
Math 662 Spring 2014
Homework 4 Drew Armstrong

Problem 0. (Drawing Pictures) We have drawn algebraic curves in R2, C2 and RP 2. Now
we will try to draw an algebraic curve in CP 2. Let α, β, γ ∈ C be distinct complex numbers
and consider the polynomial

f(x, y) := y2 − (x− α)(x− β)(x− γ) ∈ C[x, y].

We can identify the complex projective line CP 1 := {[x0 : x1] : x0, x1 ∈ C not both zero}
with the real 2-sphere by stereographic projection. (The points [1 : x] ∈ CP 1 correspond to
finite points x ∈ C, and the point at infinity ∞ := [0 : 1] ∈ CP 1 is the north pole.) Let
S ⊆ CP 2 denote the set of points (x, y) ∈ CP 2 satisfying f(x, y) = 0. (Technically we should
homogenize the polynomial f(x, y) to have 3 complex variables, but don’t worry about it. Our
pictures will not be precise anyway!) Note that for each x ∈ CP 1 \ {α, β, γ,∞} the equation
f(x, y) = 0 has exactly two solutions for y ∈ CP 1. Thus S can be thought of as a double
cover of the sphere CP 1, possibly branched at the four points {α, β, γ,∞}. One can show in
fact that there is a single point of S above each x ∈ {α, β, γ,∞}, instead of two. Perform
cut-and-paste to show that S is topologically equivlalent to a torus. [Hint: “Cut”
from α to β and from γ to ∞. Take the two sheets apart and “paste” them back together.
You may assume that Riemann surfaces are orientable (which can be proved using complex
analysis), so S is not a Klein bottle.]

Problem 1. (The prime ideals of Z[y] and K[x, y]) Let R be a PID and let P ≤ R[y] be
a prime ideal. You will show that P is one of the following:

• (0),
• (g) for irreducible g ∈ R[y],
• (p, f) where p ∈ R is prime, f ∈ R[y], and the reduction f̄ ∈ R/(p)[y] is irreducible.

Furthermore, the third kind ideals are the maximal ideals of R[y].

(a) If P is principal, show that we have P = (0) or P = (g(y)) for g(y) ∈ R[y] irreducible.
(b) If P is not principal, show that P contains f1, f2 with no common prime factor in

R[y]. [Hint: Since P is prime in the UFD R[y] it must contain an irreducible element.
(Choose 0 6= f ∈ P and factor it into irreducibles. One of the factors must be in P .)
Let f1 ∈ P be irreducible. Since P is not principal there exists f2 ∈ P \ (f1). If g is
any common divisor of f1 and f2 then in particular it is a divisor of f1. Since f1 is
irreducible this implies that g is a unit or associate to f1. Show that the second case
leads to a contradiction.]

(c) Let K = Frac(R). Show that the f1, f2 ∈ P from part (b) also have no common factor
in K[y]. [Hint: If f1 = hg1 and f2 = hg2 with h, g1, g2 ∈ K[y] then we can write
h = ah0, g1 = b1γ1, and g2 = b2γ2 with a, b1, b2 ∈ K and h0, γ1, γ2 ∈ R[y] primitive.
By Gauss’ Lemma over a PID we have f1 = (ab1)(h0γ1) with h0γ1 ∈ R[y] primitive
and it follows that ab1 ∈ R. Similarly, ab2 ∈ R. Therefore h0 divides f1 and f2 in R[y].
Contradiction.]

(d) If P is not principal, show that R ∩ P = (p) for some nonzero prime p ∈ R. [Hint:
Consider the f1, f2 ∈ P from part (b). By part (c) we know that f1, f2 are coprime
in K[y]. Since K[y] is a PID there exist a, b ∈ K[y] with 1 = af1 + bf2. If c ∈ R is a
common denominator of all the coefficients of a(y) and b(y) then c = (ca)f1 + (cb)f2 ∈
P ∩R. Hence P ∩R 6= (0).]



(e) Let P be nonprincipal and consider (p) = R ∩ P as in part (d). Let f 7→ f̄ be the
reduction homomorphism R[y] → R/(p)[y] and let P̄ ≤ R/(p)[y] be the image of P
under reduction. Show that P̄ is a prime ideal of R/(p)[y], and conclude that P = (p, f)
for some f ∈ R[y] such that f̄ ∈ R/(p)[y] is irreducible. [Hint: Note that R/(p)[y] is
a PID [Why?], so we have P̄ = (f̄) for some f ∈ R[y]. Since P̄ is prime we know that
f̄ ∈ R/(p)[y] is irreducible. Then given any ϕ ∈ P we have ϕ̄ = f̄ ḡ for some g ∈ R[y]
and we conclude that ϕ = p · h(y) + f(y)g(y) for some h ∈ R[y].]

(f) Finally, given any irreducible p ∈ R and f ∈ R[y] such that f̄ ∈ R/(p)[y] is irre-
ducible, show that (p, f) < R[y] is a maximal ideal. Show that any principal prime
(g) ≤ R[y] is not maximal. [Hint: For the first part, show that the composition
of homomorphisms R[y] → R/(p)[y] → (R/(p)[y])/(f̄) is surjective onto a field, with
kernel (p, f). For the second part, if g is constant show that (g) < (g, y) < R[y]. If
g(y) is non-constant let q ∈ R be any prime that doesn’t divide the leading coefficient
of g(y). Show that (g) < (q, g) < R[y].]

[Wow, that is some serious algebra.]

Problem 2. (K[x, y] for algebraically closed K) Now let K be an algebraically closed
field and let m < K[x, y] be a maximal ideal. By Problem 1 we know that m = (p, f), where:
0 6= p ∈ K[x] is irreducible, f ∈ K[x, y], and f̄ ∈ (K[x]/(p))[y] irreducible.

(a) Show that p = x− α for some α ∈ K.
(b) Show that K[x]/(x− α) ≈ K.
(c) Conclude that f = y − β for some β ∈ K and hence

m = (x− α, y − β).

(d) Find a maximal ideal in R[x, y] that does not look like this. [Hint: Let p = x2 + 1.]

[Congratulations. You just proved the 2-dimensional Nullstellensatz.]

Problem 3. (Zorn’s Lemma) In a partially ordered set (P,≤) we say that C ⊆ P is a
chain if for all c1, c2 ∈ C we have c1 ≤ c2 or c2 ≤ c1. “Zorn’s Lemma” is actually an axiom
which is equivalent to the Axiom of Choice. It says the following:

Let (P,≤) be nonempty. If every chain C ⊆ P has an upper bound (i.e., there
exists u ∈ P such that c ≤ u for all c ∈ C) then P contains a maximal element
(i.e., there exists m ∈ P such that p ≤ m for all p ∈ P).

Now let R be a ring, let I < R be a proper ideal, and let S ⊆ (R,×, 1) be a subsemigroup
that is disjoint from I. (Note that we always have 1 ∈ S.)

(a) Use Zorn’s Lemma to prove that the set of ideals containing I and disjoint from S has
a maximal element. [Remark: If S = {1}, this result implies that every proper ideal is
contained in a maximal ideal.]

(b) Prove that this maximal element is a prime ideal. [Hint: Let P < R be a maximal
element. If f, g 6∈ P then the ideals P + (f) and P + (g) are strictly bigger than P ,
hence they both intersect S. Use this fact to show that fg 6∈ P .]

Problem 4. (The Radical of an Ideal) Given a ring R we say that f ∈ R is nilpotent if
there exists n such that fn = 0. We define the nilradical as the set of nilpotent elements:

√
0 := {f ∈ R : fn = 0 for some n}.

(a) Prove that
√

0 is an ideal. [Hint: Binomial Theorem.]



(b) Prove that
√

0 is the intersection of all prime ideals of R. [Hint: If f ∈ R is nilpotent
show that it belongs to every prime ideal. Conversely, suppose that f ∈ R is not
nilpotent. Since 0 6∈ S = {1, f, f2, . . .}, Problem 3 implies that there exists a prime
ideal not containing f .]

(c) More generally, given any ideal I ≤ R we define its radical:
√
I := {f ∈ R : fn ∈ I for some n}.

Prove that
√
I is the intersection of all prime ideals containing I. [Hint: The “same”

proof works.]


