Math 662 Spring 2014
Homework 2 Drew Armstrong

Problem 0. (Drawing Pictures) The equation y* = 23 — x defines a “curve” in the

complex “plane” C2. What does it look like? Unfortunately we can only see real things, so
we substitute x = a 4+ ib and y = ¢+ id with a, b, c,d € R. Equating real and imaginary parts
then gives us two simultaneous equations:

(1) a® —a —3ab=c* — d?,
(2) b +b— 3a%b = —2cd.

These equations define a real 2-dimensional surface in real 4-dimensional space R* = C2.
Unfortunately we can only see 3-dimensional space so we will interpret the b coordiante as
“time”. Sketch the curve in real (a, ¢, d)-space at time b = 0. [Hint: It will look 1-dimensional
to you.] Can you imagine what it looks like at other times b?

At time b = 0 equation (2) becomes 0 = c¢d which implies that ¢ =0 or d = 0. When d =0
equation (1) becomes a® — a = ¢2. This is a curve in the (a,c)-plane which we sketched on
HW1. When ¢ = 0 equation (1) becomes a® — a = —d?, or (—a)® — (—a) = d?. This curve
lives in the (a, d)-plane. It looks just like the curve in the (a, ¢)-plane but it is reflected across

the (¢, d)-plane and rotated 90°. The full solution is the disjoint union of these two:




It looks like four circles glued together in a chain. If you can imagine, the two outer circles
meet at the point at infinity, and the four circles together form the skeleton of a torus. The
other times sweep out the surface of the torus. For example, here I have plotted the curves in
(a,c,d)-space for b € {—.5,—.4,-.3,—.2,—.1,0,.1,.2,.3, .4, .5}:

Problem 1. (Local Rings) Let R be a ring. We say R is local if it contains a unique
(nontrivial) maximal ideal.

(a) Prove that R is local if and only if its set of non-units is an ideal.
(b) Given a prime ideal P < R, prove that the localization

Rp = {% : a,beR,ngP}
is a local ring. [Hint: The maximal ideal is called PRp.]

(c) Consider a prime ideal P < R. By part (b) we can define the residue field Rp/PRp.
Prove that we have an isomorphism of fields:

Frac(R/P) ~ Rp/PRp.

Proof. For part (a), let M C R denote the set of non-units. Note that M # R because 1 ¢ M.
First we assume that M is an ideal. In this case, let I < R be any ideal of R not contained
in M. Then by definition I contains a unit and hence I = R. (If u € [ is a unit then u € I
and u! € R imply 1 = wu! € I. Then for all r € R we have r = 1r € I.) We conclude
that M is the unique maximal ideal of R, hence R is local. Conversely, assume that R is local
with unique maximal ideal m < R. Since m # R we know that m contains no units, hence
m C M. On the other hand, we will show that M C m. Suppose for contradiction that there
exists ¢ € M with z € m. Since x ¢ m and R/m is a field (m is maximal) there exists y € R
such that

rzy+m=(r+m)(y+m)=1+m.

This implies that xy = 1+4a for some a € m. But then 1+a ¢ m since otherwise 1 = (1+a)—a
is in m (this is a contradiction because m # R). Hence the ideal (zy) = (1+a) strictly contains
m and since m is maximal this implies (zy) = R. We conclude that zy is a unit, hence z is
a unit: 2(y(zy)~!) = (zy)(zy)~! = 1. This contradicts the fact that z € M and we conclude
that M = m is an ideal.



[Remark: | could have given a shorter proof of M C m as follows. Consider any x € M. Since
() < R is a proper ideal, it is contained in some proper maximal ideal, hence (z) < m. We
conclude that z € m. But this argument implicitly uses the Axiom of Choice. The proof | gave
above shows that the Axiom of Choice is not necessary.]

For part (b), let P < R be prime and consider the localization

ot

I will show that the nonunits of Rp form an ideal. We can think of Rp as a subring of Frac(R).
Let 7 € Rp. Since b # 0 this fraction has inverse g € Frac(R). This inverse will be in Rp if
and only if a ¢ P. In other words, § € Rp is a nonunit if and only if a € P. Let

:a,bER,b%P}.

PRP:{%:mbeRaengP}

denote the set of nonunits. This is an ideal because given %,g € PRp and % € Rp (i.e. with
a,c,e € P and b,d, f ¢ P) we have

a c ad — be

a_c_ P
b d-  pa S TEP
because ad — bc € P and bd ¢ P, and
a e ae
—-—-—=—¢€¢PR
b F e

because ae € P and bf ¢ P. We conclude that Rp is local with maximal ideal PRp.

For part (c), note that Rp/PRp is a field because PRp < Rp is a maximal ideal. Note
also that R/P is a domain because P < R is a prime ideal, thus we can form the field of
fractions Frac(R/P). I claim that these two fields are isomorphic. To see this, note first that
s+ P # 0+ P implies s ¢ P. Thus we can define a map from Frac(R/P) to Rp/PRp by

r+ P r
3 — — + PRp.
(3) s+ P s + P
To see that this is well-defined, consider s,u ¢ P and suppose that Zig = ﬁ—g, ie,ru+P =

(r+ P)(u+ P)=(s+ P)(t+ P) = st + P. Then since ru — st € P and su ¢ P we conclude
that © — 5 = %;“ € PRp. It is easy to see that the map is a surjective ring homomorphism
(details omitted). Finally we will show that the map is injective by showing that the kernel
is trivial. Consider £ € Rp (i.e. with s ¢ P) and suppose that

f‘i‘]Dl%P:PI%Pa
S

i.e., that £ € PRp. This means that » € P and hence gig is the zero element of Frac(R/P).
We conclude that

Frac(R/P) ~ Rp/PRp.
U

Problem 2. (Formal Power Series) Let K be a field and consider the ring of formal power
series:

K([z]] == {ao + a17 + asz® + azaz® + - -+ 1 q; € K for all i € N} .
The “degree” of a power series does not necessarily exist. However, for all nonzero f(x) =
>~ akz* we can define the “order” ord(f) := the minimum k such that ay # 0.
(a) Prove that K[[z]] is a domain.



(b) Prove that K[[z]] is a Euclidean domain with norm function ord : K[[z]] — {0} — N.
(You can define ord(0) = —oo if you want.) [Hint: Given f,g € K[[z]] we have fl|g if
and only if ord(f) < ord(g), so the remainder is always zero.]

(c) Prove that the units of K[[z]] are just the power series with nonzero constant term.

(d) Conclude that K[[z]] is a local ring.

(e) Prove that Frac (K[[z]]) is isomorphic to the ring of formal Laurent series:

K((z)):= {a,na:_” +appz "Mt a0 24 iy € K forall i > —n} .

Proof. Given power series f(z) = 3, apz® and g(x) = 3, by’ recall that the coefficient of
2™ in f(x)g(z) is given by >, ., apbe. I claim that ord(fg) = ord(f) + ord(g). Indeed, if
m < ord(f)+ord(g) then k+¢ = m implies that either k < ord(f) or £ < ord(g) (otherwise we
have k-+{ > ord(f)+ord(g) > m). Thus every term in the sum ), . ,_ . axby is zero. However,
if m = ord(f)-+ord(g) then the coefficient of ™ in f(z)g(x) is Dy y—p, akbe = aora(f)bora(g) 7 0
because aorq(f) # 0 and byq(g) # 0 by assumption (and K is a domain). We conclude that
ord(fg) = ord(f) + ord(g).

For part (a), assume that f,g € K[[z]|] are nonzero. This implies that ord(f),ord(g) < oo
and hence ord(fg) = ord(f) + ord(g) < co. We conclude that K[[z]] is a domain.

For part (b), consider f(z) = >, arz* and g(z) = >, byx’ with g # 0 (i.e. with ord(g) <
o0).We want to prove that there exist ¢,r € Kl[z|] with f = gg + r and either r = 0 or
ord(r) < ord(g). Indeed, if ord(f) < ord(g) then we can simply take ¢(z) = 0 and r(x) = f(x).
If ord(f) > ord(g) then we can perform “long division” as follows. Let b be the lowest
coefficient of g(x). Then let f; = f and for all n > 1 such that f,, # 0 define

Fri1(z) == folz) — %” gord(fn)=ord(9) ().
where a,, is the lowest coefficient of f,(xz). By construction we have ord(g) < ord(f;) <
ord(f2) < ord(fs) < --- so this is always defined. If the algorithm terminates with fy = 0
then we set a, = 0 for all n > N, otherwise we let the algorithm run forever (i.e. use
induction). In the end we obtain a formal power series

q(gj) = Z % xord(fn)—ord(g)

n>1

with the property that f(z) = g(z)g(x) (the remainder is always zero!). This proves that
K[[z]] is Euclidean.

[Probably a proof by example would have been better, but | didn't feel like typesetting an infinite
long division in IATEX. | encourage you to compute an example yourself.]

In the proof of (b) note that we actually showed that given two power series f, g € K[[z]]
we have g¢|f if and only if ord(g) < ord(f). For part (c), note that g € K[[z]] is a unit if and
only if g divides 1. By the above remark this happens if and only if ord(g) < ord(1) =0, i.e.,
if and only if ord(g) = 0. Finally, note that ord(g) = 0 if and only if g has nonzero constant
term.

For part (d), note that the set of nonunits of K[[z]] are just the power series with zero
constant term, i.e., the power series divisible by x:

(z) :={zf(z) : f(z) € K[[]]}.
Since this is an ideal we conclude that K[[z]] is a local ring.
For part (e), we say that f(x) = ", axz" is a formal Laurent series if there exists a minimum
r € Z (possibly negative) such that a, # 0. In this case we define ord(f) = r. Let K((z))
denote the ring of formal Laurent series with addition and multiplication defined just as for
power series. Then K[[z]] C K((z)) is the subring or Laurent series with nonnegative order.



I claim that K((x)) is a field. Indeed, given any two Laurent series f,g € K((x)) with
g # 0, the long division process defined above can be used to obtain ¢(z) € K((z)) such
that f(z) = ¢(z)g(x). We we do not require ord(g) < ord(f). In fact, because ord(q) =
ord(f) — ord(g) we will have ¢ € K[[z]] if and only if ord(g) < ord(f). If f(z) = 1 then we
obtain ¢(z) = g(z) ™!

Since K ((z)) is a field containing K[[z]] we can identify Frac(K[[x]]) with the subfield of
K((z)) consisting of elements of the form f(z)g(z)~! for f,g € K|[z]] with ¢ # 0. But
note that every Laurent series f(z) € K((x)) has this form. Indeed, if ord(f) > 0 then
f(z) = f(x)(1)~! € Frac(K[[z]]) and if ord(f) < O then

(x

f(z) = (a7 f(x))
because ) f(x) and 2=°"4) are in K[[z]]. We conclude that

Frac(K[[z]]) = K((z)).

—ord(f ) = Frac(K[[z]])

O

[As you may know, any function f : C — C holomorphic in an annulus has a convergent Laurent
series expansion there. This makes complex analysis a very algebraic subject.]

Problem 3. (Partial Fraction Expansion) To what extent can we “un-add” fractions?
Let R be a PID. Consider a,b € R with b = p{*p5? - - pi* where p1, ..., py are distinct primes
and eg,...,ep > 1.

(a) Prove that there exist ap,...,ar € R such that

a a ag
,_7_,_7_,_ R
b p1 p2 by

[Hint: First prove it when b = pq with p, ¢ coprime. Use Bézout.]
Now assume that R is a Euclidean domain with norm function N : R — {0} — N.
(b) Prove that there exist ¢,7;; € R such that

ke

vy

i=1 j=1 Vi

where for all 7, j we have either r;; = 0 or N(r;;) < N(p;). [Hint: If p is prime, prove

that we can write - pf_l + 2¢ where either 7 =0 or N(r) < N(p). Then use (a)]

Now suppose that the norm function satisfies N(a) < N(ab) and N(a—b) < max{N(a), N(b)}
for all a,b € R —{0}.

(c) Prove that the partial fraction expansion from part (b) is unique. [Hint: Suppose we
have two expansions

T a b &
c—l—E E U:*:CI"'E:E:%]"
i=1 j= TP i=1 j=1 Pi

Then we get a partial fraction expansion of zero:

/
ey )

=1 j=1 z




For all 7, j define Bij = b/pg, so that
ke
e = 0) = 30 (g — ry by

i=1 j=1
Suppose for contradiction that there exist ¢, j such that r;; # rgj and let j be maximal
with this property. Use the last equation above to show that p; divides (r;; — rgj) and
hence

N(pi) < N(rij —ri;) < max{N(ry;), N(ri;)} < N(pi).

Contradiction. |

(d) If K is a field and R = K|[z] then the norm function N(f) = deg(f) satisfies the
hypotheses of part (c) so the expansion is unique. Compute the unique expansion of

4+l
(x+1)2(22+1)
(e) If R = Z then the norm function N(a) = |a| does not satisfy |a — b| < max{]|al, |b|}.
However, if we require remainders r, 7’ to be nonnegative then it is true that |r — /| <
max{|r|, ||} and the proof of uniqueness in (c) still goes through. Compute the
unique expansion of % € Q with nonnegative parameters 7;; > 0.

€ R(x).

Proof. Consider a,b € R with b = p{* - ‘pZ’“ where p1, ..., pg are distinct primes and ey, ..., e >
1. For part (a), note that since R is a PID we must have (p{',p5* - - - pi*) = (d) where d is the
greatest common divisor. Since pi' and p5®---p* are coprime this implies that d = 1, and
hence there exist c¢i,co € R such that
L= c1py’ - py + capi'

Multiplying both sides by 3 gives

a acq acy

—— .
Now the result follows by induction.

For part (b), let R be Euclidean and suppose that we have written

a B ay 4 i Qg
b ptil ka’

Now consider any ;z% with a,p € R and p prime. We can divide a by p to obtain ¢,r € R such
that @ = pg + r and either » = 0 or N(r) < N(p). In other words, we have

a qgp+r _q r
pe - pe - pe—l e

pe
where either r = 0 or N(r) < N(p). By induction we obtain
a q 1 T2 Te
— =t ottt S,
pe p0  pt p? P
where for all i we have r; = 0 or N(r;) < N(p). Then, combining these expressions for each

summand ;éi of ¢ gives
7

k i ..
ey

i=1 j=1 Vi
where for all i,j we have r;; = 0 or N(r;) < N(p;). This is called a “partial fraction
expansion” of 7.



For part (c), suppose that the Euclidean norm satisfies N(a) < N(ab) and N(a — b) <
max{N(a), N(b)} for all a,b € R — {0}, and suppose we have two partial fraction expansions

N M

Zl]lpl =1 j= lpz

I claim that ri; = 7 ; forall i, j (and hence also ¢ = ¢/). To see this, we subtract the expansions:
/
(rij — )
1= @+ Y0y Tt
i=1 j=1 2

Then we multiply both sides by b to get

where I;ij = b/ pg € R. Now assume for contradiction that we have 7, # r,,, for some
m,n > 1 and let n be maximal with this property. That is, suppose that we also have
Tmj = T, ; for all j > n. In this case, note that pi»~" divides bl] for every nonzero term in
the sum, thus since R is a domain we can cancel it to get

(4) C— C ZZ Tij — zgu

=1 j=1
where
eif' e .
b’_ e1 n ek d B/ . pilpl ]pg_bpkk Z>m
_pl pmpk an ’L]_ el j er . .
pl"'pm Ce Py z:m,jgn
0 t=m,j>n

Finally, note that py, divides (rpmn — . )b~ because p,, divides every other term of the sum
(4). Since py, is prime, Euclid says that py|(Fmn — ) OF Dm|bh,,. But by definition we know
that p,, does not divide ¥/,,,. We conclude that p,, divides rp,, — r1,,, and then the assumed

properties of the norm imply that
N(pm) < N(rmn — r;nn) < max {N(Tmn)7N(r7,vzn)} < N(pm).

Contradiction.

For parts (d) and (e) I will naively follow the steps of the proof. I will not use any tricks
like differentiation. (You can get the solution faster with tricks.) For part (d) we first look for
polynomials f(z) and g(x) such that

1= f(x)(z+1)*+ g(z)(2® + 1).

For this we consider the set of triples f,g,h € R[z] with f(z)(z + 1)? + g(z)(2? + 1) = h(x)
and apply row reduction:

f@) | glz) | h(z)

1 0 (z +1)?
0 1 22 +1
1 ~1 2

—x/2 | 1+z/2 1




We conclude that (—z/2)(z +1)? + (1 + 2/2)(2? + 1) = 1 and hence

1 C(—z/2) (@ + 12+ (1 + 2/2) (2 4 1)
(x+1)2(22+1) (z +1)2(22 4+ 1)
_—z/2 14x/2

T2+l (z+ 1)
Multiplying both sides by z° + = + 1 gives
P +r+1 — 1@+ 22 +2) (284225 + 2% +32+2)

(x+1)2(22 +1) z?2+1 (x+1)2

Now we deal with both of the summands separately. First we divide —%(mﬁ +224x) by 22 +1
to get

1 1 1
—5(51:6 +a2*+2) = =5 P2t 1 2) (2 + 1) — s (z - 2),

2
hence
—3(af +a +2) _ _1(x4_x2+2)+ —2(x—2)
241 2 (z2+1) °

Next we divide % (2% 4 22° + 2% 4+ 3z + 2) by (z + 1) to get

1 1 1
§(x6+2x5+x2—|—3x—|—2):§(m5+x4—x3+x2+3)(x—|—1)—7,

2
hence
(2% +22° + 2% + 32 + 2) B T@d +at — a3+ 2% +3) N —1/2
(z +1)2 N (z+1) (x+1)%
Finally, we divide §(2° 4+ 2* — 23 + 2% + 3) by (2 + 1) to get
1 1
§(x5+:1c4—953+a:2+3) = §(x4—$2+23:—2)(x+1)+5,
hence
L5 4 4 34 .2
s> +z* —x+2°+3 1 5/2
3 )27(4—372—1—237—2)—1— / _
(x+1) 2 (x+1)
Putting everything together gives
P +z+1 5/2 ~1/2 —(x—2)/2

=(x—-2)+

T+ 2@+ C+D) @ 2 @)

[By doing everything out longhand | meant to show that it is possible, not that it is easy.]
For part (e) we first factor 12 = 3 - 4 with 3,4 coprime. Now we look for x,y € Z with
3z 4+ 4y = 1. This can be done by inspection:

1=3(-1)+4-1
[If it couldn’t be done by inspection we would use the Euclidean algorithm.] Dividing by 12 gives
1 3(-1)+4-1 -1 1

12 3.4 FRREE
and then multiplying by 77 gives
[

-1 T3



Now we deal with both of the summands separately. First we divide 77 by 3 to get

77=3-25+2
77 2
3= 25 + 3"
Then we divide —77 by 2 to get
—77=2(-39)+1
77 =39 1
o o2 o

Finally, we divide —39 by 2 to get
—39=2(-20)+1

-39 1
- = —20 + 3
Putting everything together gives
T2
12 2 4 3
This result is unique as long as we use positive remainders. O

[Why did | ask you to do this? Because | always wondered about partial fractions. They appear in
Calculus to show us that all rational functions over R can be integrated in elementary terms. For

example:

2 +z+1 1 5 1 1
de = =22 —2 -1 1)— ——— — —In(z? +1 t .
/(az+1)2(m2+1) T =g T+ 5 n(zx +1) SarD) 1 n(z* + 1) 4 arctan(z)

But then partial fractions mysteriously disappear from the curriculum. Now at least we know why.]




