Problem 1. Functors vs. G-Sets.

(a) Define what it means for $F : \mathcal{C} \to \mathcal{D}$ to be a (covariant) functor.

A functor $F : \mathcal{C} \to \mathcal{D}$ assigns to each object X in \mathcal{C} an object F(X) in \mathcal{D} and to each morphism $\alpha : X \to Y$ in \mathcal{C} a morphism $F(\alpha) : F(X) \to F(Y)$ in \mathcal{D} such that the following two axioms hold:

- $F(\operatorname{id}_X) = \operatorname{id}_{F(X)}$ for all objects X in \mathcal{C} ,
- $F(\alpha \circ \beta) = F(\alpha) \circ F(\beta)$ for all morphisms α, β in \mathcal{C} such that $\alpha \circ \beta$ is defined.
- (b) Given functors $F, G : \mathcal{C} \to \mathcal{D}$, define what it means for $\Phi : F \to G$ to be a natural transformation.

A natural transformation $\Phi : F \to G$ assigns to each object X in C a morphism $\Phi(X) : F(X) \to G(X)$ in \mathcal{D} such that for all morphisms $\alpha : X \to Y$ in C the following diagram commutes:

(c) Let G be a group thought of as a category with one object "*", so that $G = \operatorname{Aut}(*)$. Prove that a functor $F : G \to \operatorname{Set}$ defines a set X and a group homomorphism $F : G \to \operatorname{Aut}_{\operatorname{Set}}(X)$.

A functor $F: G \to \text{Set}$ assigns to the unique object * of G a set X := F(*) and assigns to each group element $g \in G = \text{Aut}(*)$ a function $F(g) \in \text{End}_{\text{Set}}(X)$ satisfying the following two properties:

- $F(1_G) = \operatorname{id}_X$,
- $F(gh) = F(g) \circ F(h)$ for all $g, h \in G$.

It remains only to show that for each $g \in G$ the function $F(g) : X \to X$ is invertible. Indeed, note that $F(g) \circ F(g^{-1}) = F(gg^{-1}) = F(1_G) = \operatorname{id}_X$ and $F(g^{-1}) \circ F(g) = F(g^{-1}g) = F(1_G) = \operatorname{id}_X$ so that F(g) is invertible with inverse $F(g^{-1})$.

(d) Consider two functors $F_1, F_2 : G \to \mathsf{Set}$ that define group homomorphisms $F_1 : G \to \operatorname{Aut}_{\mathsf{Set}}(X_1)$ and $F_2 : G \to \operatorname{Aut}_{\mathsf{Set}}(X_2)$. Prove that a natural transformation $\Phi : F_1 \to F_2$ defines a *G*-equivariant set function $\Phi : X_1 \to X_2$ (and say what this means).

A natural transformation $\Phi: F_1 \to F_2$ assigns to the unique object a function $\Phi(*)$: $F_1(*) \to F_2(*)$. Since $X_1 := F_1(*)$ and $X_2 := F_2(*)$ we might as well just call this function $\Phi: X_1 \to X_2$. Then the defining property of natural transformation says that for all group elements $g: * \to *$ the following diagram commutes:

In other words, for all elements $x \in X_1$ we have

$$\Phi(F_1(g)(x)) = F_2(g)(\Phi(x)).$$

If the functors F_1 and F_2 are implicitly understood then we will often write this as

$$\Phi(g(x)) = g(\Phi(x)).$$

Problem 2. The Fundamental Theorem of *G***-Sets.** Let *G* be a group acting on a set *X*. Denote the action $G \times X \to X$ implicitly by $(g, x) \mapsto g(x)$.

(a) For each $x \in X$, prove that the prescription $g(x) \leftrightarrow gStab(x)$ defines a bijection

 $Orb(x) \leftrightarrow G/Stab(x).$

Proof. For all $x \in X$ and $g, h \in G$ we have

$$\begin{split} g(x) &= h(x) \Leftrightarrow (h^{-1}g)(x) = x \\ &\Leftrightarrow h^{-1}g \in \mathsf{Stab}(x) \\ &\Leftrightarrow g\mathsf{Stab}(x) = h\mathsf{Stab}(x). \end{split}$$

_	

(b) Prove that the bijection from part (a) is G-equivariant.

Proof. Let Φ : $\mathsf{Orb}(x) \to G/\mathsf{Stab}(x)$ denote the bijection $\Phi(g(x)) = g\mathsf{Stab}(x)$ from part (a). Then for all $g(x) \in \mathsf{Orb}(x)$ and $h \in G$ we have

$$\begin{split} \Phi(h(g(x))) &= \Phi((hg)(x)) \\ &= (hg)\mathsf{Stab}(x) \\ &= h(g\mathsf{Stab}(x)) \\ &= h(\Phi(g(x))). \end{split}$$

Problem 3. Double Cosets. Let G be a group and consider two subgroups $H, K \subseteq G$.

(a) Prove that the rule $((h,k),g) \mapsto hgk^{-1}$ defines an action of the direct product $H \times K$ on G. The orbits are called **double cosets**; we denote them by $HgK := \mathsf{Orb}_{H \times K}(g)$.

Proof. For all $(h,k) \in H \times K$ and $g \in G$ we will write $(h,k) \bullet g := ghk^{-1}$. To prove that this is an action, first note that for all $g \in G$ we have

$$(1,1) \bullet g = 1g1^{-1} = g.$$

Then note that for all $(h_1, k_1), (h_2, k_2) \in H \times K$ and $g \in G$ we have

$$(h_1, k_1) \bullet [(h_2, k_2) \bullet g] = (h_1, k_1) \bullet h_2 g k_2^{-1}$$

= $h_1 (h_2 g k_2^{-1}) k_1^{-1}$
= $(h_1 h_2) g (k_1 k_2)^{-1}$
= $(h_1 h_2, k_1 k_2) \bullet g$
= $[(h_1, k_1) \cdot (h_2, k_2)] \bullet g.$

_	_	

(b) Now consider the action of H on the set G/K by $(h, gK) \mapsto (hg)K$. For all $g \in G$, prove that we have a bijection $HgK \leftrightarrow \operatorname{Orb}_H(gK) \times K$. [Hint: Show that HgK is the union of the elements of $\operatorname{Orb}_H(gK)$.]

Proof. Consider any element $hgk \in HgK$. Since $hgk \in (hg)K = h(gK) \in \mathsf{Orb}_H(gK)$ we conclude that HgK is contained in the union $\cup_{C \in \mathsf{Orb}_H(gK)} C$. Conversely, given any $x \in \bigcup_{C \in \mathsf{Orb}_H(gK)} C$ there exists $h \in H$ such that $x \in h(gK) \subseteq HgK$. We conclude that

$$HgK = \bigcup_{C \in \mathsf{Orb}_H(gK)} C.$$

Since any coset of K is in bijection with K, and since any two distinct cosets are disjoint, we obtain a bijection

$$HgK \leftrightarrow \left(\bigsqcup_{C \in \mathsf{Orb}_H(gK)} K\right) \leftrightarrow \mathsf{Orb}_H(gK) \times K.$$

(c) Use part (b) and Problem 2(a) to prove that we have a bijection

$$HgK \leftrightarrow H/(H \cap gKg^{-1}) \times K.$$

Proof. Note that for all $g \in G$ we have

$$\begin{aligned} \mathsf{Stab}_{H}(gK) &= \{h \in H : h(gK) = gK\} \\ &= \{h \in H : (g^{-1}hg)K = K\} \\ &= \{h \in H : g^{-1}hg \in K\} \\ &= \{h \in H : h \in gKg^{-1}\} \\ &= H \cap aKa^{-1}. \end{aligned}$$

so from Problem 2(a) we obtain a bijection

$$\mathsf{Orb}_H(gK) \leftrightarrow H/\mathsf{Stab}_H(gK) = H/(H \cap gKg^{-1}).$$

Combining this with part (b) gives the desired result.

(d) Now let G be finite and consider an element $g \in G$. Use part (c) and Problem 2(a) to compute the size of the stabilizer $\mathsf{Stab}_{H \times K}(g) := \{(h, k) \in H \times K : hgk^{-1} = g\}.$

Proof. From part (c) we have

$$|\mathsf{Orb}_{H \times K}(g)| = |HgK| = |H/(H \cap gKg^{-1})| \cdot |K| = \frac{|H| \cdot |K|}{|H \cap gKg^{-1}|}$$

and from Problem 2(a) we have

$$|\mathsf{Orb}_{H\times K}(g)| = \frac{|H\times K|}{|\mathsf{Stab}_{H\times K}(g)|} = \frac{|H|\cdot|K|}{|\mathsf{Stab}_{H\times K}(g)|}$$

Combining these gives $|\mathsf{Stab}_{H \times K}(g)| = |H \cap gKg^{-1}|$.

Problem 4. The Sylow Theorem.

(a) Accurately state all three parts of the Sylow Theorem.

Let G be a finite group and let p be a prime number. If $|G| = p^{\alpha}m$ with $p \nmid m$ then

- (S1) For each $0 \le \beta \le \alpha$ there exists a subgroup $H \subseteq G$ of size $|H| = p^{\beta}$.
- (S2) Given subgroups $H, K \in G$ with $|H| = p^{\alpha}$ and $|K| = p^{\beta}$ for some $0 \leq \beta \leq \alpha$, there exists a group element $g \in G$ such that $gKg^{-1} \subseteq H$.
- (S3) Let n_p be the number of subgroups of G with size p^{α} . Then we have $n_p|m$ and $n_p = 1 \pmod{p}$.
- (b) Use the Sylow Theorem to prove that no group of size 30 is simple. [Hint: Count elements of orders 2, 3, and 5.]

Proof. Let G be a group and suppose that $|G| = 30 = 2 \cdot 3 \cdot 5$. Let n_2 , n_3 , n_5 be the numbers of subgroups of sizes 2, 3 and 5, respectively. From (S3) we know that

- $n_5|6 \text{ and } n_5 = 1 \pmod{5}$,
- $n_3|10$ and $n_3 = 1 \pmod{3}$,
- $n_2|15$ and $n_2 = 1 \pmod{2}$,

which implies that $n_5 \in \{1, 6\}$, $n_3 \in \{1, 10\}$ and $n_2 \in \{1, 3, 5, 15\}$. If any of n_2 , n_3 or n_5 equals 1 then by (S2) we obtain a nontrivial normal subgroup, so assume for contradiction that $n_5 \ge 6$, $n_3 \ge 10$ and $n_2 \ge 3$. By Lagrange's Theorem, any two subgroups of coprime order intersect trivially and any two distinct subgroups of the same prime order intersect trivially. This implies that we have

$$|G| \ge n_5(5-1) + n_3(3-1) + n_2(2-1) + 1$$

$$30 \ge 6(4) + 10(2) + 3(1) + 1$$

$$30 \ge 48,$$

which is a contradiction.

Problem 5. Sylow vs. Kolchin. Let p be prime and consider the group $G := \operatorname{GL}_n(p)$ of invertible $n \times n$ matrices over the field $\mathbb{Z}/p\mathbb{Z}$. Recall that we have $|G| = p^{\binom{n}{2}}(p-1)^n [n]_p!$.

(a) Let $U \subseteq G$ be the subgroup consisting of upper triangular matrices with 1's on the diagonal. Prove that U is a Sylow *p*-subgroup of G.

Proof. A matrix in U is determined by its entries above the diagonal. Since the number of entries above the diagonal is

$$1 + 2 + \dots + (n - 1) = \frac{n(n - 1)}{2} = \binom{n}{2}$$

and since the entries can take any value in $\mathbb{Z}/p\mathbb{Z}$ we conclude that

$$|U| = |\mathbb{Z}/p\mathbb{Z}|^{\binom{n}{2}} = p^{\binom{n}{2}}.$$

Now suppose for contradiction that p divides $(p-1)^n [n]_p!$. Since p is prime Euclid's Lemma tells us that p divides p-1 or p divides $[n]_p!$. The first is impossible because p-1 < p and the second is impossible because

$$[n]_p! = (1)(1+p)(1+p+p^2)\cdots(1+p+p^2+\cdots+p^{n-1}) = 1 \pmod{p}.$$

We conclude that U is a Sylow p-subgroup.

(b) Let $N_G(U) := \{g \in G : gUg^{-1} = U\}$. Prove that the number of Sylow *p*-subgroups of G equals $|G|/|N_G(U)|$. [Hint: Use the Sylow Theorem.]

Proof. Let $Syl_p(G)$ be the set of Sylow *p*-subgroups and consider the action of *G* on $Syl_p(G)$ by conjugation. Part (S2) of the Sylow Theorem says that any two Sylow *p*-subgroups are conjugate, hence $Syl_p(G) = Orb_G(U)$. Then Problem 2(a) tells us that

$$|\mathsf{Syl}_p(G)| = |\mathsf{Orb}_G(U)| = \frac{|G|}{|\mathsf{Stab}_G(U)|} = \frac{|G|}{|N_G(U)|}.$$

(c) Now you can assume that $B := N_G(U)$ is the group of **all** invertible upper triangular matrices. Use this information to compute the number of Sylow p-subgroups of G.

Proof. Consider an upper triangular matrix $g \in B$. Since $\det(g)$ is the product of the diagonal entries, the fact that $\det(g) \neq 0$ implies that none of the diagonal entries is zero. Thus the number of ways to choose the diagonal entries is $(p-1)^n$. The number of ways to choose the entries above the diagonal is again $p^{\binom{n}{2}}$ because the entries are unrestricted. We conclude that $|B| = p^{\binom{n}{2}}(p-1)^n$ and hence

$$|\mathsf{Syl}_p(G)| = \frac{|G|}{|N_G(U)|} = \frac{|G|}{|B|} = \frac{p^{\binom{n}{2}}(p-1)^n [n]_p!}{p^{\binom{n}{2}}(p-1)^n} = [n]_p!.$$

[Remark: If q is a power of p then similar reasoning shows that the number of Sylow p-subgroups of $GL_n(q)$ is $[n]_q!$. This suggests that Sylow p-subgroups of $GL_n(q)$ are some kind of "q-analogue" of permutations of the set $\{1, 2, ..., n\}$. Here's a possible explanation: When the field K is infinite there is no such thing as a Sylow subgroup of $GL_n(K)$ so we just look at the set of cosets G/B. We call this the "complete flag variety" because it is in bijection with the set of maximal chains of subspaces of K^n (i.e., complete flags). Finally, note that there is a bijection between permutations of the set $\{1, 2, ..., n\}$ and maximal chains of subsets of this set.]