q$ we have

- $p_1^* \lor p_2^* \le (p_1 \land p_2)^*$ and $q_1^* \lor q_2^* \le (q_1 \land q_2)^*$ $p_1^* \land p_2^* = (p_1 \lor p_2)^*$ and $q_1^* \land q_2^* = (q_1 \lor q_2)^*$

In the next problem you will show that the first inequalities are sometimes strict.

Problem 3. Counterexample. Consider the usual topology on the set of real numbers \mathbb{R} . Let $\mathscr{O} \subseteq 2^{\mathbb{R}}$ be the collection of open sets and let $\mathscr{C} \subseteq 2^{\mathbb{R}}$ be the collection of closed sets. Let $-: 2^{\mathbb{R}} \to 2^{\mathbb{R}}$ be the "topological closure" and let $\circ: 2^{\mathbb{R}} \to 2^{\mathbb{R}}$ be the "topological interior". One can check (you don't need to) that for all $O \in \mathcal{O}$ and $C \in \mathcal{C}$ we have

$$O \subseteq C^{\circ} \Longleftrightarrow O^{-} \subseteq C.$$

In other words, we have a Galois connection $-: \mathcal{O} \rightleftharpoons \mathcal{C} : \circ$ where \mathcal{O} is partially ordered by inclusion (" \leq " = " \subseteq ") and \mathscr{C} is partially ordered by **reverse-inclusion** (" \leq " = " \supseteq "). Note that \mathscr{O} is a lattice with $\wedge = \cap$ and $\vee = \cup$, whereas \mathscr{C} is a lattice with $\wedge = \cup$ and $\vee = \cap$. In this case, find specific elements $O_1, O_2 \in \mathcal{O}$ and $C_1, C_2 \in \mathcal{C}$ such that

$$O_1^- \lor O_2^- \lneq (O_1 \land O_2)^-$$
 and $C_1^\circ \lor C_2^\circ \lneq (C_1 \land C_2)^\circ$.

Now you will investigate under what conditions the first inequalities in Problem 2 become equalities.

Problem 4. Closed Elements. Let $*: P \rightleftharpoons Q: *$ be a Galois connection between lattices P and Q. We will say that $p \in P$ (resp. $q \in Q$) is **-closed if $p^{**} = p$ (resp. $q^{**} = q$).

- (a) Prove that the meet of any two **-closed elements is **-closed.
- (b) Prove that the following two conditions are equivalent:
 - The join of any two **-closed elements is **-closed.

- For all **-closed elements $p_1, p_2 \in P$ and $q_1, q_2 \in Q$ we have
 - $p_1^* \lor p_2^* = (p_1 \land p_2)^*$ and $q_1^* \lor q_2^* = (q_1 \land q_2)^*$.

Finally, let's put everything together. Basically, if we have a Galois connection between lattices in which joins of closed elements are closed, then this restricts to an **isomorphism** on their sublattices of closed elements. If (P, \leq) is a poset we'll use the notation P^{op} for the same set of elements with the **opposite** partial order (and hence with meets and joins switched).

Problem 5. Galois Correspondence. Let $*: P \rightleftharpoons Q : *$ be a Galois connection between lattices P and Q. Denote the image of $*: P \to Q$ by $P^* \subseteq Q$ and denote the image of $*: Q \to P$ by $Q^* \subseteq P$. We will think of these as subposets with the induced partial order.

- (a) Prove that $Q^* \subseteq P$ and $P^* \subseteq Q$ are precisely the subposets of **-closed elements.
- (b) Prove that the restricted maps $*: Q^* \rightleftharpoons P^* : *$ are an isomorphism of posets:

$$Q^* \approx (P^*)^{\mathrm{op}}$$

(c) If, in addition, the join of any two **-closed elements is **-closed, prove that $Q^* \subseteq P$ and $P^* \subseteq Q$ are sublattices, and that the isomorphism from (b) is an isomorphism of lattices.

Epilogue: You might ask whether the definition of Galois connection given above is more general than the one discussed in class. The answer is: "yes and no". The answer is "yes" in the sense that this definition applies to more general posets. However, if P and Q happen to be Boolean lattices then the answer is "no". I will define a Boolean lattice as the collection of subsets of a set U, partially ordered by inclusion. Note that the lattice operations are $\wedge = \cap$ and $\vee = \cup$.

Problem 6. Boolean Galois Connections. Let S and T be sets and consider the corresponding Boolean lattices $P = 2^S$ and $Q = 2^T$. For any relation $R \subseteq S \times T$ and for any subsets $A \subseteq S$ and $B \subseteq T$ we will define the sets $A^R \subseteq T$ and $B^R \subseteq S$ as follows:

- $A^R = \{t \in T : \forall a \in A, aRt\}$
- $B^R = \{s \in S : \forall b \in B, sRb\}$

In class we called this an "abstract Galois connection" and we showed that it has many nice properties. Now let $*: P \rightleftharpoons Q : *$ be a Galois connection of posets in the sense defined above. Prove that **there exists a unique relation** $R \subseteq S \times T$ such that for all $A \subseteq S$ and $B \subseteq T$ we have

 $A^* = A^R$ and $B^* = B^R$.

[Hint: Consider the singleton subsets of S and T. You will need to use the fact that the power set 2^U is a complete lattice, i.e., it is possible to take the intersection and union of arbitrary collections of subsets.]

Remark: The theory of Galois connections between posets is a special case of the theory of adjoint functors between categories. Maybe I will say something about this later; maybe not.