**Problem 0.** (Drawing Pictures) The equation  $y^2 = x^3 - x$  defines a "curve" in the complex "plane"  $\mathbb{C}^2$ . What does it look like? Unfortunately we can only see real things, so we substitute x = a + ib and y = c + id with  $a, b, c, d \in \mathbb{R}$ . Equating real and imaginary parts then gives us two simultaneous equations:

(1) 
$$a^3 - a - 3ab = c^2 - d^2,$$

(2) 
$$b^3 + b - 3a^2b = -2cd.$$

These equations define a real 2-dimensional surface in real 4-dimensional space  $\mathbb{R}^4 = \mathbb{C}^2$ . Unfortunately we can only see 3-dimensional space so we will interpret the *b* coordiante as "time". Sketch the curve in real (a, c, d)-space at time b = 0. [Hint: It will look 1-dimensional to you.] Can you imagine what it looks like at other times *b*?

At time b = 0 equation (2) becomes 0 = cd which implies that c = 0 or d = 0. When d = 0 equation (1) becomes  $a^3 - a = c^2$ . This is a curve in the (a, c)-plane which we sketched on HW1. When c = 0 equation (1) becomes  $a^3 - a = -d^2$ , or  $(-a)^3 - (-a) = d^2$ . This curve lives in the (a, d)-plane. It looks just like the curve in the (a, c)-plane but it is reflected across the (c, d)-plane and rotated 90°. The full solution is the disjoint union of these two:



It looks like four circles glued together in a chain. If you can imagine, the two outer circles meet at the point at infinity, and the four circles together form the skeleton of a torus. The other times sweep out the surface of the torus. For example, here I have plotted the curves in (a, c, d)-space for  $b \in \{-.5, ..4, ..3, ..2, ..1, 0, .1, .2, .3, .4, .5\}$ :



**Problem 1.** (Local Rings) Let R be a ring. We say R is local if it contains a unique (nontrivial) maximal ideal.

- (a) Prove that R is local if and only if its set of non-units is an ideal.
- (b) Given a prime ideal  $P \leq R$ , prove that the localization

$$R_P := \left\{ \frac{a}{b} : a, b \in R, b \notin P \right\}$$

is a local ring. [Hint: The maximal ideal is called  $PR_{P}$ .]

(c) Consider a prime ideal  $P \leq R$ . By part (b) we can define the residue field  $R_P/PR_P$ . Prove that we have an isomorphism of fields:

$$\operatorname{Frac}(R/P) \approx R_P/PR_P.$$

*Proof.* For part (a), let  $M \subseteq R$  denote the set of non-units. Note that  $M \neq R$  because  $1 \notin M$ . First we assume that M is an ideal. In this case, let  $I \leq R$  be any ideal of R not contained in M. Then by definition I contains a unit and hence I = R. (If  $u \in I$  is a unit then  $u \in I$ and  $u^{-1} \in R$  imply  $1 = uu^{-1} \in I$ . Then for all  $r \in R$  we have  $r = 1r \in I$ .) We conclude that M is the unique maximal ideal of R, hence R is local. Conversely, assume that R is local with unique maximal ideal  $\mathbf{m} < R$ . Since  $\mathbf{m} \neq R$  we know that  $\mathbf{m}$  contains no units, hence  $\mathbf{m} \subseteq M$ . On the other hand, we will show that  $M \subseteq \mathbf{m}$ . Suppose for contradiction that there exists  $x \in M$  with  $x \notin \mathbf{m}$ . Since  $x \notin \mathbf{m}$  and  $R/\mathbf{m}$  is a field ( $\mathbf{m}$  is maximal) there exists  $y \in R$ such that

$$xy + \mathbf{m} = (x + \mathbf{m})(y + \mathbf{m}) = 1 + \mathbf{m}.$$

This implies that xy = 1+a for some  $a \in \mathbf{m}$ . But then  $1+a \notin \mathbf{m}$  since otherwise 1 = (1+a)-ais in  $\mathbf{m}$  (this is a contradiction because  $\mathbf{m} \neq R$ ). Hence the ideal (xy) = (1+a) strictly contains  $\mathbf{m}$  and since  $\mathbf{m}$  is maximal this implies (xy) = R. We conclude that xy is a unit, hence x is a unit:  $x(y(xy)^{-1}) = (xy)(xy)^{-1} = 1$ . This contradicts the fact that  $x \in M$  and we conclude that  $M = \mathbf{m}$  is an ideal. [Remark: I could have given a shorter proof of  $M \subseteq \mathbf{m}$  as follows. Consider any  $x \in M$ . Since (x) < R is a proper ideal, it is contained in some proper maximal ideal, hence  $(x) \leq m$ . We conclude that  $x \in \mathbf{m}$ . But this argument implicitly uses the Axiom of Choice. The proof I gave above shows that the Axiom of Choice is not necessary.]

For part (b), let  $P \leq R$  be prime and consider the localization

$$R_P := \left\{ \frac{a}{b} : a, b \in R, b \notin P \right\}.$$

I will show that the nonunits of  $R_P$  form an ideal. We can think of  $R_P$  as a subring of  $\operatorname{Frac}(R)$ . Let  $\frac{a}{b} \in R_P$ . Since  $b \neq 0$  this fraction has inverse  $\frac{b}{a} \in \operatorname{Frac}(R)$ . This inverse will be in  $R_P$  if and only if  $a \notin P$ . In other words,  $\frac{a}{b} \in R_P$  is a nonunit if and only if  $a \in P$ . Let

$$PR_P := \left\{ \frac{a}{b} : a, b \in R, a \in P, b \notin P \right\}$$

denote the set of nonunits. This is an ideal because given  $\frac{a}{b}, \frac{c}{d} \in PR_P$  and  $\frac{e}{f} \in R_P$  (i.e. with  $a, c, e \in P$  and  $b, d, f \notin P$ ) we have

$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \in PR_P$$

because  $ad - bc \in P$  and  $bd \notin P$ , and

$$\frac{a}{b} \cdot \frac{e}{f} = \frac{ae}{bf} \in PR_P$$

because  $ae \in P$  and  $bf \notin P$ . We conclude that  $R_P$  is local with maximal ideal  $PR_P$ .

For part (c), note that  $R_P/PR_P$  is a field because  $PR_P < R_P$  is a maximal ideal. Note also that R/P is a domain because P < R is a prime ideal, thus we can form the field of fractions  $\operatorname{Frac}(R/P)$ . I claim that these two fields are isomorphic. To see this, note first that  $s + P \neq 0 + P$  implies  $s \notin P$ . Thus we can define a map from  $\operatorname{Frac}(R/P)$  to  $R_P/PR_P$  by

(3) 
$$\frac{r+P}{s+P} \longmapsto \frac{r}{s} + PR_P.$$

To see that this is well-defined, consider  $s, u \notin P$  and suppose that  $\frac{r+P}{s+P} = \frac{t+P}{u+P}$ , i.e., ru + P = (r+P)(u+P) = (s+P)(t+P) = st + P. Then since  $ru - st \in P$  and  $su \notin P$  we conclude that  $\frac{r}{s} - \frac{t}{u} = \frac{ru-st}{su} \in PR_P$ . It is easy to see that the map is a surjective ring homomorphism (details omitted). Finally we will show that the map is injective by showing that the kernel is trivial. Consider  $\frac{r}{s} \in R_P$  (i.e. with  $s \notin P$ ) and suppose that

$$\frac{r}{s} + PR_P = PR_P,$$

i.e., that  $\frac{r}{s} \in PR_P$ . This means that  $r \in P$  and hence  $\frac{r+P}{s+P}$  is the zero element of Frac(R/P). We conclude that

$$\operatorname{Frac}(R/P) \approx R_P/PR_P.$$

**Problem 2.** (Formal Power Series) Let K be a field and consider the ring of formal power series:

$$K[[x]] := \left\{ a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots : a_i \in K \text{ for all } i \in \mathbb{N} \right\}.$$

The "degree" of a power series does not necessarily exist. However, for all nonzero  $f(x) = \sum_k a^k x^k$  we can define the "order"  $\operatorname{ord}(f) :=$  the minimum k such that  $a_k \neq 0$ .

(a) Prove that K[[x]] is a domain.

- (b) Prove that K[[x]] is a Euclidean domain with norm function  $\operatorname{ord} : K[[x]] \{0\} \to \mathbb{N}$ . (You can define  $\operatorname{ord}(0) = -\infty$  if you want.) [Hint: Given  $f, g \in K[[x]]$  we have f|g if and only if  $\operatorname{ord}(f) \leq \operatorname{ord}(g)$ , so the remainder is always zero.]
- (c) Prove that the units of K[[x]] are just the power series with nonzero constant term.
- (d) Conclude that K[[x]] is a local ring.
- (e) Prove that Frac(K[[x]]) is isomorphic to the ring of formal Laurent series:

$$K((x)) := \left\{ a_{-n}x^{-n} + a_{-n+1}x^{-n+1} + a_{-n+2}x^{-n+2} + \dots : a_i \in K \text{ for all } i \ge -n \right\}$$

*Proof.* Given power series  $f(x) = \sum_k a_k x^k$  and  $g(x) = \sum_\ell b_\ell x^\ell$  recall that the coefficient of  $x^m$  in f(x)g(x) is given by  $\sum_{k+\ell=m} a_k b_\ell$ . I claim that  $\operatorname{ord}(fg) = \operatorname{ord}(f) + \operatorname{ord}(g)$ . Indeed, if  $m < \operatorname{ord}(f) + \operatorname{ord}(g)$  then  $k+\ell = m$  implies that either  $k < \operatorname{ord}(f)$  or  $\ell < \operatorname{ord}(g)$  (otherwise we have  $k+\ell \ge \operatorname{ord}(f) + \operatorname{ord}(g) > m$ ). Thus every term in the sum  $\sum_{k+\ell=m} a_k b_\ell$  is zero. However, if  $m = \operatorname{ord}(f) + \operatorname{ord}(g)$  then the coefficient of  $x^m$  in f(x)g(x) is  $\sum_{k+\ell=m} a_k b_\ell = a_{\operatorname{ord}(f)}b_{\operatorname{ord}(g)} \neq 0$  because  $a_{\operatorname{ord}(f)} \neq 0$  and  $b_{\operatorname{ord}(g)} \neq 0$  by assumption (and K is a domain). We conclude that  $\operatorname{ord}(fg) = \operatorname{ord}(f) + \operatorname{ord}(g)$ .

For part (a), assume that  $f, g \in K[[x]]$  are nonzero. This implies that  $\operatorname{ord}(f), \operatorname{ord}(g) < \infty$ and hence  $\operatorname{ord}(fg) = \operatorname{ord}(f) + \operatorname{ord}(g) < \infty$ . We conclude that K[[x]] is a domain.

For part (b), consider  $f(x) = \sum_k a_k x^k$  and  $g(x) = \sum_\ell b_\ell x^\ell$  with  $g \neq 0$  (i.e. with  $\operatorname{ord}(g) < \infty$ ). We want to prove that there exist  $q, r \in K[[x]]$  with f = qg + r and either r = 0 or  $\operatorname{ord}(r) < \operatorname{ord}(g)$ . Indeed, if  $\operatorname{ord}(f) < \operatorname{ord}(g)$  then we can simply take q(x) = 0 and r(x) = f(x). If  $\operatorname{ord}(f) \ge \operatorname{ord}(g)$  then we can perform "long division" as follows. Let b be the lowest coefficient of g(x). Then let  $f_1 = f$  and for all  $n \ge 1$  such that  $f_n \ne 0$  define

$$f_{n+1}(x) := f_n(x) - \frac{a_n}{b} x^{\operatorname{ord}(f_n) - \operatorname{ord}(g)} g(x).$$

where  $a_n$  is the lowest coefficient of  $f_n(x)$ . By construction we have  $\operatorname{ord}(g) \leq \operatorname{ord}(f_1) < \operatorname{ord}(f_2) < \operatorname{ord}(f_3) < \cdots$  so this is always defined. If the algorithm terminates with  $f_N = 0$  then we set  $a_n = 0$  for all  $n \geq N$ , otherwise we let the algorithm run forever (i.e. use induction). In the end we obtain a formal power series

$$q(x) := \sum_{n \ge 1} \frac{a_n}{b} x^{\operatorname{ord}(f_n) - \operatorname{ord}(g)}$$

with the property that f(x) = q(x)g(x) (the remainder is always zero!). This proves that K[[x]] is Euclidean.

[Probably a proof by example would have been better, but I didn't feel like typesetting an infinite long division in LATEX. I encourage you to compute an example yourself.]

In the proof of (b) note that we actually showed that given two power series  $f, g \in K[[x]]$ we have g|f if and only if  $\operatorname{ord}(g) \leq \operatorname{ord}(f)$ . For part (c), note that  $g \in K[[x]]$  is a unit if and only if g divides 1. By the above remark this happens if and only if  $\operatorname{ord}(g) \leq \operatorname{ord}(1) = 0$ , i.e., if and only if  $\operatorname{ord}(g) = 0$ . Finally, note that  $\operatorname{ord}(g) = 0$  if and only if g has nonzero constant term.

For part (d), note that the set of nonunits of K[[x]] are just the power series with zero constant term, i.e., the power series divisible by x:

$$(x) := \{ xf(x) : f(x) \in K[[x]] \}.$$

Since this is an ideal we conclude that K[[x]] is a local ring.

For part (e), we say that  $f(x) = \sum_k a_k x^k$  is a formal Laurent series if there exists a minimum  $r \in \mathbb{Z}$  (possibly negative) such that  $a_r \neq 0$ . In this case we define  $\operatorname{ord}(f) = r$ . Let K((x)) denote the ring of formal Laurent series with addition and multiplication defined just as for power series. Then  $K[[x]] \subseteq K((x))$  is the subring or Laurent series with nonnegative order.

I claim that K((x)) is a field. Indeed, given **any** two Laurent series  $f, g \in K((x))$  with  $g \neq 0$ , the long division process defined above can be used to obtain  $q(x) \in K((x))$  such that f(x) = q(x)g(x). We we do not require  $\operatorname{ord}(g) \leq \operatorname{ord}(f)$ . In fact, because  $\operatorname{ord}(q) = \operatorname{ord}(f) - \operatorname{ord}(g)$  we will have  $q \in K[[x]]$  if and only if  $\operatorname{ord}(g) \leq \operatorname{ord}(f)$ . If f(x) = 1 then we obtain  $q(x) = g(x)^{-1}$ .

Since K((x)) is a field containing K[[x]] we can identify  $\operatorname{Frac}(K[[x]])$  with the subfield of K((x)) consisting of elements of the form  $f(x)g(x)^{-1}$  for  $f,g \in K[[x]]$  with  $g \neq 0$ . But note that **every** Laurent series  $f(x) \in K((x))$  has this form. Indeed, if  $\operatorname{ord}(f) \geq 0$  then  $f(x) = f(x)(1)^{-1} \in \operatorname{Frac}(K[[x]])$  and if  $\operatorname{ord}(f) < 0$  then

$$f(x) = (x^{-\operatorname{ord}(f)}f(x))(x^{-\operatorname{ord}(f)})^{-1} \in \operatorname{Frac}(K[[x]])$$

because  $x^{-\operatorname{ord}(f)}f(x)$  and  $x^{-\operatorname{ord}(f)}$  are in K[[x]]. We conclude that

$$\operatorname{Frac}(K[[x]]) = K((x))$$

[As you may know, any function  $f : \mathbb{C} \to \mathbb{C}$  holomorphic in an annulus has a convergent Laurent series expansion there. This makes complex analysis a very algebraic subject.]

**Problem 3.** (Partial Fraction Expansion) To what extent can we "un-add" fractions? Let R be a PID. Consider  $a, b \in R$  with  $b = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$  where  $p_1, \ldots, p_k$  are distinct primes and  $e_1, \ldots, e_k \ge 1$ .

(a) Prove that there exist  $a_1, \ldots, a_k \in R$  such that

$$\frac{a}{b} = \frac{a_1}{p_1^{e_1}} + \frac{a_2}{p_2^{e_2}} + \dots + \frac{a_k}{p_k^{e_1}}.$$

[Hint: First prove it when b = pq with p, q coprime. Use Bézout.]

Now assume that R is a Euclidean domain with norm function  $N: R - \{0\} \to \mathbb{N}$ .

(b) Prove that there exist  $c, r_{ij} \in R$  such that

$$\frac{a}{b} = c + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{r_{ij}}{p_i^j},$$

where for all i, j we have either  $r_{ij} = 0$  or  $N(r_{ij}) < N(p_i)$ . [Hint: If p is prime, prove that we can write  $\frac{a}{p^e}$  as  $\frac{q}{p^{e-1}} + \frac{r}{p^e}$  where either r = 0 or N(r) < N(p). Then use (a).]

Now suppose that the norm function satisfies  $N(a) \leq N(ab)$  and  $N(a-b) \leq \max\{N(a), N(b)\}$  for all  $a, b \in R - \{0\}$ .

(c) Prove that the partial fraction expansion from part (b) is **unique**. [Hint: Suppose we have two expansions

$$c + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{r_{ij}}{p_i^j} = \frac{a}{b} = c' + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{r'_{ij}}{p_i^j}.$$

Then we get a partial fraction expansion of zero:

$$\frac{0}{b} = \frac{a-a}{b} = (c-c') + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{(r_{ij} - r'_{ij})}{p_i^j}.$$

For all i, j define  $\hat{b}_{ij} := b/p_i^j$ , so that

$$b(c'-c) = \sum_{i=1}^{k} \sum_{j=1}^{e_i} (r_{ij} - r'_{ij}) \hat{b}_{ij}.$$

Suppose for contradiction that there exist i, j such that  $r_{ij} \neq r'_{ij}$  and let j be maximal with this property. Use the last equation above to show that  $p_i$  divides  $(r_{ij} - r'_{ij})$  and hence

$$N(p_i) \le N(r_{ij} - r'_{ij}) \le \max\{N(r_{ij}), N(r'_{ij})\} < N(p_i)$$

Contradiction.]

(d) If K is a field and R = K[x] then the norm function  $N(f) = \deg(f)$  satisfies the hypotheses of part (c) so the expansion is unique. **Compute** the unique expansion of

$$\frac{x^5 + x + 1}{(x+1)^2(x^2+1)} \in \mathbb{R}(x).$$

(e) If  $R = \mathbb{Z}$  then the norm function N(a) = |a| does **not** satisfy  $|a - b| \leq \max\{|a|, |b|\}$ . However, if we require remainders r, r' to be nonnegative then it is true that  $|r - r'| \leq \max\{|r|, |r'|\}$  and the proof of uniqueness in (c) still goes through. **Compute** the unique expansion of  $\frac{77}{12} \in \mathbb{Q}$  with nonnegative parameters  $r_{ij} \geq 0$ .

*Proof.* Consider  $a, b \in R$  with  $b = p_1^{e_1} \cdots p_k^{e_k}$  where  $p_1, \ldots, p_k$  are distinct primes and  $e_1, \ldots, e_k \ge 1$ . For part (a), note that since R is a PID we must have  $(p_1^{e_1}, p_2^{e_2} \cdots p_k^{e_k}) = (d)$  where d is the greatest common divisor. Since  $p_1^{e_1}$  and  $p_2^{e_2} \cdots p_k^{e_k}$  are coprime this implies that d = 1, and hence there exist  $c_1, c_2 \in R$  such that

$$1 = c_1 p_2^{e_2} \cdots p_k^{e_k} + c_2 p_1^{e_1}.$$

Multiplying both sides by  $\frac{a}{b}$  gives

$$\frac{a}{b} = \frac{ac_1}{p_1^{e_1}} + \frac{ac_2}{p_2^{e_2}\cdots p_k^{e_k}}$$

Now the result follows by induction.

For part (b), let R be Euclidean and suppose that we have written

$$\frac{a}{b} = \frac{a_1}{p_1^{e_1}} + \dots + \frac{a_k}{p_k^{e_k}}.$$

Now consider any  $\frac{a}{p^e}$  with  $a, p \in R$  and p prime. We can divide a by p to obtain  $q, r \in R$  such that a = pq + r and either r = 0 or N(r) < N(p). In other words, we have

$$\frac{a}{p^e} = \frac{qp+r}{p^e} = \frac{q}{p^{e-1}} + \frac{r}{p^e}$$

where either r = 0 or N(r) < N(p). By induction we obtain

$$\frac{a}{p^e} = \frac{q}{p^0} + \frac{r_1}{p^1} + \frac{r_2}{p^2} + \dots + \frac{r_e}{p^e},$$

where for all *i* we have  $r_i = 0$  or  $N(r_i) < N(p)$ . Then, combining these expressions for each summand  $\frac{a_i}{p_i^{e_i}}$  of  $\frac{a}{b}$  gives

$$\frac{a}{b} = c + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{r_{ij}}{p_i^j},$$

where for all i, j we have  $r_{ij} = 0$  or  $N(r_{ij}) < N(p_i)$ . This is called a "partial fraction expansion" of  $\frac{a}{b}$ .

For part (c), suppose that the Euclidean norm satisfies  $N(a) \leq N(ab)$  and  $N(a-b) \leq \max\{N(a), N(b)\}$  for all  $a, b \in R - \{0\}$ , and suppose we have two partial fraction expansions

$$c + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{r_{ij}}{p_i^j} = \frac{a}{b} = c' + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{r'_{ij}}{p_i^j}.$$

I claim that  $r_{ij} = r'_{ij}$  for all i, j (and hence also c = c'). To see this, we subtract the expansions:

$$0 = (c' - c) + \sum_{i=1}^{k} \sum_{j=1}^{e_i} \frac{(r_{ij} - r'_{ij})}{p_i^j}$$

Then we multiply both sides by b to get

$$b(c - c') = \sum_{i=1}^{k} \sum_{j=1}^{e_i} (r_{ij} - r'_{ij})\hat{b}_{ij},$$

where  $\hat{b}_{ij} := b/p_i^j \in R$ . Now assume for contradiction that we have  $r_{mn} \neq r'_{mn}$  for some  $m, n \geq 1$  and let n be **maximal** with this property. That is, suppose that we also have  $r_{mj} = r'_{mj}$  for all j > n. In this case, note that  $p_m^{e_m - n}$  divides  $\hat{b}_{ij}$  for every nonzero term in the sum, thus since R is a domain we can cancel it to get

(4) 
$$b'(c-c') = \sum_{i=1}^{k} \sum_{j=1}^{e_i} (r_{ij} - r'_{ij}) \hat{b}'_{ij}$$

where

$$b' = p_1^{e_1} \cdots p_m^n \cdots p_k^{e_k} \quad \text{and} \quad \hat{b}'_{ij} = \begin{cases} p_1^{e_1} \cdots p_i^{e_i - j} \cdots p_m^n \cdots p_k^{e_k} & i < m \\ p_1^{e_1} \cdots p_i^{e_i - j} \cdots p_m^n \cdots p_k^{e_k} & i > m \\ p_1^{e_1} \cdots p_m^{n - j} \cdots p_k^{e_k} & i = m, j \le n \\ 0 & i = m, j > n \end{cases}$$

Finally, note that  $p_m$  divides  $(r_{mn} - r'_{mn})\hat{b}'_{mn}$  because  $p_m$  divides every other term of the sum (4). Since  $p_m$  is prime, Euclid says that  $p_m|(r_{mn} - r'_{mn})$  or  $p_m|\hat{b}'_{mn}$ . But by definition we know that  $p_m$  does **not** divide  $\hat{b}'_{mn}$ . We conclude that  $p_m$  divides  $r_{mn} - r'_{mn}$  and then the assumed properties of the norm imply that

$$N(p_m) \le N(r_{mn} - r'_{mn}) \le \max \{N(r_{mn}), N(r'_{mn})\} < N(p_m).$$

Contradiction.

For parts (d) and (e) I will naively follow the steps of the proof. I will not use any tricks like differentiation. (You can get the solution faster with tricks.) For part (d) we first look for polynomials f(x) and g(x) such that

$$1 = f(x)(x+1)^2 + g(x)(x^2+1).$$

For this we consider the set of triples  $f, g, h \in \mathbb{R}[x]$  with  $f(x)(x+1)^2 + g(x)(x^2+1) = h(x)$ and apply row reduction:

| f(x) | g(x)    | h(x)      |
|------|---------|-----------|
| 1    | 0       | $(x+1)^2$ |
| 0    | 1       | $x^2 + 1$ |
| 1    | -1      | 2x        |
| -x/2 | 1 + x/2 | 1         |

We conclude that  $(-x/2)(x+1)^2 + (1+x/2)(x^2+1) = 1$  and hence

$$\frac{1}{(x+1)^2(x^2+1)} = \frac{(-x/2)(x+1)^2 + (1+x/2)(x^2+1)}{(x+1)^2(x^2+1)}$$
$$= \frac{-x/2}{x^2+1} + \frac{1+x/2}{(x+1)^2}.$$

Multiplying both sides by  $x^5 + x + 1$  gives

$$\frac{x^5 + x + 1}{(x+1)^2(x^2+1)} = \frac{-\frac{1}{2}(x^6 + x^2 + x)}{x^2 + 1} + \frac{\frac{1}{2}(x^6 + 2x^5 + x^2 + 3x + 2)}{(x+1)^2}.$$

Now we deal with both of the summands separately. First we divide  $-\frac{1}{2}(x^6 + x^2 + x)$  by  $x^2 + 1$  to get

$$\frac{1}{2}(x^6 + x^2 + x) = -\frac{1}{2}(x^4 - x^2 + 2)(x^2 + 1) - \frac{1}{2}(x - 2),$$

hence

$$\frac{-\frac{1}{2}(x^6 + x^2 + x)}{x^2 + 1} = -\frac{1}{2}(x^4 - x^2 + 2) + \frac{-\frac{1}{2}(x - 2)}{(x^2 + 1)}$$

Next we divide  $\frac{1}{2}(x^6 + 2x^5 + x^2 + 3x + 2)$  by (x + 1) to get

$$\frac{1}{2}(x^6 + 2x^5 + x^2 + 3x + 2) = \frac{1}{2}(x^5 + x^4 - x^3 + x^2 + 3)(x+1) - \frac{1}{2}$$

hence

$$\frac{\frac{1}{2}(x^6 + 2x^5 + x^2 + 3x + 2)}{(x+1)^2} = \frac{\frac{1}{2}(x^5 + x^4 - x^3 + x^2 + 3)}{(x+1)} + \frac{-1/2}{(x+1)^2}$$

Finally, we divide  $\frac{1}{2}(x^5 + x^4 - x^3 + x^2 + 3)$  by (x + 1) to get

$$\frac{1}{2}(x^5 + x^4 - x^3 + x^2 + 3) = \frac{1}{2}(x^4 - x^2 + 2x - 2)(x + 1) + 5,$$

hence

$$\frac{\frac{1}{2}(x^5 + x^4 - x^3 + x^2 + 3)}{(x+1)} = \frac{1}{2}(x^4 - x^2 + 2x - 2) + \frac{5/2}{(x+1)}$$

Putting everything together gives

$$\frac{x^5 + x + 1}{(x+1)^2(x^2+1)} = (x-2) + \frac{5/2}{(x+1)} + \frac{-1/2}{(x+1)^2} + \frac{-(x-2)/2}{(x^2+1)}.$$

[By doing everything out longhand I meant to show that it is possible, not that it is easy.]

For part (e) we first factor  $12 = 3 \cdot 4$  with 3,4 coprime. Now we look for  $x, y \in \mathbb{Z}$  with 3x + 4y = 1. This can be done by inspection:

$$1 = 3(-1) + 4 \cdot 1$$

[If it couldn't be done by inspection we would use the Euclidean algorithm.] Dividing by 12 gives

$$\frac{1}{12} = \frac{3(-1) + 4 \cdot 1}{3 \cdot 4} = \frac{-1}{4} + \frac{1}{3},$$

and then multiplying by 77 gives

$$\frac{77}{12} = \frac{-77}{4} + \frac{77}{3}.$$

Now we deal with both of the summands separately. First we divide 77 by 3 to get

$$77 = 3 \cdot 25 + 2$$
$$\frac{77}{3} = 25 + \frac{2}{3}.$$

Then we divide -77 by 2 to get

$$-77 = 2(-39) + 1$$
$$\frac{-77}{4} = \frac{-39}{2} + \frac{1}{4}.$$

Finally, we divide -39 by 2 to get

$$-39 = 2(-20) + 1$$
$$\frac{-39}{2} = -20 + \frac{1}{2}.$$

Putting everything together gives

$$\frac{77}{12} = 5 + \frac{1}{2} + \frac{1}{4} + \frac{2}{3}.$$

This result is unique as long as we use positive remainders.

[Why did I ask you to do this? Because I always wondered about partial fractions. They appear in Calculus to show us that all rational functions over  $\mathbb{R}$  can be integrated in elementary terms. For example:

$$\int \frac{x^5 + x + 1}{(x+1)^2 (x^2+1)} \, dx = \frac{1}{2} x^2 - 2x + \frac{5}{2} \ln(x+1) - \frac{1}{2(x+1)} - \frac{1}{4} \ln(x^2+1) + \arctan(x).$$

But then partial fractions mysteriously disappear from the curriculum. Now at least we know why.]