
Chapter 9

The Perron-Frobenius
theorem.

The theorem we will discuss in this chapter (to be stated below) about matrices

with non-negative entries, was proved, for matrices with strictly positive entries,

by Oskar Perron (1880-1975) in 1907 and extended by Ferdinand Georg Frobe-

nius (1849-1917) to matrices which have non-negative entries and are irreducible

(definition below) in 1912.

This theorem has miriads of applications, several of which we will study in

this book.

9.1 Non-negative and positive matrices.

We begin with some definitions.

We say that a real matrix T is non-negative (or positive) if all the entries

of T are non-negative (or positive). We write T ≥ 0 or T > 0. We will use

these definitions primarily for square (n × n) matrices and for column vectors

= (n× 1) matrices, although rectangular matrices will come into the picture at

one point.

The positive orthant.

We let

Q := {x ∈ Rn
: x ≥ 0, x �= 0}

so Q is the non-negative orthant excluding the origin, which( by abuse of lan-

guage) we will call the positive orthant . Also let

C := {x ≥ 0 : �x� = 1}.

So C is the intersection of the positive orthant with the unit sphere.
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9.1.1 Primitive and irreducible non-negative square ma-
trices.

A non-negative matrix square T is called primitive if there is a k such that all
the entries of T k are positive. It is called irreducible if for any i, j there is a
k = k(i, j) such that (T k)ij > 0.

If T is irreducible then I + T is primitive. Indeed, the binomial expansion

(I + T )k = I + kT +
k(k − 1)

2
T 2 + · · ·

will eventually have positive entries in all positions if k large enough.

9.1.2 Statement of the Perron-Frobenius theorem.

In the statement of the Perron-Frobenius theorem we assume that T is irre-
ducible. We now state the theorem:

Theorem 9.1.1. Let T be an irreducible matrix.

1. T has a positive (real) eigenvalue λmax such that all other eigenvalues of
T satisfy

|λ| ≤ λmax.

2. Furthermore λmax has algebraic and geometric multiplicity one, and has
an eigenvector x with x > 0.

3. Any non-negative eigenvector is a multiple of x.

4. More generally, if y ≥ 0, y �= 0 is a vector and µ is a number such that

Ty ≤ µy

then
y > 0, and µ ≥ λmax

with µ = λmax if and only if y is a multiple of x.

5. If 0 ≤ S ≤ T, S �= T then every eigenvalue σ of S satisfies

|σ| < λmax.

6. In particular, all the diagonal minors T(i) obtained from T by deleting
the i-th row and column have eigenvalues all of which have absolute value
< λmax.

7. If T is primitive, then all other eigenvalues of T satisfy

|λ| < λmax.
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9.1.3 Proof of the Perron-Frobenius theorem.

We now embark on the proof of this important theorem.

Let

P := (I + T )
k

where k is chosen so large that P is a positive matrix. Then v ≤ w, v �= w ⇒
Pv < Pw.

Recall that Q denotes the positive orthant and that C denotes the intersec-

tion of the unit sphere with the positive orthant. For any z ∈ Q let

L(z) := max{s : sz ≤ Tz} = min
1≤i≤n,zi �=0

(Tz)i

zi
. (9.1)

By definition L(rz) = L(z) for any r > 0, so L(z) depends only on the ray

through z. If z ≤ y, z �= y we have Pz < Py. Also PT = TP . So if sz ≤ Tz
then

sPz ≤ PTz = TPz

so

L(Pz) ≥ L(z).

Furthermore, if L(z)z �= Tz then L(z)Pz < TPz. So L(Pz) > L(z) unless z is

an eigenvector of T with eigenvalue L(z).

This suggests a plan for the proof: that we look for a positive vector which

maximizes L, show that it is the eigenvector we want in the theorem and estab-

lish the properties stated in the theorem.

Finding a positive eigenvector.

Consider the image of C under P . It is compact (being the image of a compact

set under a continuous map) and all of the elements of P (C) have all their

components strictly positive (since P is positive). Hence the function L is

continuous on P (C). Thus L achieves a maximum value, Lmax on P (C). Since

L(z) ≤ L(Pz) this is in fact the maximum value of L on all of Q, and since

L(Pz) > L(z) unless z is an eigenvector of T , we conclude that

Lmax is achieved at an eigenvector, call it x of T and x > 0 with Lmax the
eigenvalue.

Since Tx > 0 and Tx = Lmaxx we have Lmax > 0.

Showing that Lmax is the maximum eigenvalue.

Let y be any eigenvector with eigenvalue λ, and let |y| denote the vector whose

components are |yj |, the absolute values of the components of y. We have

|y| ∈ Q and from

Ty = λy
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which says that
λyi =

�

j

Tijyj

and the fact that the Tij ≥ 0 we conclude that

|λ|yi| ≤
�

i

Tij |yj |

which we write for short as
|λ||y| ≤ T |y|.

Recalling the definition (9.1) of L, this says that |λ| ≤ L(|y|) ≤ Lmax. So we
may use the notation

λmax := Lmax

since we have proved that
|λ| ≤ λmax.

We have proved item 1 in the theorem.
Notice that we can not have λmax = 0 since then T would have all eigenvalues

zero, and hence be nilpotent, contrary to the assumption that T is irreducible.
So

λmax > 0.

Showing that 0 ≤ S ≤ T, S �= T ⇒ λmax(S) ≤ λmax(T ).

Suppose that 0 ≤ S ≤ T . If z ∈ Q is a vector such that sz ≤ Sz then since
Sz ≤ Tz we get sz ≤ Tz so LS(z) ≤ LT (z) for all z and hence

0 ≤ S ≤ T ⇒ Lmax(S) ≤ Lmax(T ).

So
0 ≤ S ≤ T, S �= T ⇒ λmax(S) ≤ λmax(T )

Showing that λmax(T †) = λmax(T ).

We may apply the previous results to T †, the transpose of T , to conclude that
it also has a positive maximum eigenvalue. Let us call it η. (We shall soon show
that η = λmax.) This means that there is a row vector w > 0 such that

w†T = ηw†.

Recall that x > 0 denotes the eigenvector with maximum eigenvalue λmax of T .
We have

w†Tx = ηw†x = λmaxw
†x

implying that η = λmax since w†x > 0.
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Proving the first two assertions in item 4 of the theorem.

Suppose that y ∈ Q and Ty ≤ µy. Then

λmaxw
†y = w†Ty ≤ µw†y

implying that λmax ≤ µ, again using the fact that all the components of w
are positive and some component of y is positive so w†y > 0. In particular, if
Ty = µy then then µ = λmax.

Furthermore, if y ∈ Q and Ty ≤ µy then µ ≥ 0 and

0 < Py = (I + T )n−1y ≤ (1 + µ)n−1y

so
y > 0.

This proves the first two assertions in item 4.

If µ = λmax then w†(Ty − λmaxy) = 0 but Ty − λmaxy ≤ 0 and therefore
w†(Ty − λmaxy) = 0 implies that Ty = λmaxy. Then the last assertion of item
4) - that y is a scalar multiple of x - will then follow from item 2) - that λmax

has multiplicity one - once we prove item 2), since we have shown that y must
be an eigenvector with eigenvalue λmax.

Proof that if 0 ≤ S ≤ T, S �= T then every eigenvalue σ of S satisfies
|σ| < λmax.

Suppose that 0 ≤ S ≤ T and Sz = σz, z �= 0. Then

T |z| ≥ S|z| ≥ |σ||z|

so
|σ| ≤ Lmax(T ) = λmax,

as we have already seen. But if |σ| = λmax(T ) then LT (|z|) = Lmax(T ) so
|z| > 0 and |z| is also an eigenvector of T with the same eigenvalue. But then
(T − S)|z| = 0 and this is impossible unless S = T since |z| > 0.

Replacing the i-th row and column of T by zeros give an S ≥ 0 with S < T
since the irreducibility of T precludes all the entries in a row being. This proves
the assertion that the eigenvalues of Ti are all less in absolute value that λmax.
zero.

A lemma in linear algebra.

Let T be a (square) matrix and let Λ be a diagonal matrix of the same size,
with entries λ1, . . . ,λn along the diagonal. Expanding det(Λ−T ) along the i-th
row shows that

∂

∂λi
det(Λ− T ) = det(Λi − Ti)
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where the subscript i means the matrix obtained by eliminating the i-th row
and the i-th column from each matrix.

Setting λi = λ and applying the chain rule from calculus, we get

d

dλ
det(λI − T ) =

�

i

det(λI − T(i))

So from linear algebra we know that

d

dλ
det(λI − T ) =

�

i

det(λI − T(i)).

Showing that λmax has algebraic (and hence geometric) multiplicity
one.

Each of the matrices λmaxI − T(i) has Each of the matrices λmaxI − T(i) has
strictly positive determinant by what we have just proved. This shows that the
derivative of the characteristic polynomial of T is not zero at λmax, and therefore
the algebraic multiplicity and hence the geometric multiplicity of λmax is one.
This proves 2) and hence all but the last assertion of the theorem, which says
that if T is primitive, then all the other eigenvalues of T satisfy

|λ| < λmax.

Proof of the last assertion of the theorem.

The eigenvalues of T k are the k-th powers of the eigenvalues of T . So if we want
to show that there are no other eigenvalues of a primitive matrix with absolute
value equal to λmax, it is enough to prove this for a positive matrix. Dividing
the positive matrix by λmax, we are reduced to proving the following

Lemma 9.1.1. Let A > 0 be a positive matrix with λmax = 1. Then all other
eigenvalues of A satisfy |λ| < 1.

Proof of the lemma. Suppose that z is an eigenvector of A with eigenvalue
λ with |λ| = 1. Then |z| = |λz| = |Az| ≤ |A||z| = A|z| ⇒ |z| ≤ A|z|.
Let y := A|z| − |z| so y ≥ 0. Suppose (contrary to fact) that y �= 0. Then
Ay > 0 and A|z| > 0 so there is an � > 0 so that Ay > �A|z| and hence
A(A|z|− |z|) > �A|z| or

B(A|z|) > A|z|, where B :=
1

1 + �
A.

This implies that BkA|z| > A|z| for all k. But the eigenvalues of B are all < 1
in absolute value, so Bk → 0. Thus all the entries of A|z| are ≤ 0 contradicting
the fact that A|z| > 0. So |z| is an eigenvector of A with eigenvalue 1.

But |Az| = |z| so |Az| = A|z| which can only happen if all the entries of z
are of the same sign. So z must be a multiple of our eigenvector x since there
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are no other eigenvectors with all entries of the same sign other than multiples
of x So λ = 1. ✷

This completes the proof of the theorem. We still must discuss what happens
in the non-primitive irreducible case. We will find that there is a nice description
also due to Frobenius. But first some examples:

Examples for two by two matrices.

To check whether a matrix with non-negative entries is primitive, or irreducible,
or neither, we may replace all of the non-zero entries by ones since this does not
affect the classification. The matrix

�
1 1
1 1

�

is (strictly) positive hence primitive. The matrices
�

1 0
1 1

�
and

�
1 1
0 1

�

both have 1 as a double eigenvalue so can not be irreducible.

The matrix
�

1 1
1 0

�
satisfies

�
1 1
1 0

�2

=
�

2 1
1 1

�

and so is primitive. Similarly for
�

0 1
1 1

�
.

The matrix
�

0 1
1 0

�
is irreducible but not primitive. Its eigenvalues are 1

and −1.

9.2 Graphology.

9.2.1 Non-negative matrices and directed graphs.

A directed graph is a pair consisting of a set V (called vertices or nodes)
and a subset E ⊂ V × V called (directed) edges. The directed edge (vi, vj)
“goes from vi to vj . We draw it as an arrow.

The graph associated to the non-negative square matrix M of size
n× n has V = {v1, . . . , vn} and the directed edge

(vj , vi) ∈ E ⇐⇒ Mij �= 0.

(Notice the reversal of order in this convention. Sometimes the opposite con-
vention is used.)
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The adjacency matrix A of the graph (V,E) is the n×n matrix (where n
is the number of nodes) with Aij = 1 if (vj , vi) ∈ E and = 0 otherwise.

So if (V,E) is associated to M and A is its adjacency matrix, then A is
obtained from M by replacing its non-zero entries by ones.

Paths and powers.

A path from a vertex v to a vertex w is a finite sequence v0, . . . , v� with v0 =
v, v� = w where each (vi, vi+1) is an edge. The number �, i,e, the number of
edges in the path is called the length of the path.

If A is the adjacency matrix of the graph, then (A2)ij gives the number of
paths of length two joining vj to vi, and, more generally, (A�)ij gives the number
of paths of length � joining vj to vi.

So M is irreducible ⇐⇒ its associated graph is strongly connected in
the sense that for any two vertices vi and vj there is a path (of some length)
joining vi to vj .

What is a graph theoretical description of primitivity? We now discuss this
question.

9.2.2 Cycles and primitivity.

A cycle is a path starting and ending at the same vertex.
Let M be primitive with, say Mk strictly positive. Then the associated

graph is strongly connected, indeed every vertex can be joined to every other
vertex by a path of length k. But then every vertex can be joined to itself by a
path of length k, so there are (many) cycles of length k.

But then Mk+1 is also strictly postive and hence there are cycles of length
k + 1. So there are (at least) two cycles whose lengths are relatively prime.

We will now embark on proving the converse:

Theorem 9.2.1. If the graph associated to M is strongly connected and has
two cycles of relatively prime lengths, then M is primitive.

We will use the following elementary fact from number theory whose proof
we will give after using it to prove the theorem:

Lemma 9.2.1. Let a and b be positive integers with g.c.d.(a, b) = 1. Then
there is an integer B such that every integer ≥ B can be written as an integer
combination of a and b with non-negative coefficients.

We will prove the theorem from the lemma by showing that for

k := 3(n− 1) + B

there is a path of length k joining any pair of vertices.
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We can construct a path going from v to w by going from v to a point x
on the first cycle, going around this cycle a number of times, then joining x to
a point y on the second cycle, going around this cycle a number of times, and
then going from y to w.

The paths from v to x, from x to y, from y to w have total lengths at most
3(n − 1). But then, by the lemma, we can make up the difference between
this total length and k by going around the cycles an appropriate number of
times. ✷

Proof of the lemma. An integer n can be written as ia + jb with i and j
non-negative integers ⇐⇒ it is in one of the following sequences

0, b, 2b, . . . ,
a, b + a, 2b + a . . .
...
(b− 1)a, b + (b− 1)a, 2b + (b− 1)a, . . .

.

Since a and b are relatively prime, the elements of the first column all belong to
different conjugacy classes mod b, So every integer n can be written as n = ra+sb
where 0 ≤ r < b. If s < 0 then n < a(b− 1). ✷

A mild extension of the above argument will show that if there are several
(not necessarily two) cycles whose greatest common denominator is one, then
M is primitive.

9.2.3 The Frobenius analysis of the irreducible non-primitive
case.

In this section I follow the exposition of Mike Boyle “NOTES ON THE PERRON-
FROBENIUS THEORY OF NONNEGATIVE MATRICES ” available on the
web.

The definition of the period on an irreducible matrix.

The period of an irreducible non-negative matrix A is the greatest common
divisor of the lengths of the cycles in the associated graph.

The Frobenius form of an irreducible non-primitive matrix.

Let A be an irreducible non-negative matrix A with period p > 1. Let v be any
vertex in the associated graph. For 0 ≤ i < p let

Ci := {u| there is a path of length n from u to v with n ≡ i mod p}.

Since A is irreducible, every vertex belongs to one of the sets Ci, and by the
definition of p, it can belong to only one. So the sets Ci partition the vertex
set. Let us relabel the vertices so that the first #(C0) vertices belong to C0, the
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second #(C1) vertices belong to C1 etc. This means that we have permutation
of the integers P so that PAP−1 has a block form with rectangular blocks which
looks something like a cyclic permutation matrix. For example, for p = 4, the
matrix PAP−1 would look like





0 A1 0 0
0 0 A2 0
0 0 0 A3

A4 0 0 0



 .

I want to emphasize that the matrices Ai are rectangular, not necessarily square.

The eigenvalues of an irreducible non-primitive matrix.

Since the spectral properties of PAP−1 and A are the same, we will assume from
now on that A is in the block form. To illustrate the next step in Frobenius’s
analysis, let us go back to the p = 4 example, and raise A to the fourth power,
and obtain a block diagonal matrix:





0 A1 0 0
0 0 A2 0
0 0 0 A3

A4 0 0 0





4

=





A1A2A3A4 0 0 0
0 A2A3A4A1 0 0
0 0 A3A4A1A2 0
0 0 0 A4A1A2A3



 .

Each of these diagonal blocks has period one and so is primitive. Also, if D(i)
denotes the i-th diagonal block, then there are rectangular matrices R and S
such that

D(i) = SR and D(i + 1) = RS.

If we take i = 2 in the above example, S = A2 and R = A3A4A1.

Therefore, taking their k-th power, we have

D(i)k = S(RS)k−1R, and D(i + 1)k = ((RS)k−1R)S.

This implies that D(i)k and D(i + 1)k have the same trace. Since the trace of
the k-th power of a matrix is the sum of the k-th power of its eigenvalues, we
conclude that the non-zero eigenvalues of each of the D(i) are the same.

Proposition 9.2.1. Let A be a non-negative irreducible matrix with period p
and let ω be a primitive p-th root of unity, for example ω = e2πi/p. Then the
matrices A and ωA are conjugate. In particular, if c is an eigenvalue of A with
multiplicity m so is ωc.



9.3. ASYMPTOTIC BEHAVIOR OF POWERS OF A PRIMITIVE MATRIX.185

The following computation for p = 3 explains the general case:



ω
−1

I 0 0
0 ω

−2
I 0

0 0 I








0 A1 0
0 0 A2

A3 0 0








ωI 0 0
0 ω

2
I 0

0 0 I





=




0 ωA1 0
0 0 ωA2

ωA3 0 0



 = ω




0 A1 0
0 0 A2

A3 0 0



 . ✷

A supplement to the Perron-Frobenius theorem.

So we can supplement the Perron-Frobenius theorem in the case that A is a
non-negative irreducible matrix of period p by

Theorem 9.2.2. Let A be a non-negative irreducible matrix of period p with
maximum real eigenvalue λmax. The eigenvalues λ of A with |λ| = λmax are all
simple and of the form ωλmax as ω ranges over the p-th roots of unity.

The spectrum of A is invariant under multiplication by ω where ω is a prim-
itive p-th root of unity.

9.3 Asymptotic behavior of powers of a primi-
tive matrix.

Let A be a primitive matrix and r its maximal eigenvalue as given by the
Perron-Frobenius theorem. Let x > 0 be a (right-handed) eigenvector of A with
eigenvalue r, so Ax = rx and we choose x so that x > 0. Let y > 0 be a
(row) vector with yA = ry (also determined up to scalar multiple by a positive
number and let us choose y so that y · x = 1.

The rank one matrix H := x⊗ y
† has image space R, the one dimensional

space spanned by x and
H

2 = H

so H is a projection. The operator I −H is then also a projection whose image
is the null space N of H. Also AH = Ax ⊗ y = rx ⊗ y = x ⊗ ry = HA. So
we have the direct sum decomposition of our space as R⊕N which is invariant
under A. We have the direct sum decomposition of our space as R ⊕N which
is invariant under A.

The restriction of A to N has all its eigenvalues strictly less than r in absolute
value, while the restriction of A to the one dimensional space R is multiplication
by r. So if we set

P :=
1
r
A

then the restriction of P to N has all its eigenvalues < 1 in absolute value. The
above decomposition is invariant under all powers of P and the restriction of
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1 2 3 4 5

s s s s
1 2 3 4

b

b

4

5

Figure 9.1: 5 age groups, the last two child bearing.

P
k

to N tends to zero as k →∞, while the restriction of P to R is the identity.

So we have proved

Theorem 9.3.1.

lim
k→∞

�
1

r
A

�k

= H.

We now turn to a varied collection of applications of the preceding result.

9.4 The Leslie model of population growth.

In 1945 Leslie introduced a model for the growth of a stratified population: The

population to consider consists of the females of a species, and the stratification

is by age group. (For example into females under age 5, between 5 and 10,

between 10 and 15 etc.) So the population is described by a vector whose size is

the number of age groups and whose i-th component is the number of females

in the i-th age group.

He let bi be the expected number of daughters produced by a female in the

i-th age group and si the proportion of females in the i-th age group who survive

(to the next age group) in one time unit.
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The Leslie matrix.

So the transition after one time unit is given by the Leslie matrix

L =





b1 b2 · · · bn−1 bn

s1 0 · · · · · · 0
0 s2 0 · · · 0
...

...
. . . . . .

...
0 0 · · · sn−1 0




.

In this matrix we might as well take bn > 0 as there is no point in taking into
consideration those females who are past the age of reproduction as far as the
long term behavior of the populaton is concerned. Also we restrict ourselves to
the case where all the si > 0 since otherwise the population past age i will die
out.

The Leslie matrix is irreducible.

The graph associated to L consists of n vertices with v1 → v2 → · · ·→ vn with
vn (and possibly others) connected to v1 and so is strongly connected. So L is
irreducible.

What is the positive eigenvector?

We might as well take the first component of the positive eigenvector to be
1. The elements in the second to the last positions in Lx are then determined
recursively by

x2 = s1, x3 = s2x2, . . . .

Then the equation Lx = rx tells us that

x2 =
s1

r
, x3 =

s1s2

r2
, · · ·

and then the first component of Lx = rx tell us that r is a solution to the
equation

p(r) = 1

where

p(r) =
b1

r
+

b2s1

r2
+ · · · +

bns1 · · · sn−1

rn
.

The function p(r) is defined for r > 0, is strictly decreasing, tends to ∞ as
r → 0 and to 0 as r → ∞ and so the equation p(r) = 1 has a unique positive
root as we expect from the general theory.
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9.4.1 When is the Leslie matrix primitive?

Each i with bi > 0 gives rise to a cycle of length i in the graph. So if there are
two i-s with bi > 0 which are relatively prime to one another then L is primitive.
(In fact, as mentioned above, an examination of the proof of the corresponding
fact in the general Perron-Frobenius theorem shows that it is enough to know
that there are i’s whose greatest common divisor is 1 with bi > 0.) In particular,
if bi > 0 and bi+1 > 0 for some i then L is primitive.

9.4.2 The limiting behavior when the Leslie matrix is
primitive.

If L is primitive with maximal eigenvalue r then we know from the general Per-
ron Frobenius theory that the total population grows (or declines) approximate
the rate rk and that the relative size of the age groups to the general population
is proportional to the positive eigenvector (as computed above).

Fibonacci.

The most famous and (ancient) Leslie matrix is the two by two matrix

F =
�

1 1
1 0

�

whose powers when applied to
�

1
0

�
generate the Fibonacci numbers. The eigen-

values of F are
1±

√
5

2
.

An imprimitive Leslie matrix.

If the females give birth only in the last time period then the Leslie matrix is
not primitive. For example, Atlantic salmon die immediately after spawning.
Assuming, for example, that there are three age groups, we obtain the Leslie
matrix

L =




0 0 b
s1 0 0
0 s2 0



 .

The characteristic polynomial of this matrix is

λ3 − bs1s2

so if F is the real root of F 3 = bs1s2 the eigenvalues are

F,ωF, ω2F
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where ω is a primitive cube root of unity. So L is conjugate to the matrix




0 0 F
F 0 0

0 F 0



 =




F 0 0

0 F 0

0 0 F








0 0 1

1 0 0

0 1 0



 .

So

1

F
L

is periodic with period 3.

For a thorough discussion of the implementation of the Leslie model, see the

book [?].

9.5 Markov chains in a nutshell.

A non-negative matrix M is a stochastic matrix if each of the row sums equal

1. Then the column vector 1 all of whose entries equal 1 is an eigenvector with

eigenvalue 1. So if M is irreducible 1 is the maximal eigenvalue since 1 has all

positive entries.

If M is primitive, then we know from the general theory that

Mk →





π1 π2 · · · πn

π1 π2 · · · πn
.
.
.

.

.

.
.
.
.

.

.

.

π1 π2 · · · πn





where p := (π1, π2, · · · , πn) is the unique vector whose entries sum to one and

satisfies pM = p.

9.6 The Google ranking.

In this section, we follow the discussion in Chapters 3 and 4 of [Langville and Meyer]

The issue is how to rank the “importance” of URL’s on the web. The idea

is to think of a hyperlink from A to B as an endorsement of B. So many inlinks

should increase the value of a URL. On the other hand, each inlink should

carry a weight. A recommendation should carry more weight if coming from an

important source, but less if the source is known to have many outlinks. (If I

am known to write many positive letters of recommendation then the value of

each decreases, even though I might be an “important” professor.)
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9.6.1 The basic equation.

So we would like the ranking to satisfy an equation like

r(Pi) =

�

Pj∈BPi

r(Pj)

|Pj | (9.2)

where r(P ) is the desired ranking, BPi is the set of “pages” pointing into Pi,

and |Pj | is the number of links pointing out of Pj .

The matrix H.

So if r denotes the row vector whose i-th entry is r(Pi) and H denotes the matrix

whose ij entry is 1/|Pi| if there is a link from Pi to Pj then (9.2) becomes

r = rH. (9.3)

The matrix H is of size n × n where n is the number of “pages”, roughly 12

billion of so at the current time. We would like to solve the above equation by

iteration, as in the case of a Markov chain. Despite the huge size, computing

products with H is feasible because H is sparse, i.e. it consists mostly of zeros.

9.6.2 Problems with H, the matrix S.

The matrix H will have some rows consisting entirely of zeros. These correspond

to the “dangling nodes”, pages (such as pdf. files etc.) which have no outgoing

links. Other than these, the row sums are one.

To fix this problem, Brin and Page, the inventors of Google, replaced the

zero rows by rows consisting entirely of 1/n (a very small number). So let a

denote the column vector whose i-th entry is 1 if the i-th row is dangling row,

and ai = 0 otherwise. Let e be the row vector consisting entirely of ones. Brin

and Page replace H by

S := H +
1

n
a⊗ e.

The matrix S is now a Markov chain matrix, all rows sum to one.

For example, suppose that node 2 is a dangling mode and that the matrix

H is

H =





0
1
2

1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0

1
3 0

0 0 0 0
1
2

1
2

0 0 0
1
2 0

1
2

0 0 0 1 0 0




.
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Then

S =





0 1
2

1
2 0 0 0

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3 0 0 1

3 0

0 0 0 0 1
2

1
2

0 0 0 1
2 0 1

2

0 0 0 1 0 0





.

9.6.3 Problems with S, the Google matrix G.

The rows of S sum to one, but we have no reason to believe that S is primitive.
So Brin and Page replace S by

G := αS + (1− α)
1
n
J

where J is the matrix all of whose entries are 1, and 0 < α < 1 is a real number.
(They take α = 0.85).

For example, if we start with the 6×6 matrix H as above, and take α = .9,
the corresponding Google matrix G is





1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6

19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60




.

The rows of G sum to one, and are all positive. So, in principle, G
k converges

to a matrix whose rows are all equal to s where s is a solution to

s = s · G.

MATLAB gives the eigenvalues of G as

−0.3705, −0.0896, 0.6101, 1.0000, −0.4500, −0.4500.

The row vector giving the (left) eigenvector with eigenvalue 1 normalized to
have row sum 1 is

(0.0372, 0.0540, 0.0415, 0.3751, 0.2060, 0.2862).
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MATLAB computes G10 as




0.0394 0.0578 0.0440 0.3714 0.2044 0.2829
0.0384 0.0560 0.0429 0.3728 0.2053 0.2846
0.0389 0.0568 0.0435 0.3707 0.2060 0.2841
0.0370 0.0535 0.0412 0.3769 0.2049 0.2865
0.0370 0.0535 0.0412 0.3766 0.2052 0.2865
0.0370 0.0535 0.0412 0.3732 0.2083 0.2868




.

This is close to, but not quite the limiting value.
MATLAB computes G20 as





0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862
0.0372 0.0540 0.0415 0.3751 0.2060 0.2862




,

which has the correct limiting value to four decimal places in all positions. This
is what we would expect, since if we take the second largest eigenvalue, which
is 0.6101, and raise it to the 20th power, we get .000051.. . In our example, we
have seen that the stationary vector with row sum equal to one is

s =
�
.03721 .05396 .04151 .3751 .206 .2862

�
.

The pages of this tiny web are therefore ranked by their importance as
(4,6,5,2,3,1).
But, in real life, where 6 is replaced by 12 billion, as G is not sparse, taking
powers of G is impossible due to its size.

9.6.4 Avoiding multiplying by G.

We can avoid multiplying with G. Instead, use the iterations scheme

sk+1 = sk · G

= αsk · S +
1− α

n
skJ

= αsk · H +
1
n

(αsk · a + 1− α)e

since J = e
† ⊗ e and sk · e† = 1. Now only sparse multiplications are involved.

Why does this converge and what is the rate of convergence?

Let 1, λ2, . . . be the spectrum of S and let 1, µ2, . . . be the spectrum of G

(arranged in decreasing order, so that λ2 < 1 and µ2 < 1). We will show that
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Theorem 9.6.1.

λi = αµi, i = 2, 3, . . . , n.

This implies that λ2 < α since µ2 < 1. Since

(0.85)
50 .

= 0.000296

this shows that at the 50th iteration one can expect 2-3 decimal places of accu-

racy.

Proof of the theorem. Let f := e
†

so f is the column vector all of whose entries

are 1. Since the row sums of S equal 1, we have S · f = f . Let Q be an invertible

matrix whose first column is f , so Q = (f ,X) for some matrix X with n rows

and n − 1 columns. Write Q
−1

as Q
−1

=

�
y

Y

�
where y is a row vector

with n entries and Y is a matrix with n− 1 rows and n columns. The fact that

Q
−1

Q = I implies that

y · f = 1 and Y · f = 0.

We have

Q
−1

SQ =

�
y · f ySX

Y · f YSX

�
=

�
1 ySX

0 YSX

�
,

So the eigenvalues of YSX are λ2, λ3, . . . . Now J is a matrix all of whose

columns equal f . So Q
−1

J has ones in the top row and zeros elsewhere. So

Q
−1

JQ =

�
1 e · X
0 0

�

Hence

Q
−1

HQ = Q
−1

(αS + (1− α)J)Q =

�
1 αySX + (1− α)e · X
0 αYSX

�
.

So the eigenvalues of G are 1, αλ2, αλ3 . . . . ✷

9.7 Eigenvalue sensitivity and reproductive value.

Let A be a primitive matrix, r its maximal eigenvalue, x a right eigenvector

with eigenvalue r, y a left eigenvector with eigenvalue r with y · x = 1 and H

the one dimensional projection operator H = x⊗ y so

H = lim
k→∞

�
1

r
A

�k

.

If ej is the (column) vector with 1 in the j-th position and zeros elsewhere, then

Hej = yjx.
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This equation has a “biological” interpretation due to R.A.Fisher: If we think
of the components of a column vector as referring to stages of development (as,
for example, in the Leslie matrix), then the components of y can be interpreted
as giving the relative “reproductive value” of each stage:

Think of different stages as alternate investment opportunities in long-term
population growth. If you could put one dollar into any one of these investments
( one individual in any of the stages) what is their relative payoff in the long
run (the relative size of the resulting population in the distant future)? The
above equation shows that it is proportional to yj .

Eigenvalue sensitivity to changes in the matrix elements.

The Perron-Frobenius theorem tells us that if we increase any matrix element
in a primitive matrix, A, then the dominant eigenvalue r increases. But by how
much? To answer this question, consider the equation

y · A · x = r y · x = r.

In this equation, think of the entries of A as n2 independent variables, and x, y, r
as functions of these variables.

Take the partial derivative with respect to the ij-th entry, aij . The left hand
side gives

∂y

∂aij
· A · x + y · ∂A

∂aij
· x + y · A · ∂x

∂aij
.

But ∂A
∂aij

is the matrix with 1 in the ij-th position and zeros elsewhere, and the
sum of the first and third terms above are (since Ax = rx and yA = ry)

r

�
∂y

∂aij
· x + y · ∂x

∂aij

�
= r

∂(y · x)
∂aij

= 0

since y · x ≡ 1. So we have proved that

∂r

∂aij
= yixj . (9.4)

I will now present Fischer’s use of this equation to “explain” why we age. The
following discussion is taken almost verbatim from the book [Ellner and Guckenheimer]
pages 50-51. This explanation is derived by modeling a life cycle in which there
is no aging, and then asking whether a little bit of aging would lead to increased
Darwinian fitness as measured by r.

A “no aging” life cycle - an alternative not seen in nature - means that
females start reproducing at some age m (for “maturity”), and thereafter have
constant fecundity fj = f and survival pj = p < 1 for all ages j ≥ m in the
Leslie matrix. We have taken p < 1 to represent an age-independent rate of
accidental deaths unrelated to aging. The eigenvalue sensitivity formula

∂r

∂aij
= yixj
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lets us compute the relative eigenvalue sensitivities at different ages for this life

cycle without any hard calculations, so long as r = 1. Populations can’t grow

or decline without limit, so r must be near 1.

The reproductive value of adults, yi, i ≥ m is independent of age because

all adults have exactly the same future prospects and therefore make the same

long-term contribution to future generations. On the other hand, the stable age

distribution xj goes down with age. With r = 1 the number of m year olds is

constant, so we can compute the number of m + k year olds at time t to be

nm+k(t) = nm(t−k)pk = nm(t)pk. That is, in order to be age (m+k) now, you

must have been m years old k years ago, and you must have survived for the k
years between then and now. Therefore xj is proportional to pj−m for j ≥ m.

Now
∂r

∂aij
= yixj .

yi, i ≥ m is independent of i. xj is proportional to pj−m for j ≥ m.

Consequently, the relative sensitivity of r to changes in either the fecundity

a1,j or survival aj+1,j of age-j females, is proportional to pj−m. In both cases,

as j changes the relevant xj is proportional to pj−m while the reproductive value

yj stays the same. This has two consequences:

1. The strength of selection against deleterious mutations acting late in life

is weaker than selection against deleterious mutations acting early in life.

2. Mutations that increase survival or fecundity early in life, at the expense

of an equal decrease later in life, will be favored by natural selection.

These are known, respectively, as the Mutation Accumulation and Antagonistic
Pleiotropy theories of aging.


