
Math 662 Spring 2014
Homework 4 Drew Armstrong

Problem 0. (Drawing Pictures) We have drawn algebraic curves in R2, C2 and RP 2. Now
we will try to draw an algebraic curve in CP 2. Let α, β, γ ∈ C be distinct complex numbers
and consider the polynomial

f(x, y) := y2 − (x− α)(x− β)(x− γ) ∈ C[x, y].

We can identify the complex projective line CP 1 := {[x0 : x1] : x0, x1 ∈ C not both zero}
with the real 2-sphere by stereographic projection. (The points [1 : x] ∈ CP 1 correspond to
finite points x ∈ C, and the point at infinity ∞ := [0 : 1] ∈ CP 1 is the north pole.) Let
S ⊆ CP 2 denote the set of points (x, y) ∈ CP 2 satisfying f(x, y) = 0. (Technically we should
homogenize the polynomial f(x, y) to have 3 complex variables, but don’t worry about it. Our
pictures will not be precise anyway!) Note that for each x ∈ CP 1 \ {α, β, γ,∞} the equation
f(x, y) = 0 has exactly two solutions for y ∈ CP 1. Thus S can be thought of as a double
cover of the sphere CP 1, possibly branched at the four points {α, β, γ,∞}. One can show in
fact that there is a single point of S above each x ∈ {α, β, γ,∞}, instead of two. Perform
cut-and-paste to show that S is topologically equivlalent to a torus. [Hint: “Cut”
from α to β and from γ to ∞. Take the two sheets apart and “paste” them back together.
You may assume that Riemann surfaces are orientable (which can be proved using complex
analysis), so S is not a Klein bottle.]

Proof. First recall that by stereographic projection we can identify C with the real 2-sphere:

The north pole corresponds to the “point at infinity”. We will call this the Riemann sphere
(if we’re feeling analytic) or CP 1 (if we’re feeling algebraic). We would like to think of the
equation f(x, y) = 0 as defining y ∈ CP 1 as a function of x ∈ CP 1. Unfortunately we can’t do
this because for some values of x ∈ CP 1 there are two values of y ∈ CP 1 such that f(x, y) = 0.
So instead we define S ⊆ CP 2 as the set of points (x, y) ∈ CP 2 such that f(x, y) = 0. Then
we can think of y ∈ S as a function of x ∈ CP 1. What does S “look like” (i.e. topologically)?

Well, the “x-axis” looks like this:



Above each x ∈ CP 1 (except possibly x ∈ {α, β, γ,∞}) there are exactly two points (x, y) ∈
S. Thus we can think of S as a “double cover” of CP 1. What happens over the points
x ∈ {α, β, γ,∞}? Above each of these points there is exactly one point (x, y) ∈ S. This
means that if we cut open the surface (say with a vertical laser) from α to β and from γ to
∞ we get something that looks like this:

(Of course this picture is only true topologically. The real picture is far too big to see accu-
rately.) These two cuts disconnect S into two pieces that are much easier to visualize. Now
we can try to think carefully about how they were originally connected. We realize that there
are topologically only two ways that they could have been joined up, either as a torus or a
Klein bottle:

How do we know which is the correct picture? We can either analyze the branch points a bit
more carefully or we can use complex analysis to show that S must be orientable (multiplication
by i rotates counterclockwise by 90◦). Since S is orientable it can not be a Klein bottle.
Hence it’s a torus. �

[Remark: Maybe you find that hard to swallow because it’s not rigorous; but there’s no denying
that it’s useful. Welcome to topology.]

Problem 1. (The prime ideals of Z[y] and K[x, y]) Let R be a PID and let P ≤ R[y] be
a prime ideal. You will show that P is one of the following:

• (0),
• (g) for irreducible g ∈ R[y],
• (p, f) where p ∈ R is prime, f ∈ R[y], and the reduction f̄ ∈ R/(p)[y] is irreducible.

Furthermore, the third kind ideals are the maximal ideals of R[y].

(a) If P is principal, show that we have P = (0) or P = (g(y)) for g(y) ∈ R[y] irreducible.



(b) If P is not principal, show that P contains f1, f2 with no common prime factor in R[y].
(c) Let K = Frac(R). Show that the f1, f2 ∈ P from part (b) also have no common factor

in K[y].
(d) If P is not principal, show that R ∩ P = (p) for some nonzero prime p ∈ R.
(e) Let P be nonprincipal and consider (p) = R ∩ P as in part (d). Let f 7→ f̄ be the

reduction homomorphism R[y] → R/(p)[y] and let P̄ ≤ R/(p)[y] be the image of P
under reduction. Show that P̄ is a prime ideal of R/(p)[y], and conclude that P = (p, f)
for some f ∈ R[y] such that f̄ ∈ R/(p)[y] is irreducible.

(f) Finally, given any irreducible p ∈ R and f ∈ R[y] such that f̄ ∈ R/(p)[y] is irreducible,
show that (p, f) < R[y] is a maximal ideal. Show that any principal ideal (g) ≤ R[y]
is not maximal.

[I deleted the hints from the problem to make it more readable and to save space.]

Proof. (a): Let P < R[y] be prime and principal. Then either P = (0) or P = (g(y)) where
g(y) ∈ R[y] is a prime element. Since R[y] is a domain we know that g(y) is also irreducible.
In particular, g(y) is primitive (the gcd of its coefficients is 1).

(b): Now let P < R[y] be prime and not principal. Then P contains an irreducible
element. Indeed, since P 6= (0) we can choose some nonzero, nonunit f ∈ P . Since R[y] is
a UFD we can factor f into irreducibles, and then one of these irreducibles must be in P .
(If not then f is a product of elements outside the prime ideal P , hence f 6∈ P .) /// So let
f1 ∈ P be irreducible. Since P is not principal there exists f2 ∈ P \ (f1). We claim that
f1 and f2 are coprime. Indeed, if g is any common divisor of f1 and f2 then in particular g
divides f1. Since f1 is irreducible this implies that g is a unit or associate to f1. But if g is
associate to f1 (say f1 = ug for u ∈ R[y]×) then since g also divides f2 (say f2 = hg) we find
that f2 = (hu−1)f1 ∈ (f1). Contradiction.

(c): Now let K = Frac(R) and consider the coprime f1, f2 ∈ P from part (b). We claim
that f1, f2 are also coprime in K[y]. Indeed, suppose that f1 = hg1 and f2 = hg2 for some
nonunit h, g1, g2 ∈ K[y]. We can multiply each by a common denominator and then factor
out gcd of its coefficients to obtain h = αh0, g1 = b1γ1, g2 = b2γ2 where a, b1, b2 ∈ K and
h0, γ1, γ2 ∈ R[y] are primitive. Then we have f1 = hg1 = (ah0)(b1γ1) = (ab1)(h0γ1) where
ab1 ∈ K and the product h0γ1 ∈ R[y] is primitive. By Gauss’ Lemma in a PID (K[y] is
a PID) we must also have ab1 ∈ R; similarly, ab2 ∈ R. Finally, since f1 = (ab1γ1)h0 and
f2 = (ab2γ2)h0 with ab1γ1, ab2γ2 ∈ R[y] we conclude that h0 is a nontrivial common factor of
f1, f2 in R[y]. Contradiction.

(d): If P < R[y] is prime and not principal, we will show that R ∩ P = (p) for some
nonzero prime p ∈ R. First note that R ∩ P is a prime ideal of the subring R. Indeed, given
a ∈ R and b ∈ P we have ab ∈ R since R is a subring and ab ∈ P since P is an ideal, hence
ab ∈ R∩P and we see that R∩P is an ideal of R. Then given a, b ∈ R\P we have ab ∈ R since
R is a subring and ab 6∈ P since P is prime, hence ab ∈ R∩P and we see that R∩P is prime
in R. /// Now consider two coprime elements f1, f2 ∈ P , which exist by part (b). By part (c)
we know that f1, f2 are also coprime in K[y]. Since K[y] is a PID there exist g, h ∈ K[y] such
that 1 = gf1 + hf2. If 0 6= a ∈ R is a common denominator of all the coefficients of g(y) and
h(y) then we have ag, ah ∈ R[y] and hence 0 6= a = (ag)f1 + (ah)f2 ∈ R ∩ P . Since R ∩ P is
a nonzero prime ideal of the PID R we conclude that R ∩ P = (p) for some prime p ∈ R.

(e): Let P < R[y] be prime and not principal. By part (d) we know that R ∩ P = (p)
for some prime p ∈ R. Let f 7→ f̄ be the reduction homomorphism R[y] → R/(p)[y] and
let P̄ ⊆ R/(p)[y] be the image of P under reduction. We claim that P̄ is a prime ideal of
R/(p)[y]. To show this, first note that the kernel of the reduction map is contained in P .
Indeed, if ᾱ(y) = 0 then α(y) = p · β(y) for some β(y). Since p ∈ P and P < R[y] is an ideal



this implies α(y) ∈ P . /// Now for any F,G ∈ R/(p)[y] there exist (nonunique) f, g ∈ R[y]
such that f̄ = F and ḡ = G. If F,G ∈ P̄ then we can choose f, g ∈ P and hence f − g ∈ P
which implies that F − G = f̄ − ḡ = f − g ∈ P̄ . If F 6∈ P̄ and G ∈ P̄ then we can choose
g ∈ P , hence fg ∈ P and FG = f̄ ḡ = fg ∈ P̄ . If FG ∈ P̄ then there exists h ∈ P such
that h̄ = FG = f̄ ḡ = fg, hence 0 = h̄ − fg = h− fg. Since h − fg is in the kernel we have
h− fg ∈ P and since h ∈ P this implies fg ∈ P . Finally, since P is prime this implies f ∈ P
or g ∈ P , hence F ∈ P̄ or G ∈ P̄ . We conclude that P̄ is a prime ideal. ///

(e’): Continuing from part (e), since P̄ < R/(p)[y] is a prime ideal and since R/(p)[y] is
a PID (because R/(p) is a field, because p ∈ R is prime in the PID R, because etc.), we
have P̄ = (F ) where we can choose f ∈ P such that F = f̄ is irreducible in R/(p)[y]. Thus,
given any ϕ ∈ P we have ϕ̄ = f̄ ḡ for some g ∈ R[y], hence 0 = ϕ̄ − f̄ ḡ = ϕ̄ − fg = ϕ− fg.
Since ϕ − fg is in the kernel of the reduction we have ϕ(y) − f(y)g(y) = p · h(y) for some
h(y). Finally, we conclude that ϕ(y) = p · h(y) + f(y)g(y) ∈ (p, f), and hence P ≤ (p, f).
On the other hand, since p and f are in P we have (p, f) ≤ P . We conclude that any
nonprincipal prime P < R[y] has the form P = (p, f) where p ∈ R is prime and the
reduction f̄ ∈ R/(p)[y] is irreducible.

(f): (Tying up loose ends.) It remains to show that any such ideal is prime. So choose
any prime p ∈ R and any f ∈ R[y] such that f̄ ∈ R/(p)[y] is irreducible. One can check that
R[y]/(p, f) ≈ (R/(p)[y])/(f̄). (You didn’t think I was going to prove absolutely everything,
did you? I’m tired.) Since f̄ is irreducible in the PID R/(p)[y] we know that (f̄) is a maximal
ideal, hence (R/(p)[y])/(f̄) is a field. Thus R[y]/(p, f) is a field and we conclude that (p, f) <
R[y] is a maximal ideal. Could it possibly be a principal ideal? No. If (g) < R[y] is any
proper principal ideal, we will show that (g) is not maximal. First suppose that g ∈ R is a
constant and let p ∈ R be any prime divisor of g. Then we have a strict inclusion (g) < (p, y).
(It’s an inclusion because g = pk ∈ (p, y) for some k ∈ R and it’s strict because the variable y
is not in (g).) We also know that (p, y) 6= R[y] because R[y]/(p, y) ≈ (R/(p)[y])/(y) ≈ R/(p)
is not the zero ring. Next suppose that g(y) ∈ R[y] is not a constant and choose a prime p that
does not divide the leading coefficient of g(y). Then the reduction ḡ(y) is not a unit in R/(p)[y]
because it is not a constant in R/(p)[y] (the units of R/(p)[y] are constants because R/(p) is
a domain). Hence (ḡ(y)) < R/(p)[y] is a proper ideal and R[y]/(p, g(y)) ≈ (R/(p)[y])/(ḡ(y))
is not the zero ring. This gives us strict inclusioins (g(y)) < (p, g(y)) < R[y] and we conclude
that (g(y)) is not maximal.

In summary, we have classified all the maximal and prime ideals of R[y] when R is a PID.
This includes the cases Z[y] and K[x, y] where K is a field. �

[Apology: Believe it or not, this is the shortest proof I could find. It seems that further progress
in this subject will require a more casual relationship with the notion of proof.]

[Remark: Since y4 + 1 ∈ Z[y] is an irreducible polynomial (I won’t prove this) we know that
(y4 + 1) < Z[y] is a prime ideal. But it is not a maximal ideal because the prime 2 does not divide
the leading coefficient so we have strict inclusions (y4 + 1) < (2, y4 + 1) < Z[y]. This does not
mean, however, that (2, y4 +1) is maximal. It’s not even prime. Since y4 +1 = (y+1)4 mod 2 we
have (2, y4 + 1) < (2, y+ 1), which is maximal because y+ 1 is irreducible mod 2. In fact, Hilbert
showed that y4 + 1 ∈ Z[y] is reducible mod p for any prime p! So there is no maximal ideal of
the form (p, y4 + 1). The ideal theory of Z[y] encodes all information about which polynomials
are reducible modulo which primes. However, it also has a strong resemblance to the ideal theory
of K[x, y] so it resembles in some way the theory of algebraic curves in the plane K2. Weird.]



Problem 2. (K[x, y] for algebraically closed K) Now let K be an algebraically closed
field and let m < K[x, y] be a maximal ideal. By Problem 1 we know that m = (p, f), where:
p ∈ K[x] is irreducible, f ∈ K[x, y], and f̄ ∈ (K[x]/(p))[y] irreducible.

(a) Show that p = x− α for some α ∈ K.
(b) Show that K[x]/(x− α) ≈ K.
(c) Conclude that f = y − β for some β ∈ K and hence

m = (x− α, y − β).

(d) Find a maximal ideal in R[x, y] that does not look like this. [Hint: Let p = x2 + 1.]

Proof. Since p ∈ K[x] is an irreducible polynomial and since K is algebraically closed we know
that p = x−α for some α ∈ K. (It makes no difference to assume that the leading coefficient
is 1.) This proves (a). For (b) we consider the evaluation map evα : K[x] → K. This map
is surjective because evα(c) = c for all c ∈ K. Since the kernel is (x − α) we conclude by
the First Isomorphism Theorem that K[x]/(x − α) ≈ K. Then since f̄ = f is irreducible in
K[x]/(x−α)[y] ≈ K[y] we conclude that f = y−β for some β, proving (c). For part (d) note
that p := x2 + 1 is irreducible in R[x] and that R[x]/(x2 + 1) ≈ C (where i is the image of x).
Thus we only need to find an irreducible polynomial f̄(y) ∈ C[y]. Any degree 1 polynomial
will do; I’ll choose f̄(y) = y + i ∈ C[y] so that f(y) = y + x ∈ R[x, y]. We conclude that
(x2 + 1, y + x) is a maximal ideal of R[x, y]. �

[Congratulations. We just proved the 2-dimensional Nullstellensatz. Which proof do you like
better: this one or the one using Noether Normalization and Zariski’s Lemma?]

Problem 3. (Zorn’s Lemma) In a partially ordered set (P,≤) we say that C ⊆ P is a
chain if for all c1, c2 ∈ C we have c1 ≤ c2 or c2 ≤ c1. “Zorn’s Lemma” is actually an axiom
which is equivalent to the Axiom of Choice. It says the following:

Let (P,≤) be nonempty. If every chain C ⊆ P has an upper bound (i.e., there
exists u ∈ P such that c ≤ u for all c ∈ C) then P contains a maximal element
(i.e., there exists m ∈ P such that p ≤ m for all p ∈ P).

Now let R be a ring, let I < R be a proper ideal, and let S ⊆ (R,×, 1) be a subsemigroup
that is disjoint from I. (Note that we always have 1 ∈ S.)

(a) Use Zorn’s Lemma to prove that the set of ideals containing I and disjoint from S has
a maximal element. [Remark: If S = {1}, this result implies that every proper ideal is
contained in a maximal ideal.]

(b) Prove that this maximal element is a prime ideal. [Hint: Let P < R be a maximal
element. If f, g 6∈ P then the ideals P + (f) and P + (g) are strictly bigger than P ,
hence they both intersect S. Use this fact to show that fg 6∈ P .]

Proof. For part (a), let P be the set of ideals J < R such that I ≤ J and J ∩ S = ∅. Note
that I ∈ P by assumption so that P 6= ∅. If J1 ≤ J2 ≤ · · · is a chain of ideals in P then we
define J := ∪iJi. Note that J is an ideal of R since given any a, b ∈ J and r ∈ R there exists
some n such that a and b are in Jn, and then a − rb ∈ Jn ⊆ J . Note also that J is disjoint
from S because if there exists some a ∈ J ∩S then this a is in Jn∩S for some n, contradicting
the fact that Jn ∩ S = ∅. Hence J ∈ P is an upper bound for the chain and Zorn’s Lemma
implies that P has a maximal element.

For part (b), let P be a maximal element of the set P. We will show that P is a prime
ideal of R. So consider any f, g ∈ R such that f, g 6∈ P . The ideals P + (f) and P + (g) are



strictly bigger than P so they both intersect S. Say we have x, y ∈ S with x = p1 + r1f and
y = p2 + r2g with p1, p2 ∈ P and r1, r2 ∈ R, hence

xy = (p1 + r1f)(p2 + r2g) = p1p2 + p1r2g + p2r1f + r1r2fg.

If fg ∈ P then the above equation implies that xy ∈ P . But since S is closed under multpli-
cation we also know that xy ∈ S. Since P ∩ S = ∅ we conclude that xy 6∈ P . �

Problem 4. (The Radical of an Ideal) Given a ring R we say that f ∈ R is nilpotent if
there exists n such that fn = 0. We define the nilradical as the set of nilpotent elements:

√
0 := {f ∈ R : fn = 0 for some n}.

(a) Prove that
√

0 is an ideal. [Hint: Binomial Theorem.]
(b) Prove that

√
0 is the intersection of all prime ideals of R. [Hint: If f ∈ R is nilpotent

show that it belongs to every prime ideal. Conversely, suppose that f ∈ R is not
nilpotent. Since 0 6∈ S = {1, f, f2, . . .}, Problem 3 implies that there exists a prime
ideal not containing f .]

(c) More generally, given any ideal I ≤ R we define its radical:
√
I := {f ∈ R : fn ∈ I for some n}.

Prove that
√
I is the intersection of all prime ideals containing I. [Hint: The “same”

proof works.]

Proof. For part (a) consider f, g ∈
√

0, say fm = 0 and gn = 0. Then for any r ∈ R we have

(f − rg)m+n =
∑

i+j=m+n

(
m+ n

i

)
f i(−r)jgj .

But note that every term in this sum is zero because for all i+ j = m+n we must have i ≥ m
(hence f i = 0) or j ≥ n (hence gj = 0). Hence f − rg ∈

√
0.

For parts (b) and (c), let I < R be any proper ideal. First we will show that
√
I ⊆⋂

{P prime : I ≤ P}. So let f ∈
√
I and consider any prime P containing I. Since f ∈

√
I

there exists n such that fn ∈ I ≤ P . Then since P is prime and f = f · fn−1 ∈ P we have
f ∈ P or fn−1 ∈ P . If fn−1 ∈ P then we conclude by induction that f ∈ P . Next we will show
that

⋂
{P prime : I ≤ P} ⊆

√
I. So suppose that f 6∈

√
I and consider the multiplicative

set S = {1, f, f2, . . .}. Since I is disjoint from S we know from Problem 3 that the set of
ideals containing I and disjoint from S contains a maximal element. This maximal element is
a prime ideal not containing f , hence f 6∈

⋂
{P prime : I ≤ P}. �

[Remark: The general Nullstellensatz says that if K is an algebraically closed field and I is an
ideal in K[x1, . . . , xn], then the set of polynomials (thought of as functions Kn → K) that vanish

everywhere that I does is exactly
√
I. In other words, if f ∈ K[x1, . . . , xn] vanishes on the set

V (I) = {α ∈ Kn : g(α) = 0 for all g ∈ I} then fn ∈ I for some n. For example consider an
irreducible polynomial f(x, y) ∈ C[x, y]. If g(x, y) ∈ C[x, y] is any polynomial that vanishes on
the curve {(x, y) ∈ C2 : f(x, y) = 0} then g(x, y) = f(x, y)h(x, y) for some h(x, y) ∈ C[x, y].
This simple case of the Nullstellensatz is called Study’s Lemma.]


