
Math 662 Spring 2014
Homework 2 Drew Armstrong

Problem 0. (Drawing Pictures) The equation y2 = x3 − x defines a “curve” in the
complex “plane” C2. What does it look like? Unfortunately we can only see real things, so
we substitute x = a + ib and y = c + id with a, b, c, d ∈ R. Equating real and imaginary parts
then gives us two simultaneous equations:

a3 − a− 3ab = c2 − d2,(1)

b3 + b− 3a2b = −2cd.(2)

These equations define a real 2-dimensional surface in real 4-dimensional space R4 = C2.
Unfortunately we can only see 3-dimensional space so we will interpret the b coordiante as
“time”. Sketch the curve in real (a, c, d)-space at time b = 0. [Hint: It will look 1-dimensional
to you.] Can you imagine what it looks like at other times b?

At time b = 0 equation (2) becomes 0 = cd which implies that c = 0 or d = 0. When d = 0
equation (1) becomes a3 − a = c2. This is a curve in the (a, c)-plane which we sketched on
HW1. When c = 0 equation (1) becomes a3 − a = −d2, or (−a)3 − (−a) = d2. This curve
lives in the (a, d)-plane. It looks just like the curve in the (a, c)-plane but it is reflected across
the (c, d)-plane and rotated 90◦. The full solution is the disjoint union of these two:



It looks like four circles glued together in a chain. If you can imagine, the two outer circles
meet at the point at infinity, and the four circles together form the skeleton of a torus. The
other times sweep out the surface of the torus. For example, here I have plotted the curves in
(a, c, d)-space for b ∈ {−.5,−.4,−.3,−.2,−.1, 0, .1, .2, .3, .4, .5}:

Problem 1. (Local Rings) Let R be a ring. We say R is local if it contains a unique
(nontrivial) maximal ideal.

(a) Prove that R is local if and only if its set of non-units is an ideal.
(b) Given a prime ideal P ≤ R, prove that the localization

RP :=
{a
b

: a, b ∈ R, b 6∈ P
}

is a local ring. [Hint: The maximal ideal is called PRP .]
(c) Consider a prime ideal P ≤ R. By part (b) we can define the residue field RP /PRP .

Prove that we have an isomorphism of fields:

Frac(R/P ) ≈ RP /PRP .

Proof. For part (a), let M ⊆ R denote the set of non-units. Note that M 6= R because 1 6∈M .
First we assume that M is an ideal. In this case, let I ≤ R be any ideal of R not contained
in M . Then by definition I contains a unit and hence I = R. (If u ∈ I is a unit then u ∈ I
and u−1 ∈ R imply 1 = uu−1 ∈ I. Then for all r ∈ R we have r = 1r ∈ I.) We conclude
that M is the unique maximal ideal of R, hence R is local. Conversely, assume that R is local
with unique maximal ideal m < R. Since m 6= R we know that m contains no units, hence
m ⊆M . On the other hand, we will show that M ⊆m. Suppose for contradiction that there
exists x ∈M with x 6∈m. Since x 6∈m and R/m is a field (m is maximal) there exists y ∈ R
such that

xy + m = (x + m)(y + m) = 1 + m.

This implies that xy = 1+a for some a ∈m. But then 1+a 6∈m since otherwise 1 = (1+a)−a
is in m (this is a contradiction because m 6= R). Hence the ideal (xy) = (1+a) strictly contains
m and since m is maximal this implies (xy) = R. We conclude that xy is a unit, hence x is
a unit: x(y(xy)−1) = (xy)(xy)−1 = 1. This contradicts the fact that x ∈M and we conclude
that M = m is an ideal.



[Remark: I could have given a shorter proof of M ⊆m as follows. Consider any x ∈M . Since
(x) < R is a proper ideal, it is contained in some proper maximal ideal, hence (x) ≤ m. We
conclude that x ∈ m. But this argument implicitly uses the Axiom of Choice. The proof I gave
above shows that the Axiom of Choice is not necessary.]

For part (b), let P ≤ R be prime and consider the localization

RP :=
{a
b

: a, b ∈ R, b 6∈ P
}
.

I will show that the nonunits of RP form an ideal. We can think of RP as a subring of Frac(R).
Let a

b ∈ RP . Since b 6= 0 this fraction has inverse b
a ∈ Frac(R). This inverse will be in RP if

and only if a 6∈ P . In other words, a
b ∈ RP is a nonunit if and only if a ∈ P . Let

PRP :=
{a
b

: a, b ∈ R, a ∈ P, b 6∈ P
}

denote the set of nonunits. This is an ideal because given a
b ,

c
d ∈ PRP and e

f ∈ RP (i.e. with

a, c, e ∈ P and b, d, f 6∈ P ) we have

a

b
− c

d
=

ad− bc

bd
∈ PRP

because ad− bc ∈ P and bd 6∈ P , and

a

b
· e
f

=
ae

bf
∈ PRP

because ae ∈ P and bf 6∈ P . We conclude that RP is local with maximal ideal PRP .
For part (c), note that RP /PRP is a field because PRP < RP is a maximal ideal. Note

also that R/P is a domain because P < R is a prime ideal, thus we can form the field of
fractions Frac(R/P ). I claim that these two fields are isomorphic. To see this, note first that
s + P 6= 0 + P implies s 6∈ P . Thus we can define a map from Frac(R/P ) to RP /PRP by

(3)
r + P

s + P
7−→ r

s
+ PRP .

To see that this is well-defined, consider s, u 6∈ P and suppose that r+P
s+P = t+P

u+P , i.e., ru+P =

(r + P )(u + P ) = (s + P )(t + P ) = st + P . Then since ru− st ∈ P and su 6∈ P we conclude
that r

s −
t
u = ru−st

su ∈ PRP . It is easy to see that the map is a surjective ring homomorphism
(details omitted). Finally we will show that the map is injective by showing that the kernel
is trivial. Consider r

s ∈ RP (i.e. with s 6∈ P ) and suppose that

r

s
+ PRP = PRP ,

i.e., that r
s ∈ PRP . This means that r ∈ P and hence r+P

s+P is the zero element of Frac(R/P ).
We conclude that

Frac(R/P ) ≈ RP /PRP .

�

Problem 2. (Formal Power Series) Let K be a field and consider the ring of formal power
series:

K[[x]] :=
{
a0 + a1x + a2x

2 + a3x
3 + · · · : ai ∈ K for all i ∈ N

}
.

The “degree” of a power series does not necessarily exist. However, for all nonzero f(x) =∑
k a

kxk we can define the “order” ord(f) := the minimum k such that ak 6= 0.

(a) Prove that K[[x]] is a domain.



(b) Prove that K[[x]] is a Euclidean domain with norm function ord : K[[x]] − {0} → N.
(You can define ord(0) = −∞ if you want.) [Hint: Given f, g ∈ K[[x]] we have f |g if
and only if ord(f) ≤ ord(g), so the remainder is always zero.]

(c) Prove that the units of K[[x]] are just the power series with nonzero constant term.
(d) Conclude that K[[x]] is a local ring.
(e) Prove that Frac (K[[x]]) is isomorphic to the ring of formal Laurent series:

K((x)) :=
{
a−nx

−n + a−n+1x
−n+1 + a−n+2x

−n+2 + · · · : ai ∈ K for all i ≥ −n
}
.

Proof. Given power series f(x) =
∑

k akx
k and g(x) =

∑
` b`x

` recall that the coefficient of
xm in f(x)g(x) is given by

∑
k+`=m akb`. I claim that ord(fg) = ord(f) + ord(g). Indeed, if

m < ord(f)+ord(g) then k+` = m implies that either k < ord(f) or ` < ord(g) (otherwise we
have k+` ≥ ord(f)+ord(g) > m). Thus every term in the sum

∑
k+`=m akb` is zero. However,

if m = ord(f)+ord(g) then the coefficient of xm in f(x)g(x) is
∑

k+`=m akb` = aord(f)bord(g) 6= 0
because aord(f) 6= 0 and bord(g) 6= 0 by assumption (and K is a domain). We conclude that
ord(fg) = ord(f) + ord(g).

For part (a), assume that f, g ∈ K[[x]] are nonzero. This implies that ord(f), ord(g) < ∞
and hence ord(fg) = ord(f) + ord(g) <∞. We conclude that K[[x]] is a domain.

For part (b), consider f(x) =
∑

k akx
k and g(x) =

∑
` b`x

` with g 6= 0 (i.e. with ord(g) <
∞).We want to prove that there exist q, r ∈ K[[x]] with f = qg + r and either r = 0 or
ord(r) < ord(g). Indeed, if ord(f) < ord(g) then we can simply take q(x) = 0 and r(x) = f(x).
If ord(f) ≥ ord(g) then we can perform “long division” as follows. Let b be the lowest
coefficient of g(x). Then let f1 = f and for all n ≥ 1 such that fn 6= 0 define

fn+1(x) := fn(x)− an
b

xord(fn)−ord(g)g(x).

where an is the lowest coefficient of fn(x). By construction we have ord(g) ≤ ord(f1) <
ord(f2) < ord(f3) < · · · so this is always defined. If the algorithm terminates with fN = 0
then we set an = 0 for all n ≥ N , otherwise we let the algorithm run forever (i.e. use
induction). In the end we obtain a formal power series

q(x) :=
∑
n≥1

an
b

xord(fn)−ord(g)

with the property that f(x) = q(x)g(x) (the remainder is always zero!). This proves that
K[[x]] is Euclidean.

[Probably a proof by example would have been better, but I didn’t feel like typesetting an infinite
long division in LATEX. I encourage you to compute an example yourself.]

In the proof of (b) note that we actually showed that given two power series f, g ∈ K[[x]]
we have g|f if and only if ord(g) ≤ ord(f). For part (c), note that g ∈ K[[x]] is a unit if and
only if g divides 1. By the above remark this happens if and only if ord(g) ≤ ord(1) = 0, i.e.,
if and only if ord(g) = 0. Finally, note that ord(g) = 0 if and only if g has nonzero constant
term.

For part (d), note that the set of nonunits of K[[x]] are just the power series with zero
constant term, i.e., the power series divisible by x:

(x) := {xf(x) : f(x) ∈ K[[x]]}.
Since this is an ideal we conclude that K[[x]] is a local ring.

For part (e), we say that f(x) =
∑

k akx
k is a formal Laurent series if there exists a minimum

r ∈ Z (possibly negative) such that ar 6= 0. In this case we define ord(f) = r. Let K((x))
denote the ring of formal Laurent series with addition and multiplication defined just as for
power series. Then K[[x]] ⊆ K((x)) is the subring or Laurent series with nonnegative order.



I claim that K((x)) is a field. Indeed, given any two Laurent series f, g ∈ K((x)) with
g 6= 0, the long division process defined above can be used to obtain q(x) ∈ K((x)) such
that f(x) = q(x)g(x). We we do not require ord(g) ≤ ord(f). In fact, because ord(q) =
ord(f) − ord(g) we will have q ∈ K[[x]] if and only if ord(g) ≤ ord(f). If f(x) = 1 then we
obtain q(x) = g(x)−1.

Since K((x)) is a field containing K[[x]] we can identify Frac(K[[x]]) with the subfield of
K((x)) consisting of elements of the form f(x)g(x)−1 for f, g ∈ K[[x]] with g 6= 0. But
note that every Laurent series f(x) ∈ K((x)) has this form. Indeed, if ord(f) ≥ 0 then
f(x) = f(x)(1)−1 ∈ Frac(K[[x]]) and if ord(f) < 0 then

f(x) = (x−ord(f)f(x))(x−ord(f))−1 ∈ Frac(K[[x]])

because x−ord(f)f(x) and x−ord(f) are in K[[x]]. We conclude that

Frac(K[[x]]) = K((x)).

�

[As you may know, any function f : C→ C holomorphic in an annulus has a convergent Laurent
series expansion there. This makes complex analysis a very algebraic subject.]

Problem 3. (Partial Fraction Expansion) To what extent can we “un-add” fractions?
Let R be a PID. Consider a, b ∈ R with b = pe11 pe22 · · · p

ek
k where p1, . . . , pk are distinct primes

and e1, . . . , ek ≥ 1.

(a) Prove that there exist a1, . . . , ak ∈ R such that

a

b
=

a1
pe11

+
a2
pe22

+ · · ·+ ak
pe1k

.

[Hint: First prove it when b = pq with p, q coprime. Use Bézout.]

Now assume that R is a Euclidean domain with norm function N : R− {0} → N.

(b) Prove that there exist c, rij ∈ R such that

a

b
= c +

k∑
i=1

ei∑
j=1

rij

pji
,

where for all i, j we have either rij = 0 or N(rij) < N(pi). [Hint: If p is prime, prove
that we can write a

pe as q
pe−1 + r

pe where either r = 0 or N(r) < N(p). Then use (a).]

Now suppose that the norm function satisfies N(a) ≤ N(ab) and N(a−b) ≤ max{N(a), N(b)}
for all a, b ∈ R− {0}.

(c) Prove that the partial fraction expansion from part (b) is unique. [Hint: Suppose we
have two expansions

c +

k∑
i=1

ei∑
j=1

rij

pji
=

a

b
= c′ +

k∑
i=1

ei∑
j=1

r′ij

pji
.

Then we get a partial fraction expansion of zero:

0

b
=

a− a

b
= (c− c′) +

k∑
i=1

ei∑
j=1

(rij − r′ij)

pji
.



For all i, j define b̂ij := b/pji , so that

b(c′ − c) =

k∑
i=1

ei∑
j=1

(rij − r′ij)b̂ij .

Suppose for contradiction that there exist i, j such that rij 6= r′ij and let j be maximal

with this property. Use the last equation above to show that pi divides (rij − r′ij) and
hence

N(pi) ≤ N(rij − r′ij) ≤ max{N(rij), N(r′ij)} < N(pi).

Contradiction.]
(d) If K is a field and R = K[x] then the norm function N(f) = deg(f) satisfies the

hypotheses of part (c) so the expansion is unique. Compute the unique expansion of

x5 + x + 1

(x + 1)2(x2 + 1)
∈ R(x).

(e) If R = Z then the norm function N(a) = |a| does not satisfy |a − b| ≤ max{|a|, |b|}.
However, if we require remainders r, r′ to be nonnegative then it is true that |r− r′| ≤
max{|r|, |r′|} and the proof of uniqueness in (c) still goes through. Compute the
unique expansion of 77

12 ∈ Q with nonnegative parameters rij ≥ 0.

Proof. Consider a, b ∈ R with b = pe11 · · · p
ek
k where p1, . . . , pk are distinct primes and e1, . . . , ek ≥

1. For part (a), note that since R is a PID we must have (pe11 , pe22 · · · p
ek
k ) = (d) where d is the

greatest common divisor. Since pe11 and pe22 · · · p
ek
k are coprime this implies that d = 1, and

hence there exist c1, c2 ∈ R such that

1 = c1p
e2
2 · · · p

ek
k + c2p

e1
1 .

Multiplying both sides by a
b gives

a

b
=

ac1
pe11

+
ac2

pe22 · · · p
ek
k

.

Now the result follows by induction.
For part (b), let R be Euclidean and suppose that we have written

a

b
=

a1
pe11

+ · · ·+ ak
pekk

.

Now consider any a
pe with a, p ∈ R and p prime. We can divide a by p to obtain q, r ∈ R such

that a = pq + r and either r = 0 or N(r) < N(p). In other words, we have

a

pe
=

qp + r

pe
=

q

pe−1
+

r

pe

where either r = 0 or N(r) < N(p). By induction we obtain

a

pe
=

q

p0
+

r1
p1

+
r2
p2

+ · · ·+ re
pe

,

where for all i we have ri = 0 or N(ri) < N(p). Then, combining these expressions for each
summand ai

p
ei
i

of a
b gives

a

b
= c +

k∑
i=1

ei∑
j=1

rij

pji
,

where for all i, j we have rij = 0 or N(rij) < N(pi). This is called a “partial fraction
expansion” of a

b .



For part (c), suppose that the Euclidean norm satisfies N(a) ≤ N(ab) and N(a − b) ≤
max{N(a), N(b)} for all a, b ∈ R− {0}, and suppose we have two partial fraction expansions

c +
k∑

i=1

ei∑
j=1

rij

pji
=

a

b
= c′ +

k∑
i=1

ei∑
j=1

r′ij

pji
.

I claim that rij = r′ij for all i, j (and hence also c = c′). To see this, we subtract the expansions:

0 = (c′ − c) +
k∑

i=1

ei∑
j=1

(rij − r′ij)

pji

Then we multiply both sides by b to get

b(c− c′) =
k∑

i=1

ei∑
j=1

(rij − r′ij)b̂ij ,

where b̂ij := b/pji ∈ R. Now assume for contradiction that we have rmn 6= r′mn for some
m,n ≥ 1 and let n be maximal with this property. That is, suppose that we also have
rmj = r′mj for all j > n. In this case, note that pem−nm divides b̂ij for every nonzero term in
the sum, thus since R is a domain we can cancel it to get

(4) b′(c− c′) =

k∑
i=1

ei∑
j=1

(rij − r′ij)b̂
′
ij ,

where

b′ = pe11 · · · p
n
m · · · p

ek
k and b̂′ij =


pe11 · · · p

ei−j
i · · · pnm · · · p

ek
k i < m

pe11 · · · p
ei−j
i · · · pnm · · · p

ek
k i > m

pe11 · · · p
n−j
m · · · pekk i = m, j ≤ n

0 i = m, j > n

Finally, note that pm divides (rmn− r′mn)b̂′mn because pm divides every other term of the sum

(4). Since pm is prime, Euclid says that pm|(rmn−r′mn) or pm|b̂′mn. But by definition we know

that pm does not divide b̂′mn. We conclude that pm divides rmn − r′mn and then the assumed
properties of the norm imply that

N(pm) ≤ N(rmn − r′mn) ≤ max
{
N(rmn), N(r′mn)

}
< N(pm).

Contradiction.
For parts (d) and (e) I will naively follow the steps of the proof. I will not use any tricks

like differentiation. (You can get the solution faster with tricks.) For part (d) we first look for
polynomials f(x) and g(x) such that

1 = f(x)(x + 1)2 + g(x)(x2 + 1).

For this we consider the set of triples f, g, h ∈ R[x] with f(x)(x + 1)2 + g(x)(x2 + 1) = h(x)
and apply row reduction:

f(x) g(x) h(x)

1 0 (x + 1)2

0 1 x2 + 1
1 −1 2x
−x/2 1 + x/2 1



We conclude that (−x/2)(x + 1)2 + (1 + x/2)(x2 + 1) = 1 and hence

1

(x + 1)2(x2 + 1)
=

(−x/2)(x + 1)2 + (1 + x/2)(x2 + 1)

(x + 1)2(x2 + 1)

=
−x/2

x2 + 1
+

1 + x/2

(x + 1)2
.

Multiplying both sides by x5 + x + 1 gives

x5 + x + 1

(x + 1)2(x2 + 1)
=
−1

2(x6 + x2 + x)

x2 + 1
+

1
2(x6 + 2x5 + x2 + 3x + 2)

(x + 1)2
.

Now we deal with both of the summands separately. First we divide −1
2(x6 +x2 +x) by x2 +1

to get

−1

2
(x6 + x2 + x) = −1

2
(x4 − x2 + 2)(x2 + 1)− 1

2
(x− 2),

hence
−1

2(x6 + x2 + x)

x2 + 1
= −1

2
(x4 − x2 + 2) +

−1
2(x− 2)

(x2 + 1)
.

Next we divide 1
2(x6 + 2x5 + x2 + 3x + 2) by (x + 1) to get

1

2
(x6 + 2x5 + x2 + 3x + 2) =

1

2
(x5 + x4 − x3 + x2 + 3)(x + 1)− 1

2
,

hence
1
2(x6 + 2x5 + x2 + 3x + 2)

(x + 1)2
=

1
2(x5 + x4 − x3 + x2 + 3)

(x + 1)
+
−1/2

(x + 1)2
.

Finally, we divide 1
2(x5 + x4 − x3 + x2 + 3) by (x + 1) to get

1

2
(x5 + x4 − x3 + x2 + 3) =

1

2
(x4 − x2 + 2x− 2)(x + 1) + 5,

hence
1
2(x5 + x4 − x3 + x2 + 3)

(x + 1)
=

1

2
(x4 − x2 + 2x− 2) +

5/2

(x + 1)
.

Putting everything together gives

x5 + x + 1

(x + 1)2(x2 + 1)
= (x− 2) +

5/2

(x + 1)
+
−1/2

(x + 1)2
+
−(x− 2)/2

(x2 + 1)
.

[By doing everything out longhand I meant to show that it is possible, not that it is easy.]
For part (e) we first factor 12 = 3 · 4 with 3, 4 coprime. Now we look for x, y ∈ Z with

3x + 4y = 1. This can be done by inspection:

1 = 3(−1) + 4 · 1

[If it couldn’t be done by inspection we would use the Euclidean algorithm.] Dividing by 12 gives

1

12
=

3(−1) + 4 · 1
3 · 4

=
−1

4
+

1

3
,

and then multiplying by 77 gives
77

12
=
−77

4
+

77

3
.



Now we deal with both of the summands separately. First we divide 77 by 3 to get

77 = 3 · 25 + 2

77

3
= 25 +

2

3
.

Then we divide −77 by 2 to get

−77 = 2(−39) + 1

−77

4
=
−39

2
+

1

4
.

Finally, we divide −39 by 2 to get

−39 = 2(−20) + 1

−39

2
= −20 +

1

2
.

Putting everything together gives

77

12
= 5 +

1

2
+

1

4
+

2

3
.

This result is unique as long as we use positive remainders. �

[Why did I ask you to do this? Because I always wondered about partial fractions. They appear in
Calculus to show us that all rational functions over R can be integrated in elementary terms. For
example:∫

x5 + x + 1

(x + 1)2(x2 + 1)
dx =

1

2
x2 − 2x +

5

2
ln(x + 1)− 1

2(x + 1)
− 1

4
ln(x2 + 1) + arctan(x).

But then partial fractions mysteriously disappear from the curriculum. Now at least we know why.]


