Problem 1. Functors vs. G-Sets.

(a) Define what it means for $F: \mathcal{C} \rightarrow \mathcal{D}$ to be a (covariant) functor.

A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ assigns to each object X in \mathcal{C} an object $F(X)$ in \mathcal{D} and to each morphism $\alpha: X \rightarrow Y$ in \mathcal{C} a morphism $F(\alpha): F(X) \rightarrow F(Y)$ in \mathcal{D} such that the following two axioms hold:

- $F\left(\mathrm{id}_{X}\right)=\operatorname{id}_{F(X)}$ for all objects X in \mathcal{C},
- $F(\alpha \circ \beta)=F(\alpha) \circ F(\beta)$ for all morphisms α, β in \mathcal{C} such that $\alpha \circ \beta$ is defined.
(b) Given functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$, define what it means for $\Phi: F \rightarrow G$ to be a natural transformation.

A natural transformation $\Phi: F \rightarrow G$ assigns to each object X in \mathcal{C} a morphism $\Phi(X): F(X) \rightarrow G(X)$ in \mathcal{D} such that for all morphisms $\alpha: X \rightarrow Y$ in \mathcal{C} the following diagram commutes:

(c) Let G be a group thought of as a category with one object " $*$ ", so that $G=\operatorname{Aut}(*)$. Prove that a functor $F: G \rightarrow$ Set defines a set X and a group homomorphism F : $G \rightarrow \operatorname{Aut}_{\text {Set }}(X)$.

A functor $F: G \rightarrow$ Set assigns to the unique object $*$ of G a set $X:=F(*)$ and assigns to each group element $g \in G=\operatorname{Aut}(*)$ a function $F(g) \in \operatorname{End}_{S e t}(X)$ satisfying the following two properties:

- $F\left(1_{G}\right)=\mathrm{id}_{X}$,
- $F(g h)=F(g) \circ F(h)$ for all $g, h \in G$.

It remains only to show that for each $g \in G$ the function $F(g): X \rightarrow X$ is invertible. Indeed, note that $F(g) \circ F\left(g^{-1}\right)=F\left(g g^{-1}\right)=F\left(1_{G}\right)=\operatorname{id}_{X}$ and $F\left(g^{-1}\right) \circ F(g)=$ $F\left(g^{-1} g\right)=F\left(1_{G}\right)=\operatorname{id}_{X}$ so that $F(g)$ is invertible with inverse $F\left(g^{-1}\right)$.
(d) Consider two functors $F_{1}, F_{2}: G \rightarrow$ Set that define group homomorphisms $F_{1}: G \rightarrow$ $\operatorname{Aut}_{\text {set }}\left(X_{1}\right)$ and $F_{2}: G \rightarrow \operatorname{Aut}_{s_{e t}}\left(X_{2}\right)$. Prove that a natural transformation $\Phi: F_{1} \rightarrow$ F_{2} defines a G-equivariant set function $\Phi: X_{1} \rightarrow X_{2}$ (and say what this means).

A natural transformation $\Phi: F_{1} \rightarrow F_{2}$ assigns to the unique object a function $\Phi(*)$: $F_{1}(*) \rightarrow F_{2}(*)$. Since $X_{1}:=F_{1}(*)$ and $X_{2}:=F_{2}(*)$ we might as well just call this function $\Phi: X_{1} \rightarrow X_{2}$. Then the defining property of natural transformation says that for all group elements $g: * \rightarrow *$ the following diagram commutes:

In other words, for all elements $x \in X_{1}$ we have

$$
\Phi\left(F_{1}(g)(x)\right)=F_{2}(g)(\Phi(x)) .
$$

If the functors F_{1} and F_{2} are implicitly understood then we will often write this as

$$
\Phi(g(x))=g(\Phi(x)) .
$$

Problem 2. The Fundamental Theorem of G-Sets. Let G be a group acting on a set X. Denote the action $G \times X \rightarrow X$ implicitly by $(g, x) \mapsto g(x)$.
(a) For each $x \in X$, prove that the prescription $g(x) \leftrightarrow g \operatorname{Stab}(x)$ defines a bijection

$$
\operatorname{Orb}(x) \leftrightarrow G / \operatorname{Stab}(x) .
$$

Proof. For all $x \in X$ and $g, h \in G$ we have

$$
\begin{aligned}
g(x)=h(x) & \Leftrightarrow\left(h^{-1} g\right)(x)=x \\
& \Leftrightarrow h^{-1} g \in \operatorname{Stab}(x) \\
& \Leftrightarrow g \operatorname{Stab}(x)=h \operatorname{Stab}(x) .
\end{aligned}
$$

(b) Prove that the bijection from part (a) is G-equivariant.

Proof. Let $\Phi: \operatorname{Orb}(x) \rightarrow G / \operatorname{Stab}(x)$ denote the bijection $\Phi(g(x))=g \operatorname{Stab}(x)$ from part (a). Then for all $g(x) \in \operatorname{Orb}(x)$ and $h \in G$ we have

$$
\begin{aligned}
\Phi(h(g(x))) & =\Phi((h g)(x)) \\
& =(h g) \operatorname{Stab}(x) \\
& =h(g \operatorname{Stab}(x)) \\
& =h(\Phi(g(x))) .
\end{aligned}
$$

Problem 3. Double Cosets. Let G be a group and consider two subgroups $H, K \subseteq G$.
(a) Prove that the rule $((h, k), g) \mapsto h g k^{-1}$ defines an action of the direct product $H \times K$ on G. The orbits are called double cosets; we denote them by $H g K:=\operatorname{Orb}_{H \times K}(g)$.
Proof. For all $(h, k) \in H \times K$ and $g \in G$ we will write $(h, k) \bullet g:=g h k^{-1}$. To prove that this is an action, first note that for all $g \in G$ we have

$$
(1,1) \cdot g=1 g 1^{-1}=g
$$

Then note that for all $\left(h_{1}, k_{1}\right),\left(h_{2}, k_{2}\right) \in H \times K$ and $g \in G$ we have

$$
\begin{aligned}
\left(h_{1}, k_{1}\right) \bullet\left[\left(h_{2}, k_{2}\right) \bullet g\right] & =\left(h_{1}, k_{1}\right) \bullet h_{2} g k_{2}^{-1} \\
& =h_{1}\left(h_{2} g k_{2}^{-1}\right) k_{1}^{-1} \\
& =\left(h_{1} h_{2}\right) g\left(k_{1} k_{2}\right)^{-1} \\
& =\left(h_{1} h_{2}, k_{1} k_{2}\right) \bullet g \\
& =\left[\left(h_{1}, k_{1}\right) \cdot\left(h_{2}, k_{2}\right)\right] \bullet g .
\end{aligned}
$$

(b) Now consider the action of H on the set G / K by $(h, g K) \mapsto(h g) K$. For all $g \in G$, prove that we have a bijection $H g K \leftrightarrow \operatorname{Orb}_{H}(g K) \times K$. [Hint: Show that $H g K$ is the union of the elements of $\operatorname{Orb}_{H}(g K)$.]
Proof. Consider any element $h g k \in H g K$. Since $h g k \in(h g) K=h(g K) \in \operatorname{Orb}_{H}(g K)$ we conclude that $H g K$ is contained in the union $\cup_{C \in \operatorname{Orb}_{H}(g K)} C$. Conversely, given any $x \in \cup_{C \in \mathrm{Orb}_{H}(g K)} C$ there exists $h \in H$ such that $x \in h(g K) \subseteq H g K$. We conclude that

$$
H g K=\bigcup_{C \in \operatorname{Orb}_{H}(g K)} C
$$

Since any coset of K is in bijection with K, and since any two distinct cosets are disjoint, we obtain a bijection

$$
H g K \leftrightarrow\left(\bigsqcup_{C \in \operatorname{Orb}_{H}(g K)} K\right) \leftrightarrow \operatorname{Orb}_{H}(g K) \times K .
$$

(c) Use part (b) and Problem 2(a) to prove that we have a bijection

$$
H g K \leftrightarrow H /\left(H \cap g K g^{-1}\right) \times K
$$

Proof. Note that for all $g \in G$ we have

$$
\begin{aligned}
\operatorname{Stab}_{H}(g K) & =\{h \in H: h(g K)=g K\} \\
& =\left\{h \in H:\left(g^{-1} h g\right) K=K\right\} \\
& =\left\{h \in H: g^{-1} h g \in K\right\} \\
& =\left\{h \in H: h \in g K g^{-1}\right\} \\
& =H \cap g K g^{-1},
\end{aligned}
$$

so from Problem 2(a) we obtain a bijection

$$
\operatorname{Orb}_{H}(g K) \leftrightarrow H / \operatorname{Stab}_{H}(g K)=H /\left(H \cap g K g^{-1}\right) .
$$

Combining this with part (b) gives the desired result.
(d) Now let G be finite and consider an element $g \in G$. Use part (c) and Problem 2(a) to compute the size of the stabilizer $\operatorname{Stab}_{H \times K}(g):=\left\{(h, k) \in H \times K: h g k^{-1}=g\right\}$.
Proof. From part (c) we have

$$
\left|\operatorname{Orb}_{H \times K}(g)\right|=|H g K|=\left|H /\left(H \cap g K g^{-1}\right)\right| \cdot|K|=\frac{|H| \cdot|K|}{\left|H \cap g K g^{-1}\right|}
$$

and from Problem 2(a) we have

$$
\left|\operatorname{Orb}_{H \times K}(g)\right|=\frac{|H \times K|}{\left|\operatorname{Stab}_{H \times K}(g)\right|}=\frac{|H| \cdot|K|}{\left|\operatorname{Stab}_{H \times K}(g)\right|} .
$$

Combining these gives $\left|\operatorname{Stab}_{H \times K}(g)\right|=\left|H \cap g K g^{-1}\right|$.

Problem 4. The Sylow Theorem.

(a) Accurately state all three parts of the Sylow Theorem.

Let G be a finite group and let p be a prime number. If $|G|=p^{\alpha} m$ with $p \nmid m$ then
(S1) For each $0 \leq \beta \leq \alpha$ there exists a subgroup $H \subseteq G$ of size $|H|=p^{\beta}$.
(S2) Given subgroups $H, K \in G$ with $|H|=p^{\alpha}$ and $|K|=p^{\beta}$ for some $0 \leq \beta \leq \alpha$, there exists a group element $g \in G$ such that $g K g^{-1} \subseteq H$.
(S3) Let n_{p} be the number of subgroups of G with size p^{α}. Then we have $n_{p} \mid m$ and $n_{p}=1(\bmod p)$.
(b) Use the Sylow Theorem to prove that no group of size 30 is simple. [Hint: Count elements of orders 2,3 , and 5.]

Proof. Let G be a group and suppose that $|G|=30=2 \cdot 3 \cdot 5$. Let n_{2}, n_{3}, n_{5} be the numbers of subgroups of sizes 2,3 and 5 , respectively. From (S3) we know that

- $n_{5} \mid 6$ and $n_{5}=1(\bmod 5)$,
- $n_{3} \mid 10$ and $n_{3}=1(\bmod 3)$,
- $n_{2} \mid 15$ and $n_{2}=1(\bmod 2)$,
which implies that $n_{5} \in\{1,6\}, n_{3} \in\{1,10\}$ and $n_{2} \in\{1,3,5,15\}$. If any of n_{2}, n_{3} or n_{5} equals 1 then by (S2) we obtain a nontrivial normal subgroup, so assume for contradiction that $n_{5} \geq 6, n_{3} \geq 10$ and $n_{2} \geq 3$. By Lagrange's Theorem, any two subgroups of coprime order intersect trivially and any two distinct subgroups of the same prime order intersect trivially. This implies that we have

$$
\begin{aligned}
|G| & \geq n_{5}(5-1)+n_{3}(3-1)+n_{2}(2-1)+1 \\
30 & \geq 6(4)+10(2)+3(1)+1 \\
30 & \geq 48
\end{aligned}
$$

which is a contradiction.

Problem 5. Sylow vs. Kolchin. Let p be prime and consider the group $G:=\mathrm{GL}_{n}(p)$ of invertible $n \times n$ matrices over the field $\mathbb{Z} / p \mathbb{Z}$. Recall that we have $|G|=p^{\binom{n}{2}}(p-1)^{n}[n]_{p}$!.
(a) Let $U \subseteq G$ be the subgroup consisting of upper triangular matrices with 1's on the diagonal. Prove that U is a Sylow p-subgroup of G.

Proof. A matrix in U is determined by its entries above the diagonal. Since the number of entries above the diagonal is

$$
1+2+\cdots+(n-1)=\frac{n(n-1)}{2}=\binom{n}{2}
$$

and since the entries can take any value in $\mathbb{Z} / p \mathbb{Z}$ we conclude that

$$
|U|=|\mathbb{Z} / p \mathbb{Z}| \begin{gathered}
\binom{n}{2}
\end{gathered}=p^{\binom{n}{2}} .
$$

Now suppose for contradiction that p divides $(p-1)^{n}[n]_{p}$!. Since p is prime Euclid's Lemma tells us that p divides $p-1$ or p divides $[n]_{p}$!. The first is impossible because $p-1<p$ and the second is impossible because

$$
[n]_{p}!=(1)(1+p)\left(1+p+p^{2}\right) \cdots\left(1+p+p^{2}+\cdots+p^{n-1}\right)=1 \quad(\bmod p) .
$$

We conclude that U is a Sylow p-subgroup.
(b) Let $N_{G}(U):=\left\{g \in G: g U g^{-1}=U\right\}$. Prove that the number of Sylow p-subgroups of G equals $|G| /\left|N_{G}(U)\right|$. [Hint: Use the Sylow Theorem.]

Proof. Let $\mathrm{Syl}_{p}(G)$ be the set of Sylow p-subgroups and consider the action of G on Syl $_{p}(G)$ by conjugation. Part (S2) of the Sylow Theorem says that any two Sylow p-subgroups are conjugate, hence $\operatorname{Syl}_{p}(G)=\operatorname{Orb}_{G}(U)$. Then Problem 2(a) tells us that

$$
\left|\operatorname{Syl}_{p}(G)\right|=\left|\operatorname{Orb}_{G}(U)\right|=\frac{|G|}{\left|\operatorname{Stab}_{G}(U)\right|}=\frac{|G|}{\left|N_{G}(U)\right|}
$$

(c) Now you can assume that $B:=N_{G}(U)$ is the group of all invertible upper triangular matrices. Use this information to compute the number of Sylow p-subgroups of G.
Proof. Consider an upper triangular matrix $g \in B$. Since $\operatorname{det}(g)$ is the product of the diagonal entries, the fact that $\operatorname{det}(g) \neq 0$ implies that none of the diagonal entries is zero. Thus the number of ways to choose the diagonal entries is $(p-1)^{n}$. The number of ways to choose the entries above the diagonal is again $p^{\binom{n}{2}}$ because the entries are unrestricted. We conclude that $|B|=p^{\binom{n}{2}}(p-1)^{n}$ and hence

$$
\left|\operatorname{Syl}_{p}(G)\right|=\frac{|G|}{\left|N_{G}(U)\right|}=\frac{|G|}{|B|}=\frac{p^{\binom{n}{2}}(p-1)^{n}[n]_{p}!}{p^{\binom{n}{2}}(p-1)^{n}}=[n]_{p}!.
$$

[Remark: If q is a power of p then similar reasoning shows that the number of Sylow p-subgroups of $\mathrm{GL}_{n}(q)$ is $[n]_{q}$!. This suggests that Sylow p-subgroups of $\mathrm{GL}_{n}(q)$ are some kind of " q-analogue" of permutations of the set $\{1,2, \ldots, n\}$. Here's a possible explanation: When the field K is infinite there is no such thing as a Sylow subgroup of $\mathrm{GL}_{n}(K)$ so we just look at the set of cosets G / B. We call this the "complete flag variety" because it is in bijection with the set of maximal chains of subspaces of K^{n} (i.e., complete flags). Finally, note that there is a bijection between permutations of the set $\{1,2, \ldots, n\}$ and maximal chains of subsets of this set.]

