Problem 0. (Drawing Pictures) We have drawn algebraic curves in \mathbb{R}^2 , \mathbb{C}^2 and $\mathbb{R}P^2$. Now we will try to draw an algebraic curve in $\mathbb{C}P^2$. Let $\alpha, \beta, \gamma \in \mathbb{C}$ be distinct complex numbers and consider the polynomial

$$f(x,y) := y^2 - (x - \alpha)(x - \beta)(x - \gamma) \in \mathbb{C}[x,y].$$

We can identify the complex projective line $\mathbb{C}P^1 := \{[x_0 : x_1] : x_0, x_1 \in \mathbb{C} \text{ not both zero}\}$ with the real 2-sphere by stereographic projection. (The points $[1 : x] \in \mathbb{C}P^1$ correspond to finite points $x \in \mathbb{C}$, and the point at infinity $\infty := [0 : 1] \in \mathbb{C}P^1$ is the north pole.) Let $S \subseteq \mathbb{C}P^2$ denote the set of points $(x, y) \in \mathbb{C}P^2$ satisfying f(x, y) = 0. (Technically we should homogenize the polynomial f(x, y) to have 3 complex variables, but don't worry about it. Our pictures will not be precise anyway!) Note that for each $x \in \mathbb{C}P^1 \setminus \{\alpha, \beta, \gamma, \infty\}$ the equation f(x, y) = 0 has exactly two solutions for $y \in \mathbb{C}P^1$. Thus S can be thought of as a double cover of the sphere $\mathbb{C}P^1$, possibly branched at the four points $\{\alpha, \beta, \gamma, \infty\}$. One can show in fact that there is a single point of S above each $x \in \{\alpha, \beta, \gamma, \infty\}$, instead of two. **Perform cut-and-paste to show that** S **is topologically equivlalent to a torus.** [Hint: "Cut" from α to β and from γ to ∞ . Take the two sheets apart and "paste" them back together. You may assume that Riemann surfaces are orientable (which can be proved using complex analysis), so S is not a Klein bottle.]

Problem 1. (The prime ideals of $\mathbb{Z}[y]$ and K[x, y]) Let R be a PID and let $P \leq R[y]$ be a prime ideal. You will show that P is one of the following:

- (0),
- (g) for irreducible $g \in R[y]$,

• (p, f) where $p \in R$ is prime, $f \in R[y]$, and the reduction $\overline{f} \in R/(p)[y]$ is irreducible. Furthermore, the third kind ideals are the **maximal** ideals of R[y].

- (a) If P is principal, show that we have P = (0) or P = (g(y)) for $g(y) \in R[y]$ irreducible.
- (b) If P is not principal, show that P contains f_1, f_2 with no common prime factor in R[y]. [Hint: Since P is prime in the UFD R[y] it must contain an irreducible element. (Choose $0 \neq f \in P$ and factor it into irreducibles. One of the factors must be in P.) Let $f_1 \in P$ be irreducible. Since P is not principal there exists $f_2 \in P \setminus (f_1)$. If g is any common divisor of f_1 and f_2 then in particular it is a divisor of f_1 . Since f_1 is irreducible this implies that g is a unit or associate to f_1 . Show that the second case leads to a contradiction.]
- (c) Let $K = \operatorname{Frac}(R)$. Show that the $f_1, f_2 \in P$ from part (b) also have no common factor in K[y]. [Hint: If $f_1 = hg_1$ and $f_2 = hg_2$ with $h, g_1, g_2 \in K[y]$ then we can write $h = ah_0, g_1 = b_1\gamma_1$, and $g_2 = b_2\gamma_2$ with $a, b_1, b_2 \in K$ and $h_0, \gamma_1, \gamma_2 \in R[y]$ primitive. By Gauss' Lemma over a PID we have $f_1 = (ab_1)(h_0\gamma_1)$ with $h_0\gamma_1 \in R[y]$ primitive and it follows that $ab_1 \in R$. Similarly, $ab_2 \in R$. Therefore h_0 divides f_1 and f_2 in R[y]. Contradiction.]
- (d) If P is not principal, show that $R \cap P = (p)$ for some nonzero prime $p \in R$. [Hint: Consider the $f_1, f_2 \in P$ from part (b). By part (c) we know that f_1, f_2 are coprime in K[y]. Since K[y] is a PID there exist $a, b \in K[y]$ with $1 = af_1 + bf_2$. If $c \in R$ is a common denominator of all the coefficients of a(y) and b(y) then $c = (ca)f_1 + (cb)f_2 \in$ $P \cap R$. Hence $P \cap R \neq (0)$.]

- (e) Let P be nonprincipal and consider $(p) = R \cap P$ as in part (d). Let $f \mapsto \overline{f}$ be the reduction homomorphism $R[y] \to R/(p)[y]$ and let $\overline{P} \leq R/(p)[y]$ be the image of P under reduction. Show that \overline{P} is a prime ideal of R/(p)[y], and conclude that P = (p, f) for some $f \in R[y]$ such that $\overline{f} \in R/(p)[y]$ is irreducible. [Hint: Note that R/(p)[y] is a PID [Why?], so we have $\overline{P} = (\overline{f})$ for some $f \in R[y]$. Since \overline{P} is prime we know that $\overline{f} \in R/(p)[y]$ is irreducible. Then given any $\varphi \in P$ we have $\overline{\varphi} = \overline{f}\overline{g}$ for some $g \in R[y]$ and we conclude that $\varphi = p \cdot h(y) + f(y)g(y)$ for some $h \in R[y]$.]
- (f) Finally, given any irreducible $p \in R$ and $f \in R[y]$ such that $\overline{f} \in R/(p)[y]$ is irreducible, show that (p, f) < R[y] is a **maximal ideal**. Show that any principal prime $(g) \leq R[y]$ is **not maximal**. [Hint: For the first part, show that the composition of homomorphisms $R[y] \to R/(p)[y] \to (R/(p)[y])/(\overline{f})$ is surjective onto a field, with kernel (p, f). For the second part, if g is constant show that (g) < (g, y) < R[y]. If g(y) is non-constant let $q \in R$ be any prime that doesn't divide the leading coefficient of g(y). Show that (g) < (q, g) < R[y].]

[Wow, that is some serious algebra.]

Problem 2. (K[x, y] for algebraically closed K) Now let K be an algebraically closed field and let $\mathfrak{m} < K[x, y]$ be a maximal ideal. By Problem 1 we know that $\mathfrak{m} = (p, f)$, where: $0 \neq p \in K[x]$ is irreducible, $f \in K[x, y]$, and $\overline{f} \in (K[x]/(p))[y]$ irreducible.

- (a) Show that $p = x \alpha$ for some $\alpha \in K$.
- (b) Show that $K[x]/(x-\alpha) \approx K$.
- (c) Conclude that $f = y \beta$ for some $\beta \in K$ and hence

 $\mathfrak{m} = (x - \alpha, y - \beta).$

(d) Find a maximal ideal in $\mathbb{R}[x, y]$ that does **not** look like this. [Hint: Let $p = x^2 + 1$.] [Congratulations. You just proved the 2-dimensional Nullstellensatz.]

Problem 3. (Zorn's Lemma) In a partially ordered set (\mathcal{P}, \leq) we say that $C \subseteq \mathcal{P}$ is a chain if for all $c_1, c_2 \in C$ we have $c_1 \leq c_2$ or $c_2 \leq c_1$. "Zorn's Lemma" is actually an **axiom** which is equivalent to the Axiom of Choice. It says the following:

Let (\mathcal{P}, \leq) be **nonempty**. If every chain $C \subseteq \mathcal{P}$ has an upper bound (i.e., there exists $u \in \mathcal{P}$ such that $c \leq u$ for all $c \in C$) then \mathcal{P} contains a maximal element (i.e., there exists $m \in P$ such that $p \leq m$ for all $p \in \mathcal{P}$).

Now let R be a ring, let I < R be a proper ideal, and let $S \subseteq (R, \times, 1)$ be a subsemigroup that is disjoint from I. (Note that we always have $1 \in S$.)

- (a) Use Zorn's Lemma to prove that the set of ideals containing I and disjoint from S has a maximal element. [Remark: If $S = \{1\}$, this result implies that every proper ideal is contained in a maximal ideal.]
- (b) Prove that this maximal element is a prime ideal. [Hint: Let P < R be a maximal element. If $f, g \notin P$ then the ideals P + (f) and P + (g) are strictly bigger than P, hence they both intersect S. Use this fact to show that $fg \notin P$.]

Problem 4. (The Radical of an Ideal) Given a ring R we say that $f \in R$ is nilpotent if there exists n such that $f^n = 0$. We define the nilradical as the set of nilpotent elements:

$$\sqrt{0} := \{ f \in R : f^n = 0 \text{ for some } n \}.$$

(a) Prove that $\sqrt{0}$ is an ideal. [Hint: Binomial Theorem.]

- (b) Prove that $\sqrt{0}$ is the intersection of all prime ideals of R. [Hint: If $f \in R$ is nilpotent show that it belongs to every prime ideal. Conversely, suppose that $f \in R$ is **not** nilpotent. Since $0 \notin S = \{1, f, f^2, \ldots\}$, Problem 3 implies that there exists a prime ideal **not** containing f.]
- (c) More generally, given any ideal $I \leq R$ we define its radical:

$$\sqrt{I} := \{ f \in R : f^n \in I \text{ for some } n \}.$$

Prove that \sqrt{I} is the intersection of all prime ideals containing *I*. [Hint: The "same" proof works.]