
Math 662 Spring 2014
Homework 3 Drew Armstrong

Problem 0. (Drawing Pictures) What does the curve y2 = x2(x+1) look like “at infinity”?
We define n-dimensional real projective space RPn as the set of lines through the origin in Rn+1.
That is, we define

RPn := {[a0 : a1 : · · · : an] : ai ∈ R, not all zero } ,
and we declare that [a0 : · · · : an] = [b0 : · · · : bn] if there exists 0 6= λ ∈ R such that ai = λbi
for all i. (These are called homogeneous coordinates.) If we distinguish between the lines with
a0 6= 0 and a0 = 0 we get a decomposition

RPn = Rn ∪ RPn−1

where Rn = {[1 : a1 : · · · : an]} is the “affine” part and RPn−1 = {[0 : a1 : · · · : an]} is the part
“at infinity”. Now, given a polynomial f(x, y) ∈ R[x, y] of degree n we can “homogenize” it:

F (x, y, z) := zn · f
(x
z
,
y

z

)
.

Note that the polynomial F (x, y, z) is “homogeneous” of degree n:

F (λx, λy, λz) = λn · F (x, y, z) for all 0 6= λ ∈ R.
Thus the condition F (x, y, z) = 0 defines a curve in RP 2 called the homogenization of the curve
f(x, y) = 0 in R2. We can recover the original curve by “de-homogenizing”, i.e., by setting
z = 1. Finally, consider the curve in RP 2 defined by the homogeneous cubic polynomial
y2z = x2(x + z). Draw the three de-homogenizations at z = 1, y = 1, and x = 1. Describe
the behavior of the curve y2 = x2(x + 1) at the z = 0 “line at infinity” RP 1. We can also
think of RP 2 as the unit sphere in R3 with antipodal points identified. Draw the curve
y2z = x2(x+ z) on the unit sphere. What does it do at the z = 0 equator?

Solution. The equation f(x, y) = y2 − x3 − x2 defines a zero locus in R2 that we recognize:



This is called the nodal cubic. Since f(x, y) has degree 3 we homogenize it by defining

F (x, y, z) := z3 · f
(x
z
,
y

z

)
= z3

(
y2

z2
− x3

z3
− x2

z2

)
= y2z − x3 − x2z.

Because this F (x, y, z) is a homogeneous polynomial, it has a well-defined zero locus in the
projective plane RP 2. (What does the previous sentence mean? In general we have

F (λx, λy, λz) = λ3 F (x, y, z)

and so F does not define a function on points [x : y : z] ∈ RP 2. However, if F (x, y, z) = 0
then we do have F (λx, λy, λz) = λ3F (x, y, z) = λ3 ·0 = 0 for all λ ∈ R.) Here we have plotted
F (x, y, z) = 0 as a surface in R3 consisting of lines through the origin, and its intersection
with the unit sphere, which we think of as a curve in RP 2. (Antipodal points of the sphere
are identified.)

Note that the curve on the sphere still “looks like” the nodal cubic in the northern hemisphere,
but now we can see what is happening at infinity (i.e., the equator). We can recover the
original nodal cubic in the x, y-plane if we substitute z = 1. Geometrically we are projecting
the curve from the center of the sphere onto the tangent plane at the north pole. However,
the north pole is arbitrary in this construction. Any point can be the origin, and any great
circle can be the line at infinity. If we dehomogenize at y = 1 and x = 1 we obtain the curves
F (x, 1, z) = z−x3−x2z = 0 in the x, z-plane and F (1, y, z) = y2z−1−z = 0 in the y, z-plane,
shown here:



If you squint your eyes, you can see that these are the projections of the homogeneous curve
from the center of the unit sphere to the tangent planes at the points [0 : 1 : 0] and [1 : 0 : 0]
on the equator. Looking at the left picture we see that the nodal cubic nodal cubic is tangent
to the line at infinity at the infinite point [0 : 1 : 0], with intersection of multiplicity 3. This
is an important property of the curve, but it is not easily visible in the x, y-plane. �

[In the problems that follow we will consider polynomials R[y] where R is a PID. Of course I have
in mind the examples R = Z and R = K[x] (the only two PIDs I know), but there is a certain
kind of fun in using language that is general to PIDs. In my experience this kind of fun is exactly
what people mean by the words Algebraic Geometry.]

Problem 1. (Z[y] and K[x, y] are not PIDs) Let R be a ring such that R[y] is a PID. You
will show that R must be a field. Since Z and K[x] are not fields, this implies that Z[y] and
K[x, y] are not PIDs.

(a) Prove that R is a domain.
(b) Prove that R[y]/(y) is isomorphic to R, hence (y) ≤ R[y] is a prime ideal.
(c) Prove that (y) ≤ R[y] is a maximal ideal, hence R is a field.

Proof. To prove (a), consider any a, b ∈ R such that a 6= 0 and b 6= 0. Then a and b are also
nonzero as elements of R[y]. Since R[y] is a domain this implies that ab 6= 0 in R[y] and hence
ab 6= 0 in R. We conclude that R is a domain.

For part (b) we define a map R→ R[y]/(y) by

a 7→ a+ 0y + 0y2 + · · ·+ (y).

This is clearly a ring homomorphism. To show that it is surjective, consider any f(y) =∑
k akx

k ∈ R[y]. Then a0 7→ a0 + (y) = f(y) + (y). To show that it is injective, consider
any a, b ∈ R and suppose that a + (y) = b − (y). This implies that a − b = yf(y) for some
f(y) ∈ R[y]. If a− b 6= 0 then we find that f(y) 6= 0 and hence

0 = deg(a− b) = deg(yf(y)) = deg(y) + deg(f) = 1 + deg(f) ≥ 1.

Contradiction. Hence a = b. We conclude that R ≈ R[y]/(y). Since we know from part (a)
that R is a domain, this implies that (y) ≤ R[y] is a prime ideal.



For part (c), assume for contradiction that (y) ≤ R[y] is not a maximal ideal. Since R is a
PID this implies that there exists f(y) ∈ R[y] such that (y) < (f(y)) < (1). Since y ∈ (f(y))
we have y = f(y)g(y) for some nonzero g(y) ∈ R[y]; since (y) 6= (f(y)) we know that g(y)
is not a constant; and since (f(y)) 6= (1) we know that f(y) is not a constant. Therefore we
have

1 = deg(y) = deg(fg) = deg(f) + deg(g) ≥ 1 + 1 = 2.

Contradiction. We conclude that (y) ≤ R[y] is a maximal ideal, and hence R ≈ R[y]/(y) is a
field. �

[We have just shown that Z[y] and K[x, y] are not PIDs. It turns out that every prime ideal in
these rings can be generated by at most two elements (we say they have Krull dimension 2) but
that will wait until later.]

Problem 2. (Gauss’ Lemma) Let R be a PID with field of fractions K = Frac(R). We say
that a polynomial f(y) ∈ R[y] is primitive if its coefficients have no common prime factor.

(a) If p ∈ R is prime, let f(y) 7→ f̄(y) denote the map R[y]→ R/(p)[y] defined by reducing
coefficients mod p. Prove that this is a ring homomorphism.

(b) If f, g ∈ R[y] are primitive, prove that the product fg is also primitive. [Hint: Let f, g
be primitive and let p be a prime dividing all the coefficients of fg. This implies that
0 = fg = f̄ ḡ. Conclude that f̄ = 0 or ḡ = 0.]

(c) Given any h(y) ∈ K[y] show that we can write h(y) = αh0(y) where α ∈ K× and
h0(y) ∈ R[y] is primitive.

(d) Consider f, g ∈ R[y] with g primitive. If f = gh with h ∈ K[y], prove that we actually
have h ∈ R[y]. [Hint: By part (c) we can write h = αh0 with α ∈ K× and h0 ∈ R[y]
primitive. Then by part (b) we have f = αgh0 with gh0 ∈ R[y] primitive. Since
the coefficients a1, . . . , an ∈ R of gh0 are coprime and since R is a PID, there exist
b1, . . . , bn ∈ R such that 1 = a1b1 + · · · anbn. We conclude that

α = α · 1 = α
(∑

aibi

)
=
∑

(αai)bi ∈ R.]

Proof. Let R be a PID. For part (a), let p ∈ R be prime and for all f(y) =
∑

k aky
k ∈ R[y] we

define f̄(y) =
∑

k(ak + (p))yk ∈ R/(p)[y]. Note that for f(x) =
∑

k aky
k, g(y) =

∑
k bky

k ∈
R[y] we have ∑

k

akyk +
∑
k

bkyk =
∑
k

(ak + (p))yk +
∑
k

(bk + (p))yk

=
∑
k

((ak + (p)) + (bk + (p)) yk

=
∑
k

((ak + bk) + (p)) yk

=
∑
k

(ak + bk)yk

=
∑
k

akyk +
∑
k

bkyk.



and ∑
k

akyk ·
∑
k

bkyk =
∑
k

(ak + (p))yk
∑
k

(bk + (p)yk

=
∑
k

 ∑
i+j=k

(ai + (p))(bj + (p))

 yk

=
∑
k

(
∑

i+j=k

aibj) + (p)

 yk

=
∑
k

(
∑

i+j=k

aibj)yk

=
∑
k

akyk ·
∑
k

bkyk

Then since 1R = 1R + (p) = 1R/(p) we conclude that f 7→ f̄ is a ring homomorphism.
For part (b), let f, g ∈ R[y] be primitive and assume for contradiction that fg is not

primitive, i.e., there exists a prime p ∈ R that divides all the coefficients of fg. Reducing the
coefficients mod p then gives

0 = fg = f̄ ḡ ∈ R/(p)[y],

where the last equality follows from part (a). Since p ∈ R is prime we know that R/(p) and
hence R/(p)[y] is a domain. Thus f̄ ḡ = 0 implies that f̄ = 0 or ḡ = 0. But this means that
either f or g is not primitive because p divides each of its coefficients. Contradiction.

For part (c), let 0 6= h(y) =
∑

k
ak
bk
yk ∈ K[y], where ak, bk ∈ K with bk 6= 0 for all k. First

let b :=
∏

k bk 6= 0 so that a′k := bakbk ∈ R for all k and hence bh(y) =
∑

k a
′
ky

k ∈ R[y]. Then

let a be the greatest common denominator of the coefficients a′k, which exists because R is a
PID and the a′k are not all zero (in fact, the gcd would exist even if R were just a UFD). We
conclude that the polynomial

h0(y) :=
b

a
h(y) =

∑
k

a′k
a
yk ∈ R[y]

is primitive, hence we have h(y) = a
bh0(y) as desired. Right now a

b ∈ K looks like a fraction,
but we will see that it’s not.

For part (d), consider f, g ∈ R[y] with g primitive, and suppose that f = gh for some
h ∈ R[y]. By part (c) we can write h = αh0 for some α ∈ K× and primitive h0(y) ∈ R[y].
By part (b) we know that gh0 =

∑
k aky

k is also primitive. Since R is a PID this allows us to
write 1 =

∑
k akbk for some bk ∈ K (use Bézout’s identity and induction). Since∑

k

(αak)yk = α
∑
k

aky
k = αgh0 = g(αh0) = gh = f ∈ R[y],

we know that αak ∈ R for all k. Thus we have

α = α · 1 = α
∑
k

akbk =
∑
k

(αak)bk ∈ R,

and we conclude that h(y) = αh0(y) ∈ R[y], as desired. �

[Note that parts (a)-(c) above hold even if R is only a UFD. Part (d) is special to PIDs.]



Problem 3. (Z[y] and K[x, y] are UFDs) Recall that a domain R is a UFD if every
element factors into prime elements, times a unit. In this case the prime factors are unique
up to associates. If R is a PID, you will prove that R[y] is a UFD.

(a) Show that every polynomial f(y) ∈ R[y] can be factored as

f(y) = up1p2 · · · pkq1(y)q2(y) · · · q`(y),

where u ∈ R× is a unit, p1, . . . , pk ∈ R are irreducible constants, and q1, . . . , q` ∈ R[y]
are irreducible primitive polynomials of degree ≥ 1. [Hint: Let K = Frac(R). First
factor f(y) into irreducibles in K[y]. Use Problem 2(c) and 2(d) to write f(y) =
cq1(y) · · · q`(y) with c ∈ R. Then factor c in R.]

(b) If p ∈ R is an irreducible constant, prove that p ∈ R[y] is prime. [Hint: If p divides
g(y)h(y) in R[y] show that p divides every coefficient of g(y)h(y). If f 7→ f̄ is the
reduction homomorphism R[y] → R/(p)[y] then we have 0 = gh = ḡh̄. Now use the
fact that p is irreducible in R.]

(c) If f(y) ∈ R[y] is irreducible and primitive, show that f(y) ∈ R[y] is prime. [Hint:
Let K = Frac(R). Problem 2(d) says that if f(y) is irreducible in R[y] then f(y) is
irreducible (hence prime) in the PID K[y]. Suppose that f(y) divides g(y)h(y) in R[y],
and hence also in K[y]. It follows that f(y) divides g(y) or h(y) in K[y]. Now what?]

Proof. Let R be a PID and consider any 0 6= f(y) ∈ R[y]. If f(y) is a constant then we can use
the fact that PIDs are Noetherian to write f(y) = up1 · · · pk where p1, . . . , pk are irreducible
elements of R. (See Problem 4(c) below.) Otherwise, assume that deg(f) ≥ 1. Then we can
use the fact that K[y] is a PID (hence Noetherian) to write

f(y) = αf1(y)f2(y) · · · f`(y)

where α ∈ K× and f1(y), . . . , f`(y) are irreducible (hence nonconstant) polynomials in K[y].
We use Problem 2(c) to write fi(y) = αiqi(y) where αi ∈ K× and qi(y) ∈ R[y] is primitive for
all i. Then we have

f(y) = αα1α2 · · ·α`q1(y)q2(y) · · · q`(y),

where q1(y) · · · q`(y) ∈ R[y] is primitive by Problem 2(b), and hence Problem 2(d) implies that
a := αα1 · · ·α` ∈ R. Finally, we factor a as an element of R. This completes part (a). Now
we will show that the factors u, p1, . . . , pk, q1(y), . . . , q`(y) are all prime elements of R[y].

For part (b), let p ∈ R be irreducible in R. We want to show that p is a prime element
of R[y]. So suppose that we have f(y)g(y) = ph(y) for some f, g, h ∈ R[y]. Reducing the
coefficients mod p gives 0 = ph = fg = f̄ ḡ by Problem 2(a). Then since R/(p)[y] is a domain
we have f̄ = 0 (i.e., p divides f(y)) or h̄ = 0 (i.e., p divides g(y)). We have shown that
p|f(y)g(y) implies p|f(y) or p|g(y) in R[y].

For part (c), let f(y) ∈ R[y] be irreducible and primitive. We will show that f(y) is prime.
(Note that Euclid’s Lemma is not immediately available to us because R[y] is not a PID.) Let
K = Frac(R) and consider f(y) ∈ K[y]. I claim that f(y) is irreducible in K[y]. Indeed, if we
have f(y) = g(y)h(y) with nonzero, nonconstant g, h ∈ K[y], then we can use Problem 2(c) to
write h(y) = αh0(y) with h0(y) ∈ R[y] primitive. Then since f(y) = αg(y)h0(y), Problem 2(d)
tells us that αg(y) is in R[y], hence f(y) is reducible in R[y]. We have show that reducible in
K[y] implies reducible in R[y]; in other words, irreducible in R[y] implies irreducible in K[y].
Now since K[y] is a PID we may use Euclid’s Lemma to conclude that f(y) is prime in K[y].
Finally, suppose that f(y) divides g(y)h(y) for some g, h ∈ R[y]. It follows that f divides g
or h in K[y]. Using Problem 2(d) again, we conclude that f divides g or h in R[y]. �



[We just proved an absolutely fundamental result, which nevertheless is not easy. In fact I would
call it tricky. If you want something even trickier, look back over the proof and show that it still
works if R is only a UFD. The result that

R UFD =⇒ R[y] UFD

is sometimes humorously referred to as “Gauss’ Lemma”. By induction we conclude that if R is
a UFD then R[x1, x2, . . . , xn] is a UFD for any number of variables. Most books on Algebraic
Geometry will begin by assuming that you know this.]

Problem 4. (Nonmaximal primes in Z[y] and K[x, y]) Let R be a ring that is not a field.
You will show that R[y] has a nonmaximal prime ideal.

(a) Given an ideal I ≤ R, prove that the set

I[y] :=

{∑
k

aky
k ∈ R[y] : ak ∈ I for all k

}
.

is an ideal of R[y] and that we have (R[y])/(I[y]) ≈ (R/I)[y]. [Hint: Show that the
map R[y]→ (R/I)[y] defined by

∑
k aky

k 7→
∑

k(ak + I)yk is a ring homomorphism.]
(b) Since R is not a field, Zorn’s Lemma (i.e., the Axiom of Choice) implies that R contains

a maximal (hence prime) ideal (0) < P < (1). (You don’t need to prove this.) Show
that P [y] is a prime ideal of R[y] that is not maximal. [Hint: Show that (R/P )[y] is a
domain but not a field.]

(c) If R is a PID but not a field, show that there exists a prime ideal (0) < (p) < (1)
without using the Axiom of Choice.

Proof. We saw in Problem 1 that Z[y] and K[x, y] are not PIDs. Now we will show more
explicitly that they contain nonmaximal primes. We will not yet be fully explicit (stay tuned).

Given an ideal I ≤ R, the map R[y] → (R/I)[y] that reduces coefficients mod I is a ring
homomorphism for the same reason as in Problem 2(a). Note that this map is surjective and
its kernel is I[y]. Hence I[y] is an ideal and we have R[y]/I[y] ≈ (R/I)[y], proving part (a).

For part (b), let P ≤ R be a nontrivial prime ideal. Since R/P is a domain we know
that (R/P )[y] is also a domain, and it follows that P [y] ≤ R[y] is a prime ideal. However,
(R/P )[y] is not a field. Indeed, the element y + P ∈ (R/P )[y] has no inverse because if
(y + P )f(y) = 1 + P then 0 = deg(1 + P ) = deg(y + P ) + deg(f) = 1 + deg(f) ≥ 1. We
conclude that R[y]/P [y] is not a field, hence P [y] ≤ R[y] is not a maximal ideal.

For part (c), let R be a PID that is not a field, so there exists a nontrivial ideal (0) < (a) <
(1). If a is irreducible then (a) is maximal (hence prime) and we are done, so suppose that
we have a = a1b1 for some (a) < (a1), (b1) < (1). If either a1 or b1 is irreducible then we are
done, so suppose without loss of generality that a1 = a2b2 for some (a1) < (a2), (b2) < (1).
Now assume for contradiction that this process never stops. We obtain an infinite increasing
chain of ideals:

(a) < (a1) < (a2) < (a3) < · · · .
Let J = (a) ∪i≥1 (ai) be the infinite union of these ideals. It is straightforward to check that
J is an ideal, and since R is a PID this implies that J = (b). Finally, since b ∈ J there exists
N such that b ∈ JN and we have a contradiction:

J = (b) ≤ JN < JN+1 ≤ J.
�

[We just (re)proved that PIDs are Noetherian. Recall that this is one of the two steps in the proof
that PIDs are UFDs. The other step is Euclid’s Lemma.]


