Math 761 Fall 2015
Final Exam Drew Armstrong

Problem 1. Functors vs. GG-Sets.

(a)

Define what it means for F' : C — D to be a (covariant) functor.

A functor F': C — D assigns to each object X in C an object F(X) in D and to each
morphism « : X — Y in C a morphism F(a) : F(X) — F(Y) in D such that the
following two axioms hold:

e F(idx) = idp(x) for all objects X in C,

e F(ao )= F(a)o F(p) for all morphisms «, 8 in C such that a0 (3 is defined.

Given functors F,G : C — D, define what it means for ® : F — G to be a natural
transformation.

A natural transformation ¢ : F — G assigns to each object X in C a morphism
®(X): F(X) — G(X) in D such that for all morphisms o : X — Y in C the following
diagram commutes:

Fx) 2L qix)

F(a)l ia(co
FY)—— G(Y)

o(Y)
Let G be a group thought of as a category with one object “x”, so that G = Aut(x).
Prove that a functor F' : G — Set defines a set X and a group homomorphism F' :
G — Autset(X)

A functor F': G — Set assigns to the unique object * of G a set X := F'(x) and assigns
to each group element g € G = Aut(x) a function F(g) € Endse(X) satisfying the
following two properties:

e F(lg) =idyx,

e F(gh) = F(g)o F(h) for all g,h € G.
It remains only to show that for each g € G the function F'(g) : X — X is invertible.
Indeed, note that F(g) o F(g7 ') = F(g97 ') = F(lg) = idx and F(g~!) o F(g) =
F(g71g) = F(1g) = idx so that F(g) is invertible with inverse F(g~!).

Consider two functors Fi, Fo : G — Set that define group homomorphisms F; : G —
Autser(X7) and Fh : G — Autser(X2). Prove that a natural transformation ® : F} —
F, defines a G-equivariant set function ® : X; — X» (and say what this means).

A natural transformation ® : F} — Fj assigns to the unique object a function ®(x) :
Fi(x) — Fy(x). Since X; := Fi(x) and Xy := F5(%) we might as well just call this
function ® : X7 — X5. Then the defining property of natural transformation says that
for all group elements g : * — * the following diagram commutes:

X, 2> X,
F1(9)i le(g)

X1 —5> X2



In other words, for all elements x € X; we have

O(Fi(g)(x)) = Fa(g)(®()).

If the functors F; and F5 are implicitly understood then we will often write this as

D(g(x)) = g(®(x)).

Problem 2. The Fundamental Theorem of G-Sets. Let G be a group acting on a set
X. Denote the action G x X — X implicitly by (g,z) — g(x).

(a) For each x € X, prove that the prescription g(z) <> gStab(z) defines a bijection
Orb(z) <> G/Stab(x).
Proof. For all x € X and g,h € G we have
9(x) = h(z) & (hg)(z) =2
& hlg € Stab(z)
& gStab(x) = hStab(x).

(b) Prove that the bijection from part (a) is G-equivariant.

Proof. Let ® : Orb(x) — G/Stab(z) denote the bijection ®(g(x)) = gStab(z) from part
(a). Then for all g(z) € Orb(z) and h € G we have

®(h(g(x))) = @((hg)(x))
= (hg)Stab(z)
= h(gStab(z))
= h(®(g(x)))-

Problem 3. Double Cosets. Let G be a group and consider two subgroups H, K C G.

(a) Prove that the rule ((h, k), g) — hgk~! defines an action of the direct product H x K
on G. The orbits are called double cosets; we denote them by HgK := Orbp«x(9g).

Proof. For all (h,k) € H x K and g € G we will write (h,k) ® g :== ghk™!. To prove
that this is an action, first note that for all g € G we have
(1,1)eg=1g1"t =g4.
Then note that for all (hi, k1), (he,k2) € H x K and g € G we have
(h1, k1) ® [(ho, k2) ® g] = (h1, k1) ® haghyt
= I (haghy ')k
= (hiha)g(kiks) ™"
= (h1h2,k1ka) e g
= [(h1,k1) - (ha, k2)] ® g.



(b)

Now consider the action of H on the set G/K by (h,gK) — (hg)K. For all g € G,
prove that we have a bijection HgK <« Orby(¢gK) x K. [Hint: Show that HgK is the
union of the elements of Orby (gK).]

Proof. Consider any element hgk € HgK. Since hgk € (hg)K = h(gK) € Orby(gK)
we conclude that HgK is contained in the union Ugcorb,, (4x)C- Conversely, given any
T € Ugeory (gi)C there exists h € H such that » € h(gK) C HgK. We conclude that

HE= ] ¢
CeOrbpy (gK)

Since any coset of K is in bijection with K, and since any two distinct cosets are
disjoint, we obtain a bijection

HgK || K| ¢ Orby(gK) x K.
CeO0rby (gK)

Use part (b) and Problem 2(a) to prove that we have a bijection
HgK « H/(HNgKg™') x K.
Proof. Note that for all g € G we have
Stabpy(gK) ={h € H : h(9K) = gK}

={heH:(¢g'hg)K = K}
={heH:g 'hge K}
={heH:hegKg'}
=HnNgKg,

so from Problem 2(a) we obtain a bijection

Orbpy(gK) <+ H/Staby (gK) = H/(H N gKg™).
Combining this with part (b) gives the desired result. O

Now let G be finite and consider an element g € G. Use part (c¢) and Problem 2(a) to
compute the size of the stabilizer Staby« i (g) := {(h, k) € H x K : hgk~! = g}.

Proof. From part (c) we have

] Hl- K]
Orb — |HgK| = |H/(H 0 gKg™Y)| - K| = HL KL
Orbrx i (9)| = |HgK| = |H/(HNgKg™)| - |K]| 0 gKgT|
and from Problem 2(a) we have
[H x K| [H| - |K]|

Ol’b == = .

Ot = Staby o)l [Stabari()]
Combining these gives [Stabyxx(g)| = |[H NgKg™!|. O

Problem 4. The Sylow Theorem.

(a)

Accurately state all three parts of the Sylow Theorem.

Let G be a finite group and let p be a prime number. If |G| = p®m with p { m then



(S1) For each 0 < 8 < « there exists a subgroup H C G of size |H| = pr.

(S2) Given subgroups H, K € G with |H| = p® and |K| = p? for some 0 < § < a,
there exists a group element g € G such that K¢~ ! C H.

(S3) Let n, be the number of subgroups of G with size p®. Then we have n,|m and
np =1 (mod p).

Use the Sylow Theorem to prove that no group of size 30 is simple. [Hint: Count
elements of orders 2, 3, and 5.]

Proof. Let G be a group and suppose that |G| =30 = 2-3-5. Let na, ng, ns be the
numbers of subgroups of sizes 2, 3 and 5, respectively. From (S3) we know that

e n5|6 and ns = 1 (mod 5),

e n3/10 and n3 = 1 (mod 3),

e n2|15 and ne = 1 (mod 2),
which implies that ns € {1,6}, ng € {1,10} and ny € {1,3,5,15}. If any of ng, ns
or ns equals 1 then by (S2) we obtain a nontrivial normal subgroup, so assume for
contradiction that ns > 6, n3 > 10 and ny > 3. By Lagrange’s Theorem, any two
subgroups of coprime order intersect trivially and any two distinct subgroups of the
same prime order intersect trivially. This implies that we have

G| >ns5(b—1)+n3(3—1)+na(2—-1)+1
30 > 6(4) + 10(2) + 3(1) + 1
30 > 48,

which is a contradiction. O

Problem 5. Sylow vs. Kolchin. Let p be prime and consider the group G := GL,(p) of
invertible n x n matrices over the field Z/pZ. Recall that we have |G| = p(g) (p—1)"[n]p!.

(a)

Let U C G be the subgroup consisting of upper triangular matrices with 1’s on the
diagonal. Prove that U is a Sylow p-subgroup of G.

Proof. A matrix in U is determined by its entries above the diagonal. Since the number
of entries above the diagonal is

1+2+~--+(n—1):"("2_1): <Z>

and since the entries can take any value in Z/pZ we conclude that
U| = |2/pz|2) = p(5).

Now suppose for contradiction that p divides (p — 1)"[n],!. Since p is prime Euclid’s
Lemma tells us that p divides p — 1 or p divides [n],!. The first is impossible because
p — 1 < p and the second is impossible because

! = ()1 +p)A+p+p*) - A+p+p*+---+p" =1 (mod p).
We conclude that U is a Sylow p-subgroup. O

Let Ng(U) :={g € G : gUg~! = U}. Prove that the number of Sylow p-subgroups of
G equals |G|/|Ng(U)|. [Hint: Use the Sylow Theorem.]



Proof. Let Syl,(G) be the set of Sylow p-subgroups and consider the action of G' on
Syl,(G) by conjugation. Part (52) of the Sylow Theorem says that any two Sylow
p-subgroups are conjugate, hence Syl,(G) = Orbg(U). Then Problem 2(a) tells us that
el e

Stabg(U)|  [Na(U))|

ISY1,(G)| = [Orbe (U]
O

(c) Now you can assume that B := Ng(U) is the group of all invertible upper triangular
matrices. Use this information to compute the number of Sylow p-subgroups of G.

Proof. Consider an upper triangular matrix g € B. Since det(g) is the product of the
diagonal entries, the fact that det(g) # 0 implies that none of the diagonal entries is
zero. Thus the number of ways to choose the diagonal entries is (p — 1)". The number
of ways to choose the entries above the diagonal is again p(g) because the entries are

unrestricted. We conclude that |B| = p(g) (p —1)™ and hence

_ ﬁ . @ B p(g)(p_ 1)"[71] ! B
‘Sylp(G)’ o |Na(U)| - |B| - p(g)(p_ 1)np = [n]p!.

O

[Remark: If ¢ is a power of p then similar reasoning shows that the number of Sylow p-subgroups of
GLy(q) is [n]4!. This suggests that Sylow p-subgroups of GL,,(¢) are some kind of “g-analogue”
of permutations of the set {1,2,...,n}. Here's a possible explanation: When the field K is infinite
there is no such thing as a Sylow subgroup of GL,,(K) so we just look at the set of cosets G/B.
We call this the “complete flag variety” because it is in bijection with the set of maximal chains of
subspaces of K™ (i.e., complete flags). Finally, note that there is a bijection between permutations
of the set {1,2,...,n} and maximal chains of subsets of this set.]



