Problem 0. (Drawing Pictures) What does the curve $y^2 = x^2(x+1)$ look like "at infinity"? We define *n*-dimensional real projective space $\mathbb{R}P^n$ as the set of lines through the origin in \mathbb{R}^{n+1} . That is, we define

$$\mathbb{R}P^n := \{ [a_0 : a_1 : \cdots : a_n] : a_i \in \mathbb{R}, \text{ not all zero} \},\$$

and we declare that $[a_0 : \cdots : a_n] = [b_0 : \cdots : b_n]$ if there exists $0 \neq \lambda \in \mathbb{R}$ such that $a_i = \lambda b_i$ for all *i*. (These are called homogeneous coordinates.) If we distinguish between the lines with $a_0 \neq 0$ and $a_0 = 0$ we get a decomposition

$$\mathbb{R}P^n = \mathbb{R}^n \cup \mathbb{R}P^{n-1}$$

where $\mathbb{R}^n = \{[1:a_1:\cdots:a_n]\}$ is the "affine" part and $\mathbb{R}P^{n-1} = \{[0:a_1:\cdots:a_n]\}$ is the part "at infinity". Now, given a polynomial $f(x,y) \in \mathbb{R}[x,y]$ of degree n we can "homogenize" it:

$$F(x, y, z) := z^n \cdot f\left(\frac{x}{z}, \frac{y}{z}\right).$$

Note that the polynomial F(x, y, z) is "homogeneous" of degree n:

$$F(\lambda x, \lambda y, \lambda z) = \lambda^n \cdot F(x, y, z)$$
 for all $0 \neq \lambda \in \mathbb{R}$.

Thus the condition F(x, y, z) = 0 defines a curve in $\mathbb{R}P^2$ called the homogenization of the curve f(x, y) = 0 in \mathbb{R}^2 . We can recover the original curve by "de-homogenizing", i.e., by setting z = 1. Finally, consider the curve in $\mathbb{R}P^2$ defined by the homogeneous cubic polynomial $y^2z = x^2(x+z)$. Draw the three de-homogenizations at z = 1, y = 1, and x = 1. Describe the behavior of the curve $y^2 = x^2(x+1)$ at the z = 0 "line at infinity" $\mathbb{R}P^1$. We can also think of $\mathbb{R}P^2$ as the unit sphere in \mathbb{R}^3 with antipodal points identified. Draw the curve $y^2z = x^2(x+z)$ on the unit sphere. What does it do at the z = 0 equator?

Problem 1. ($\mathbb{Z}[y]$ and K[x, y] are not **PIDs**) Let R be a ring such that R[y] is a PID. You will show that R must be a field. Since \mathbb{Z} and K[x] are not fields, this implies that $\mathbb{Z}[y]$ and K[x, y] are not PIDs.

- (a) Prove that R is a domain.
- (b) Prove that R[y]/(y) is isomorphic to R, hence $(y) \leq R[y]$ is a prime ideal.
- (c) Prove that $(y) \leq R[y]$ is a maximal ideal, hence R is a field.

Problem 2. (Gauss' Lemma) Let R be a PID with field of fractions K = Frac(R). We say that a polynomial $f(y) \in R[y]$ is primitive if its coefficients have no common prime factor.

- (a) If $p \in R$ is prime, let $f(y) \mapsto \overline{f}(y)$ denote the map $R[y] \to R/(p)[y]$ defined by reducing coefficients mod p. Prove that this is a ring homomorphism.
- (b) If $f, g \in R[y]$ are primitive, prove that the product fg is also primitive. [Hint: Let f, g be primitive and let p be a prime dividing all the coefficients of fg. This implies that $0 = \overline{fg} = \overline{fg}$. Conclude that $\overline{f} = 0$ or $\overline{g} = 0$.]
- (c) Given any $h(y) \in K[y]$ show that we can write $h(y) = \alpha h_0(y)$ where $\alpha \in K^{\times}$ and $h_0(y) \in R[y]$ is primitive.
- (d) Consider $f, g \in R[y]$ with g primitive. If f = gh with $h \in K[y]$, prove that we actually have $h \in R[y]$. [Hint: By part (c) we can write $h = \alpha h_0$ with $\alpha \in K^{\times}$ and $h_0 \in R[y]$ primitive. Then by part (b) we have $f = \alpha gh_0$ with $gh_0 \in R[y]$ primitive. Since

the coefficients $a_1, \ldots, a_n \in R$ of gh_0 are coprime and since R is a PID, there exist $b_1, \ldots, b_n \in R$ such that $1 = a_1b_1 + \cdots + a_nb_n$. We conclude that

$$\alpha = \alpha \cdot 1 = \alpha \left(\sum a_i b_i \right) = \sum (\alpha a_i) b_i \in R.]$$

Problem 3. ($\mathbb{Z}[y]$ and K[x, y] are UFDs) Recall that a domain R is a UFD if every element factors into prime elements, times a unit. In this case the prime factors are unique up to associates. If R is a PID, you will prove that R[y] is a UFD.

(a) Show that every polynomial $f(y) \in R[y]$ can be factored as

$$f(y) = up_1p_2\cdots p_kq_1(y)q_2(y)\cdots q_\ell(y),$$

where $u \in R^{\times}$ is a unit, $p_1, \ldots, p_k \in R$ are irreducible constants, and $q_1, \ldots, q_\ell \in R[y]$ are irreducible **primitive** polynomials of degree ≥ 1 . [Hint: Let $K = \operatorname{Frac}(R)$. First factor f(y) into irreducibles in K[y]. Use Problem 2(c) and 2(d) to write $f(y) = cq_1(y) \cdots q_\ell(y)$ with $c \in R$. Then factor c in R.]

- (b) If $p \in R$ is an irreducible constant, prove that $p \in R[y]$ is prime. [Hint: If p divides g(y)h(y) in R[y] show that p divides every coefficient of g(y)h(y). If $f \mapsto \overline{f}$ is the reduction homomorphism $R[y] \to R/(p)[y]$ then we have $0 = \overline{gh} = \overline{gh}$. Now use the fact that p is irreducible in R.]
- (c) If $f(y) \in R[y]$ is irreducible and primitive, show that $f(y) \in R[y]$ is prime. [Hint: Let $K = \operatorname{Frac}(R)$. Problem 2(d) says that if f(y) is irreducible in R[y] then f(y) is irreducible (hence prime) in the PID K[y]. Suppose that f(y) divides g(y)h(y) in R[y], and hence also in K[y]. It follows that f(y) divides g(y) or h(y) in K[y]. Now what?]

Problem 4. (Nonmaximal primes in $\mathbb{Z}[y]$ and K[x, y]) Let R be a ring that is not a field. You will show that R[x] has a nonmaximal prime ideal.

(a) Given an ideal $I \leq R$, prove that the set

$$I[x] := \left\{ \sum_{k} a_k x^k \in R[x] : a_k \in I \text{ for all } k \right\}.$$

is an ideal of R[x] and that we have $(R[x])/(I[x]) \approx (R/I)[x]$. [Hint: Show that the map $R[x] \rightarrow (R/I)[x]$ defined by $\sum_k a_k x^k \mapsto \sum_k (a_k + I) x^k$ is a ring homomorphism.] (b) Since R is not a field, Zorn's Lemma (i.e. the Axiom of Choice) implies that R contains

- (b) Since R is not a field, Zorn's Lemma (i.e. the Axiom of Choice) implies that R contains a maximal (hence prime) ideal (0) < P < R. (You don't need to prove this.) Show that P[x] is a prime ideal of R[x] that is not maximal. [Hint: Show that (R/P)[x] is a domain but not a field.]
- (c) If R is a PID but not a field, show that there exists a prime ideal (0) < (p) < (1) without using the Axiom of Choice.