Problem 0. (Drawing Pictures) The equation $y^{2}=x^{3}-x$ defines a "curve" in the complex "plane" \mathbb{C}^{2}. What does it look like? Unfortunately we can only see real things, so we substitute $x=a+i b$ and $y=c+i d$ with $a, b, c, d \in \mathbb{R}$. Equating real and imaginary parts then gives us two simultaneous equations:

$$
\begin{align*}
a^{3}-a-3 a b & =c^{2}-d^{2} \tag{1}\\
b^{3}+b-3 a^{2} b & =-2 c d \tag{2}
\end{align*}
$$

These equations define a real 2-dimensional surface in real 4-dimensional space $\mathbb{R}^{4}=\mathbb{C}^{2}$. Unfortunately we can only see 3 -dimensional space so we will interpret the b coordiante as "time". Sketch the curve in real (a, c, d)-space at time $b=0$. [Hint: It will look 1-dimensional to you.] Can you imagine what it looks like at other times b ?

At time $b=0$ equation (2) becomes $0=c d$ which implies that $c=0$ or $d=0$. When $d=0$ equation (1) becomes $a^{3}-a=c^{2}$. This is a curve in the (a, c)-plane which we sketched on HW1. When $c=0$ equation (1) becomes $a^{3}-a=-d^{2}$, or $(-a)^{3}-(-a)=d^{2}$. This curve lives in the (a, d)-plane. It looks just like the curve in the (a, c)-plane but it is reflected across the (c, d)-plane and rotated 90°. The full solution is the disjoint union of these two:

It looks like four circles glued together in a chain. If you can imagine, the two outer circles meet at the point at infinity, and the four circles together form the skeleton of a torus. The other times sweep out the surface of the torus. For example, here I have plotted the curves in (a, c, d)-space for $b \in\{-.5,-.4,-.3,-.2,-.1,0, .1, .2, .3, .4, .5\}$:

Problem 1. (Local Rings) Let R be a ring. We say R is local if it contains a unique (nontrivial) maximal ideal.
(a) Prove that R is local if and only if its set of non-units is an ideal.
(b) Given a prime ideal $P \leq R$, prove that the localization

$$
R_{P}:=\left\{\frac{a}{b}: a, b \in R, b \notin P\right\}
$$

is a local ring. [Hint: The maximal ideal is called $P R_{P}$.]
(c) Consider a prime ideal $P \leq R$. By part (b) we can define the residue field $R_{P} / P R_{P}$. Prove that we have an isomorphism of fields:

$$
\operatorname{Frac}(R / P) \approx R_{P} / P R_{P} .
$$

Proof. For part (a), let $M \subseteq R$ denote the set of non-units. Note that $M \neq R$ because $1 \notin M$. First we assume that M is an ideal. In this case, let $I \leq R$ be any ideal of R not contained in M. Then by definition I contains a unit and hence $I=R$. (If $u \in I$ is a unit then $u \in I$ and $u^{-1} \in R$ imply $1=u u^{-1} \in I$. Then for all $r \in R$ we have $r=1 r \in I$.) We conclude that M is the unique maximal ideal of R, hence R is local. Conversely, assume that R is local with unique maximal ideal $\mathbf{m}<R$. Since $\mathbf{m} \neq R$ we know that \mathbf{m} contains no units, hence $\mathbf{m} \subseteq M$. On the other hand, we will show that $M \subseteq \mathbf{m}$. Suppose for contradiction that there exists $x \in M$ with $x \notin \mathbf{m}$. Since $x \notin \mathbf{m}$ and R / \mathbf{m} is a field (\mathbf{m} is maximal) there exists $y \in R$ such that

$$
x y+\mathbf{m}=(x+\mathbf{m})(y+\mathbf{m})=1+\mathbf{m} .
$$

This implies that $x y=1+a$ for some $a \in \mathbf{m}$. But then $1+a \notin \mathbf{m}$ since otherwise $1=(1+a)-a$ is in \mathbf{m} (this is a contradiction because $\mathbf{m} \neq R)$. Hence the ideal $(x y)=(1+a)$ strictly contains \mathbf{m} and since \mathbf{m} is maximal this implies $(x y)=R$. We conclude that $x y$ is a unit, hence x is a unit: $x\left(y(x y)^{-1}\right)=(x y)(x y)^{-1}=1$. This contradicts the fact that $x \in M$ and we conclude that $M=\mathbf{m}$ is an ideal.
[Remark: I could have given a shorter proof of $M \subseteq \mathbf{m}$ as follows. Consider any $x \in M$. Since $(x)<R$ is a proper ideal, it is contained in some proper maximal ideal, hence $(x) \leq m$. We conclude that $x \in \mathbf{m}$. But this argument implicitly uses the Axiom of Choice. The proof I gave above shows that the Axiom of Choice is not necessary.]

For part (b), let $P \leq R$ be prime and consider the localization

$$
R_{P}:=\left\{\frac{a}{b}: a, b \in R, b \notin P\right\} .
$$

I will show that the nonunits of R_{P} form an ideal. We can think of R_{P} as a subring of $\operatorname{Frac}(R)$. Let $\frac{a}{b} \in R_{P}$. Since $b \neq 0$ this fraction has inverse $\frac{b}{a} \in \operatorname{Frac}(R)$. This inverse will be in R_{P} if and only if $a \notin P$. In other words, $\frac{a}{b} \in R_{P}$ is a nonunit if and only if $a \in P$. Let

$$
P R_{P}:=\left\{\frac{a}{b}: a, b \in R, a \in P, b \notin P\right\}
$$

denote the set of nonunits. This is an ideal because given $\frac{a}{b}, \frac{c}{d} \in P R_{P}$ and $\frac{e}{f} \in R_{P}$ (i.e. with $a, c, e \in P$ and $b, d, f \notin P)$ we have

$$
\frac{a}{b}-\frac{c}{d}=\frac{a d-b c}{b d} \in P R_{P}
$$

because $a d-b c \in P$ and $b d \notin P$, and

$$
\frac{a}{b} \cdot \frac{e}{f}=\frac{a e}{b f} \in P R_{P}
$$

because $a e \in P$ and $b f \notin P$. We conclude that R_{P} is local with maximal ideal $P R_{P}$.
For part (c), note that $R_{P} / P R_{P}$ is a field because $P R_{P}<R_{P}$ is a maximal ideal. Note also that R / P is a domain because $P<R$ is a prime ideal, thus we can form the field of fractions $\operatorname{Frac}(R / P)$. I claim that these two fields are isomorphic. To see this, note first that $s+P \neq 0+P$ implies $s \notin P$. Thus we can define a map from $\operatorname{Frac}(R / P)$ to $R_{P} / P R_{P}$ by

$$
\begin{equation*}
\frac{r+P}{s+P} \longmapsto \frac{r}{s}+P R_{P} . \tag{3}
\end{equation*}
$$

To see that this is well-defined, consider $s, u \notin P$ and suppose that $\frac{r+P}{s+P}=\frac{t+P}{u+P}$, i.e., $r u+P=$ $(r+P)(u+P)=(s+P)(t+P)=s t+P$. Then since $r u-s t \in P$ and $s u \notin P$ we conclude that $\frac{r}{s}-\frac{t}{u}=\frac{r u-s t}{s u} \in P R_{P}$. It is easy to see that the map is a surjective ring homomorphism (details omitted). Finally we will show that the map is injective by showing that the kernel is trivial. Consider $\frac{r}{s} \in R_{P}$ (i.e. with $s \notin P$) and suppose that

$$
\frac{r}{s}+P R_{P}=P R_{P},
$$

i.e., that $\frac{r}{s} \in P R_{P}$. This means that $r \in P$ and hence $\frac{r+P}{s+P}$ is the zero element of $\operatorname{Frac}(R / P)$. We conclude that

$$
\operatorname{Frac}(R / P) \approx R_{P} / P R_{P}
$$

Problem 2. (Formal Power Series) Let K be a field and consider the ring of formal power series:

$$
K[[x]]:=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots: a_{i} \in K \text { for all } i \in \mathbb{N}\right\} .
$$

The "degree" of a power series does not necessarily exist. However, for all nonzero $f(x)=$ $\sum_{k} a^{k} x^{k}$ we can define the "order" ord $(f):=$ the minimum k such that $a_{k} \neq 0$.
(a) Prove that $K[[x]]$ is a domain.
(b) Prove that $K[[x]]$ is a Euclidean domain with norm function ord : $K[[x]]-\{0\} \rightarrow \mathbb{N}$. (You can define $\operatorname{ord}(0)=-\infty$ if you want.) [Hint: Given $f, g \in K[[x]]$ we have $f \mid g$ if and only if ord $(f) \leq \operatorname{ord}(g)$, so the remainder is always zero.]
(c) Prove that the units of $K[[x]]$ are just the power series with nonzero constant term.
(d) Conclude that $K[[x]]$ is a local ring.
(e) Prove that $\operatorname{Frac}(K[[x]])$ is isomorphic to the ring of formal Laurent series:

$$
K((x)):=\left\{a_{-n} x^{-n}+a_{-n+1} x^{-n+1}+a_{-n+2} x^{-n+2}+\cdots: a_{i} \in K \text { for all } i \geq-n\right\} .
$$

Proof. Given power series $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{\ell} b_{\ell} x^{\ell}$ recall that the coefficient of x^{m} in $f(x) g(x)$ is given by $\sum_{k+\ell=m} a_{k} b_{\ell}$. I claim that $\operatorname{ord}(f g)=\operatorname{ord}(f)+\operatorname{ord}(g)$. Indeed, if $m<\operatorname{ord}(f)+\operatorname{ord}(g)$ then $k+\ell=m$ implies that either $k<\operatorname{ord}(f)$ or $\ell<\operatorname{ord}(g)$ (otherwise we have $k+\ell \geq \operatorname{ord}(f)+\operatorname{ord}(g)>m)$. Thus every term in the sum $\sum_{k+\ell=m} a_{k} b_{\ell}$ is zero. However, if $m=\operatorname{ord}(f)+\operatorname{ord}(g)$ then the coefficient of x^{m} in $f(x) g(x)$ is $\sum_{k+\ell=m} a_{k} b_{\ell}=a_{\operatorname{ord}(f)} b_{\text {ord }(g)} \neq 0$ because $a_{\operatorname{ord}(f)} \neq 0$ and $b_{\text {ord }(g)} \neq 0$ by assumption (and K is a domain). We conclude that $\operatorname{ord}(f g)=\operatorname{ord}(f)+\operatorname{ord}(g)$.

For part (a), assume that $f, g \in K[[x]]$ are nonzero. This implies that $\operatorname{ord}(f), \operatorname{ord}(g)<\infty$ and hence $\operatorname{ord}(f g)=\operatorname{ord}(f)+\operatorname{ord}(g)<\infty$. We conclude that $K[[x]]$ is a domain.

For part (b), consider $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{\ell} b_{\ell} x^{\ell}$ with $g \neq 0$ (i.e. with $\operatorname{ord}(g)<$ $\infty)$. We want to prove that there exist $q, r \in K[[x]]$ with $f=q g+r$ and either $r=0$ or $\operatorname{ord}(r)<\operatorname{ord}(g)$. Indeed, if ord $(f)<\operatorname{ord}(g)$ then we can simply take $q(x)=0$ and $r(x)=f(x)$. If $\operatorname{ord}(f) \geq \operatorname{ord}(g)$ then we can perform "long division" as follows. Let b be the lowest coefficient of $g(x)$. Then let $f_{1}=f$ and for all $n \geq 1$ such that $f_{n} \neq 0$ define

$$
f_{n+1}(x):=f_{n}(x)-\frac{a_{n}}{b} x^{\operatorname{ord}\left(f_{n}\right)-\operatorname{ord}(g)} g(x) .
$$

where a_{n} is the lowest coefficient of $f_{n}(x)$. By construction we have $\operatorname{ord}(g) \leq \operatorname{ord}\left(f_{1}\right)<$ $\operatorname{ord}\left(f_{2}\right)<\operatorname{ord}\left(f_{3}\right)<\cdots$ so this is always defined. If the algorithm terminates with $f_{N}=0$ then we set $a_{n}=0$ for all $n \geq N$, otherwise we let the algorithm run forever (i.e. use induction). In the end we obtain a formal power series

$$
q(x):=\sum_{n \geq 1} \frac{a_{n}}{b} x^{\operatorname{ord}\left(f_{n}\right)-\operatorname{ord}(g)}
$$

with the property that $f(x)=q(x) g(x)$ (the remainder is always zero!). This proves that $K[[x]]$ is Euclidean.
[Probably a proof by example would have been better, but I didn't feel like typesetting an infinite long division in $\operatorname{LT} T_{\mathrm{E} X}$. I encourage you to compute an example yourself.]

In the proof of (b) note that we actually showed that given two power series $f, g \in K[[x]]$ we have $g \mid f$ if and only if $\operatorname{ord}(g) \leq \operatorname{ord}(f)$. For part (c), note that $g \in K[[x]]$ is a unit if and only if g divides 1 . By the above remark this happens if and only if $\operatorname{ord}(g) \leq \operatorname{ord}(1)=0$, i.e., if and only if $\operatorname{ord}(g)=0$. Finally, note that $\operatorname{ord}(g)=0$ if and only if g has nonzero constant term.

For part (d), note that the set of nonunits of $K[[x]]$ are just the power series with zero constant term, i.e., the power series divisible by x :

$$
(x):=\{x f(x): f(x) \in K[[x]]\} .
$$

Since this is an ideal we conclude that $K[[x]]$ is a local ring.
For part (e), we say that $f(x)=\sum_{k} a_{k} x^{k}$ is a formal Laurent series if there exists a minimum $r \in \mathbb{Z}$ (possibly negative) such that $a_{r} \neq 0$. In this case we define $\operatorname{ord}(f)=r$. Let $K((x))$ denote the ring of formal Laurent series with addition and multiplication defined just as for power series. Then $K[[x]] \subseteq K((x))$ is the subring or Laurent series with nonnegative order.

I claim that $K((x))$ is a field. Indeed, given any two Laurent series $f, g \in K((x))$ with $g \neq 0$, the long division process defined above can be used to obtain $q(x) \in K((x))$ such that $f(x)=q(x) g(x)$. We we do not require $\operatorname{ord}(g) \leq \operatorname{ord}(f)$. In fact, because $\operatorname{ord}(q)=$ $\operatorname{ord}(f)-\operatorname{ord}(g)$ we will have $q \in K[[x]]$ if and only if $\operatorname{ord}(g) \leq \operatorname{ord}(f)$. If $f(x)=1$ then we obtain $q(x)=g(x)^{-1}$.

Since $K((x))$ is a field containing $K[[x]]$ we can identify $\operatorname{Frac}(K[[x]])$ with the subfield of $K((x))$ consisting of elements of the form $f(x) g(x)^{-1}$ for $f, g \in K[[x]]$ with $g \neq 0$. But note that every Laurent series $f(x) \in K((x))$ has this form. Indeed, if $\operatorname{ord}(f) \geq 0$ then $f(x)=f(x)(1)^{-1} \in \operatorname{Frac}(K[[x]])$ and if $\operatorname{ord}(f)<0$ then

$$
f(x)=\left(x^{-\operatorname{ord}(f)} f(x)\right)\left(x^{-\operatorname{ord}(f)}\right)^{-1} \in \operatorname{Frac}(K[[x]])
$$

because $x^{-\operatorname{ord}(f)} f(x)$ and $x^{-\operatorname{ord}(f)}$ are in $K[[x]]$. We conclude that

$$
\operatorname{Frac}(K[[x]])=K((x)) .
$$

[As you may know, any function $f: \mathbb{C} \rightarrow \mathbb{C}$ holomorphic in an annulus has a convergent Laurent series expansion there. This makes complex analysis a very algebraic subject.]

Problem 3. (Partial Fraction Expansion) To what extent can we "un-add" fractions? Let R be a PID. Consider $a, b \in R$ with $b=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ where p_{1}, \ldots, p_{k} are distinct primes and $e_{1}, \ldots, e_{k} \geq 1$.
(a) Prove that there exist $a_{1}, \ldots, a_{k} \in R$ such that

$$
\frac{a}{b}=\frac{a_{1}}{p_{1}^{e_{1}}}+\frac{a_{2}}{p_{2}^{e_{2}}}+\cdots+\frac{a_{k}}{p_{k}^{e_{1}}} .
$$

[Hint: First prove it when $b=p q$ with p, q coprime. Use Bézout.]
Now assume that R is a Euclidean domain with norm function $N: R-\{0\} \rightarrow \mathbb{N}$.
(b) Prove that there exist $c, r_{i j} \in R$ such that

$$
\frac{a}{b}=c+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}},
$$

where for all i, j we have either $r_{i j}=0$ or $N\left(r_{i j}\right)<N\left(p_{i}\right)$. [Hint: If p is prime, prove that we can write $\frac{a}{p^{e}}$ as $\frac{q}{p^{e-1}}+\frac{r}{p^{e}}$ where either $r=0$ or $N(r)<N(p)$. Then use (a).]
Now suppose that the norm function satisfies $N(a) \leq N(a b)$ and $N(a-b) \leq \max \{N(a), N(b)\}$ for all $a, b \in R-\{0\}$.
(c) Prove that the partial fraction expansion from part (b) is unique. [Hint: Suppose we have two expansions

$$
c+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}}=\frac{a}{b}=c^{\prime}+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}^{\prime}}{p_{i}^{j}} .
$$

Then we get a partial fraction expansion of zero:

$$
\frac{0}{b}=\frac{a-a}{b}=\left(c-c^{\prime}\right)+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{\left(r_{i j}-r_{i j}^{\prime}\right)}{p_{i}^{j}} .
$$

For all i, j define $\hat{b}_{i j}:=b / p_{i}^{j}$, so that

$$
b\left(c^{\prime}-c\right)=\sum_{i=1}^{k} \sum_{j=1}^{e_{i}}\left(r_{i j}-r_{i j}^{\prime}\right) \hat{b}_{i j} .
$$

Suppose for contradiction that there exist i, j such that $r_{i j} \neq r_{i j}^{\prime}$ and let j be maximal with this property. Use the last equation above to show that p_{i} divides $\left(r_{i j}-r_{i j}^{\prime}\right)$ and hence

$$
N\left(p_{i}\right) \leq N\left(r_{i j}-r_{i j}^{\prime}\right) \leq \max \left\{N\left(r_{i j}\right), N\left(r_{i j}^{\prime}\right)\right\}<N\left(p_{i}\right)
$$

Contradiction.]
(d) If K is a field and $R=K[x]$ then the norm function $N(f)=\operatorname{deg}(f)$ satisfies the hypotheses of part (c) so the expansion is unique. Compute the unique expansion of

$$
\frac{x^{5}+x+1}{(x+1)^{2}\left(x^{2}+1\right)} \in \mathbb{R}(x) .
$$

(e) If $R=\mathbb{Z}$ then the norm function $N(a)=|a|$ does not satisfy $|a-b| \leq \max \{|a|,|b|\}$. However, if we require remainders r, r^{\prime} to be nonnegative then it is true that $\left|r-r^{\prime}\right| \leq$ $\max \left\{|r|,\left|r^{\prime}\right|\right\}$ and the proof of uniqueness in (c) still goes through. Compute the unique expansion of $\frac{77}{12} \in \mathbb{Q}$ with nonnegative parameters $r_{i j} \geq 0$.

Proof. Consider $a, b \in R$ with $b=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ where p_{1}, \ldots, p_{k} are distinct primes and $e_{1}, \ldots, e_{k} \geq$ 1. For part (a), note that since R is a PID we must have $\left(p_{1}^{e_{1}}, p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right)=(d)$ where d is the greatest common divisor. Since $p_{1}^{e_{1}}$ and $p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ are coprime this implies that $d=1$, and hence there exist $c_{1}, c_{2} \in R$ such that

$$
1=c_{1} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}+c_{2} p_{1}^{e_{1}} .
$$

Multiplying both sides by $\frac{a}{b}$ gives

$$
\frac{a}{b}=\frac{a c_{1}}{p_{1}^{e_{1}}}+\frac{a c_{2}}{p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}} .
$$

Now the result follows by induction.
For part (b), let R be Euclidean and suppose that we have written

$$
\frac{a}{b}=\frac{a_{1}}{p_{1}^{e_{1}}}+\cdots+\frac{a_{k}}{p_{k}^{e_{k}}} .
$$

Now consider any $\frac{a}{p^{e}}$ with $a, p \in R$ and p prime. We can divide a by p to obtain $q, r \in R$ such that $a=p q+r$ and either $r=0$ or $N(r)<N(p)$. In other words, we have

$$
\frac{a}{p^{e}}=\frac{q p+r}{p^{e}}=\frac{q}{p^{e-1}}+\frac{r}{p^{e}}
$$

where either $r=0$ or $N(r)<N(p)$. By induction we obtain

$$
\frac{a}{p^{e}}=\frac{q}{p^{0}}+\frac{r_{1}}{p^{1}}+\frac{r_{2}}{p^{2}}+\cdots+\frac{r_{e}}{p^{e}},
$$

where for all i we have $r_{i}=0$ or $N\left(r_{i}\right)<N(p)$. Then, combining these expressions for each summand $\frac{a_{i}}{p_{i}^{i}}$ of $\frac{a}{b}$ gives

$$
\frac{a}{b}=c+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}}
$$

where for all i, j we have $r_{i j}=0$ or $N\left(r_{i j}\right)<N\left(p_{i}\right)$. This is called a "partial fraction expansion" of $\frac{a}{b}$.

For part (c), suppose that the Euclidean norm satisfies $N(a) \leq N(a b)$ and $N(a-b) \leq$ $\max \{N(a), N(b)\}$ for all $a, b \in R-\{0\}$, and suppose we have two partial fraction expansions

$$
c+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}}=\frac{a}{b}=c^{\prime}+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}^{\prime}}{p_{i}^{j}} .
$$

I claim that $r_{i j}=r_{i j}^{\prime}$ for all i, j (and hence also $c=c^{\prime}$). To see this, we subtract the expansions:

$$
0=\left(c^{\prime}-c\right)+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{\left(r_{i j}-r_{i j}^{\prime}\right)}{p_{i}^{j}}
$$

Then we multiply both sides by b to get

$$
b\left(c-c^{\prime}\right)=\sum_{i=1}^{k} \sum_{j=1}^{e_{i}}\left(r_{i j}-r_{i j}^{\prime}\right) \hat{b}_{i j},
$$

where $\hat{b}_{i j}:=b / p_{i}^{j} \in R$. Now assume for contradiction that we have $r_{m n} \neq r_{m n}^{\prime}$ for some $m, n \geq 1$ and let n be maximal with this property. That is, suppose that we also have $r_{m j}=r_{m j}^{\prime}$ for all $j>n$. In this case, note that $p_{m}^{e_{m}-n}$ divides $\hat{b}_{i j}$ for every nonzero term in the sum, thus since R is a domain we can cancel it to get

$$
\begin{equation*}
b^{\prime}\left(c-c^{\prime}\right)=\sum_{i=1}^{k} \sum_{j=1}^{e_{i}}\left(r_{i j}-r_{i j}^{\prime}\right) \hat{b}_{i j}^{\prime}, \tag{4}
\end{equation*}
$$

where

$$
b^{\prime}=p_{1}^{e_{1}} \cdots p_{m}^{n} \cdots p_{k}^{e_{k}} \quad \text { and } \quad \hat{b}_{i j}^{\prime}= \begin{cases}p_{1}^{e_{1}} \cdots p_{i}^{e_{i}-j} \cdots p_{m}^{n} \cdots p_{k}^{e_{k}} & i<m \\ p_{1}^{e_{1}} \cdots p_{i}^{e_{i}-j} \cdots p_{m}^{n} \cdots p_{k}^{e_{k}} & i>m \\ p_{1}^{e_{1}} \cdots p_{m}^{n-j} \cdots p_{k}^{e_{k}} & i=m, j \leq n \\ 0 & i=m, j>n\end{cases}
$$

Finally, note that p_{m} divides $\left(r_{m n}-r_{m n}^{\prime}\right) \hat{b}_{m n}^{\prime}$ because p_{m} divides every other term of the sum (4). Since p_{m} is prime, Euclid says that $p_{m} \mid\left(r_{m n}-r_{m n}^{\prime}\right)$ or $p_{m} \mid \hat{b}_{m n}^{\prime}$. But by definition we know that p_{m} does not divide $\hat{b}_{m n}^{\prime}$. We conclude that p_{m} divides $r_{m n}-r_{m n}^{\prime}$ and then the assumed properties of the norm imply that

$$
N\left(p_{m}\right) \leq N\left(r_{m n}-r_{m n}^{\prime}\right) \leq \max \left\{N\left(r_{m n}\right), N\left(r_{m n}^{\prime}\right)\right\}<N\left(p_{m}\right) .
$$

Contradiction.
For parts (d) and (e) I will naively follow the steps of the proof. I will not use any tricks like differentiation. (You can get the solution faster with tricks.) For part (d) we first look for polynomials $f(x)$ and $g(x)$ such that

$$
1=f(x)(x+1)^{2}+g(x)\left(x^{2}+1\right)
$$

For this we consider the set of triples $f, g, h \in \mathbb{R}[x]$ with $f(x)(x+1)^{2}+g(x)\left(x^{2}+1\right)=h(x)$ and apply row reduction:

$f(x)$	$g(x)$	$h(x)$
1	0	$(x+1)^{2}$
0	1	$x^{2}+1$
1	-1	$2 x$
$-x / 2$	$1+x / 2$	1

We conclude that $(-x / 2)(x+1)^{2}+(1+x / 2)\left(x^{2}+1\right)=1$ and hence

$$
\begin{aligned}
\frac{1}{(x+1)^{2}\left(x^{2}+1\right)} & =\frac{(-x / 2)(x+1)^{2}+(1+x / 2)\left(x^{2}+1\right)}{(x+1)^{2}\left(x^{2}+1\right)} \\
& =\frac{-x / 2}{x^{2}+1}+\frac{1+x / 2}{(x+1)^{2}}
\end{aligned}
$$

Multiplying both sides by $x^{5}+x+1$ gives

$$
\frac{x^{5}+x+1}{(x+1)^{2}\left(x^{2}+1\right)}=\frac{-\frac{1}{2}\left(x^{6}+x^{2}+x\right)}{x^{2}+1}+\frac{\frac{1}{2}\left(x^{6}+2 x^{5}+x^{2}+3 x+2\right)}{(x+1)^{2}} .
$$

Now we deal with both of the summands separately. First we divide $-\frac{1}{2}\left(x^{6}+x^{2}+x\right)$ by $x^{2}+1$ to get

$$
-\frac{1}{2}\left(x^{6}+x^{2}+x\right)=-\frac{1}{2}\left(x^{4}-x^{2}+2\right)\left(x^{2}+1\right)-\frac{1}{2}(x-2),
$$

hence

$$
\frac{-\frac{1}{2}\left(x^{6}+x^{2}+x\right)}{x^{2}+1}=-\frac{1}{2}\left(x^{4}-x^{2}+2\right)+\frac{-\frac{1}{2}(x-2)}{\left(x^{2}+1\right)} .
$$

Next we divide $\frac{1}{2}\left(x^{6}+2 x^{5}+x^{2}+3 x+2\right)$ by $(x+1)$ to get

$$
\frac{1}{2}\left(x^{6}+2 x^{5}+x^{2}+3 x+2\right)=\frac{1}{2}\left(x^{5}+x^{4}-x^{3}+x^{2}+3\right)(x+1)-\frac{1}{2},
$$

hence

$$
\frac{\frac{1}{2}\left(x^{6}+2 x^{5}+x^{2}+3 x+2\right)}{(x+1)^{2}}=\frac{\frac{1}{2}\left(x^{5}+x^{4}-x^{3}+x^{2}+3\right)}{(x+1)}+\frac{-1 / 2}{(x+1)^{2}} .
$$

Finally, we divide $\frac{1}{2}\left(x^{5}+x^{4}-x^{3}+x^{2}+3\right)$ by $(x+1)$ to get

$$
\frac{1}{2}\left(x^{5}+x^{4}-x^{3}+x^{2}+3\right)=\frac{1}{2}\left(x^{4}-x^{2}+2 x-2\right)(x+1)+5,
$$

hence

$$
\frac{\frac{1}{2}\left(x^{5}+x^{4}-x^{3}+x^{2}+3\right)}{(x+1)}=\frac{1}{2}\left(x^{4}-x^{2}+2 x-2\right)+\frac{5 / 2}{(x+1)} .
$$

Putting everything together gives

$$
\frac{x^{5}+x+1}{(x+1)^{2}\left(x^{2}+1\right)}=(x-2)+\frac{5 / 2}{(x+1)}+\frac{-1 / 2}{(x+1)^{2}}+\frac{-(x-2) / 2}{\left(x^{2}+1\right)}
$$

[By doing everything out longhand I meant to show that it is possible, not that it is easy.]
For part (e) we first factor $12=3 \cdot 4$ with 3,4 coprime. Now we look for $x, y \in \mathbb{Z}$ with $3 x+4 y=1$. This can be done by inspection:

$$
1=3(-1)+4 \cdot 1
$$

[If it couldn't be done by inspection we would use the Euclidean algorithm.] Dividing by 12 gives

$$
\frac{1}{12}=\frac{3(-1)+4 \cdot 1}{3 \cdot 4}=\frac{-1}{4}+\frac{1}{3},
$$

and then multiplying by 77 gives

$$
\frac{77}{12}=\frac{-77}{4}+\frac{77}{3} .
$$

Now we deal with both of the summands separately. First we divide 77 by 3 to get

$$
\begin{aligned}
77 & =3 \cdot 25+2 \\
\frac{77}{3} & =25+\frac{2}{3} .
\end{aligned}
$$

Then we divide -77 by 2 to get

$$
\begin{aligned}
-77 & =2(-39)+1 \\
\frac{-77}{4} & =\frac{-39}{2}+\frac{1}{4} .
\end{aligned}
$$

Finally, we divide -39 by 2 to get

$$
\begin{aligned}
-39 & =2(-20)+1 \\
\frac{-39}{2} & =-20+\frac{1}{2} .
\end{aligned}
$$

Putting everything together gives

$$
\frac{77}{12}=5+\frac{1}{2}+\frac{1}{4}+\frac{2}{3} .
$$

This result is unique as long as we use positive remainders.
[Why did I ask you to do this? Because I always wondered about partial fractions. They appear in Calculus to show us that all rational functions over \mathbb{R} can be integrated in elementary terms. For example:

$$
\int \frac{x^{5}+x+1}{(x+1)^{2}\left(x^{2}+1\right)} d x=\frac{1}{2} x^{2}-2 x+\frac{5}{2} \ln (x+1)-\frac{1}{2(x+1)}-\frac{1}{4} \ln \left(x^{2}+1\right)+\arctan (x) .
$$

But then partial fractions mysteriously disappear from the curriculum. Now at least we know why.]

