Problem 0. (Drawing Pictures) What does the curve $y^{2}=x^{2}(x+1)$ look like "at infinity"? We define n-dimensional real projective space $\mathbb{R} P^{n}$ as the set of lines through the origin in \mathbb{R}^{n+1}. That is, we define

$$
\mathbb{R} P^{n}:=\left\{\left[a_{0}: a_{1}: \cdots: a_{n}\right]: a_{i} \in \mathbb{R}, \text { not all zero }\right\},
$$

and we declare that $\left[a_{0}: \cdots: a_{n}\right]=\left[b_{0}: \cdots: b_{n}\right]$ if there exists $0 \neq \lambda \in \mathbb{R}$ such that $a_{i}=\lambda b_{i}$ for all i. (These are called homogeneous coordinates.) If we distinguish between the lines with $a_{0} \neq 0$ and $a_{0}=0$ we get a decomposition

$$
\mathbb{R} P^{n}=\mathbb{R}^{n} \cup \mathbb{R} P^{n-1}
$$

where $\mathbb{R}^{n}=\left\{\left[1: a_{1}: \cdots: a_{n}\right]\right\}$ is the "affine" part and $\mathbb{R} P^{n-1}=\left\{\left[0: a_{1}: \cdots: a_{n}\right]\right\}$ is the part "at infinity". Now, given a polynomial $f(x, y) \in \mathbb{R}[x, y]$ of degree n we can "homogenize" it:

$$
F(x, y, z):=z^{n} \cdot f\left(\frac{x}{z}, \frac{y}{z}\right) .
$$

Note that the polynomial $F(x, y, z)$ is "homogeneous" of degree n :

$$
F(\lambda x, \lambda y, \lambda z)=\lambda^{n} \cdot F(x, y, z) \text { for all } 0 \neq \lambda \in \mathbb{R}
$$

Thus the condition $F(x, y, z)=0$ defines a curve in $\mathbb{R} P^{2}$ called the homogenization of the curve $f(x, y)=0$ in \mathbb{R}^{2}. We can recover the original curve by "de-homogenizing", i.e., by setting $z=1$. Finally, consider the curve in $\mathbb{R} P^{2}$ defined by the homogeneous cubic polynomial $y^{2} z=x^{2}(x+z)$. Draw the three de-homogenizations at $z=1, y=1$, and $x=1$. Describe the behavior of the curve $y^{2}=x^{2}(x+1)$ at the $z=0$ "line at infinity" $\mathbb{R} P^{1}$. We can also think of $\mathbb{R} P^{2}$ as the unit sphere in \mathbb{R}^{3} with antipodal points identified. Draw the curve $y^{2} z=x^{2}(x+z)$ on the unit sphere. What does it do at the $z=0$ equator?

Problem 1. ($\mathbb{Z}[y]$ and $K[x, y]$ are not PIDs) Let R be a ring such that $R[y]$ is a PID. You will show that R must be a field. Since \mathbb{Z} and $K[x]$ are not fields, this implies that $\mathbb{Z}[y]$ and $K[x, y]$ are not PIDs.
(a) Prove that R is a domain.
(b) Prove that $R[y] /(y)$ is isomorphic to R, hence $(y) \leq R[y]$ is a prime ideal.
(c) Prove that $(y) \leq R[y]$ is a maximal ideal, hence R is a field.

Problem 2. (Gauss' Lemma) Let R be a PID with field of fractions $K=\operatorname{Frac}(R)$. We say that a polynomial $f(y) \in R[y]$ is primitive if its coefficients have no common prime factor.
(a) If $p \in R$ is prime, let $f(y) \mapsto \bar{f}(y)$ denote the map $R[y] \rightarrow R /(p)[y]$ defined by reducing coefficients mod p. Prove that this is a ring homomorphism.
(b) If $f, g \in R[y]$ are primitive, prove that the product $f g$ is also primitive. [Hint: Let f, g be primitive and let p be a prime dividing all the coefficients of $f g$. This implies that $0=\overline{f g}=\bar{f} \bar{g}$. Conclude that $\bar{f}=0$ or $\bar{g}=0$.]
(c) Given any $h(y) \in K[y]$ show that we can write $h(y)=\alpha h_{0}(y)$ where $\alpha \in K^{\times}$and $h_{0}(y) \in R[y]$ is primitive.
(d) Consider $f, g \in R[y]$ with g primitive. If $f=g h$ with $h \in K[y]$, prove that we actually have $h \in R[y]$. [Hint: By part (c) we can write $h=\alpha h_{0}$ with $\alpha \in K^{\times}$and $h_{0} \in R[y]$ primitive. Then by part (b) we have $f=\alpha g h_{0}$ with $g h_{0} \in R[y]$ primitive. Since
the coefficients $a_{1}, \ldots, a_{n} \in R$ of $g h_{0}$ are coprime and since R is a PID, there exist $b_{1}, \ldots, b_{n} \in R$ such that $1=a_{1} b_{1}+\cdots a_{n} b_{n}$. We conclude that

$$
\left.\alpha=\alpha \cdot 1=\alpha\left(\sum a_{i} b_{i}\right)=\sum\left(\alpha a_{i}\right) b_{i} \in R .\right]
$$

Problem 3. ($\mathbb{Z}[y]$ and $K[x, y]$ are UFDs) Recall that a domain R is a UFD if every element factors into prime elements, times a unit. In this case the prime factors are unique up to associates. If R is a PID, you will prove that $R[y]$ is a UFD.
(a) Show that every polynomial $f(y) \in R[y]$ can be factored as

$$
f(y)=u p_{1} p_{2} \cdots p_{k} q_{1}(y) q_{2}(y) \cdots q_{\ell}(y)
$$

where $u \in R^{\times}$is a unit, $p_{1}, \ldots, p_{k} \in R$ are irreducible constants, and $q_{1}, \ldots, q_{\ell} \in R[y]$ are irreducible primitive polynomials of degree ≥ 1. [Hint: Let $K=\operatorname{Frac}(R)$. First factor $f(y)$ into irreducibles in $K[y]$. Use Problem 2(c) and 2(d) to write $f(y)=$ $c q_{1}(y) \cdots q_{\ell}(y)$ with $c \in R$. Then factor c in R.]
(b) If $p \in R$ is an irreducible constant, prove that $p \in R[y]$ is prime. [Hint: If p divides $g(y) h(y)$ in $R[y]$ show that p divides every coefficient of $g(y) h(y)$. If $f \mapsto \bar{f}$ is the reduction homomorphism $R[y] \rightarrow R /(p)[y]$ then we have $0=\overline{g h}=\bar{g} \bar{h}$. Now use the fact that p is irreducible in R.]
(c) If $f(y) \in R[y]$ is irreducible and primitive, show that $f(y) \in R[y]$ is prime. [Hint: Let $K=\operatorname{Frac}(R)$. Problem 2(d) says that if $f(y)$ is irreducible in $R[y]$ then $f(y)$ is irreducible (hence prime) in the PID $K[y]$. Suppose that $f(y)$ divides $g(y) h(y)$ in $R[y]$, and hence also in $K[y]$. It follows that $f(y)$ divides $g(y)$ or $h(y)$ in $K[y]$. Now what?]

Problem 4. (Nonmaximal primes in $\mathbb{Z}[y]$ and $K[x, y]$) Let R be a ring that is not a field. You will show that $R[x]$ has a nonmaximal prime ideal.
(a) Given an ideal $I \leq R$, prove that the set

$$
I[x]:=\left\{\sum_{k} a_{k} x^{k} \in R[x]: a_{k} \in I \text { for all } k\right\} .
$$

is an ideal of $R[x]$ and that we have $(R[x]) /(I[x]) \approx(R / I)[x]$. [Hint: Show that the map $R[x] \rightarrow(R / I)[x]$ defined by $\sum_{k} a_{k} x^{k} \mapsto \sum_{k}\left(a_{k}+I\right) x^{k}$ is a ring homomorphism.]
(b) Since R is not a field, Zorn's Lemma (i.e. the Axiom of Choice) implies that R contains a maximal (hence prime) ideal (0) $<P<R$. (You don't need to prove this.) Show that $P[x]$ is a prime ideal of $R[x]$ that is not maximal. [Hint: Show that $(R / P)[x]$ is a domain but not a field.]
(c) If R is a PID but not a field, show that there exists a prime ideal $(0)<(p)<(1)$ without using the Axiom of Choice.

