Problem 0. (Drawing Pictures) The equation $y^{2}=x^{3}-x$ defines a "curve" in the complex "plane" \mathbb{C}^{2}. What does it look like? Unfortunately we can only see real things, so we substitute $x=a+i b$ and $y=c+i d$ with $a, b, c, d \in \mathbb{R}$. Equating real and imaginary parts then gives us two simultaneous equations:

$$
\begin{align*}
a^{3}-a-3 a b & =c^{2}-d^{2} \tag{1}\\
b^{3}+b-3 a^{2} b & =-2 c d \tag{2}
\end{align*}
$$

These equations define a real 2-dimensional surface in real 4-dimensional space $\mathbb{R}^{4}=\mathbb{C}^{2}$. Unfortunately we can only see 3 -dimensional space so we will interpret the b coordiante as "time". Sketch the curve in real (a, c, d)-space at time $b=0$. [Hint: It will look 1-dimensional to you.] Can you imagine what it looks like at other times b ?

Problem 1. (Local Rings) Let R be a ring. We say R is local if it contains a unique (nontrivial) maximal ideal.
(a) Prove that R is local if and only if its set of non-units is an ideal.
(b) Given a prime ideal $P \leq R$, prove that the localization

$$
R_{P}:=\left\{\frac{a}{b}: a, b \in R, b \notin P\right\}
$$

is a local ring. [Hint: The maximal ideal is called $P R_{P}$.]
(c) Consider a prime ideal $P \leq R$. By part (b) we can define the residue field $R_{P} / P R_{P}$. Prove that we have an isomorphism of fields:

$$
\operatorname{Frac}(R / P) \approx R_{P} / P R_{P}
$$

[Hint: The most obvious map $R / P \rightarrow R_{P} / P R_{P}$ must factor through $\operatorname{Frac}(R / P)$.]
Problem 2. (Formal Power Series) Let K be a field and consider the ring of formal power series:

$$
K[[x]]:=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots: a_{i} \in K \text { for all } i \in \mathbb{N}\right\} .
$$

The "degree" of a power series does not necessarily exist. However, for all nonzero $f(x)=$ $\sum_{k} a^{k} x^{k}$ we can define the "order" ord $(f):=$ the minimum k such that $a_{k} \neq 0$.
(a) Prove that $K[[x]]$ is a domain.
(b) Prove that $K[[x]]$ is a Euclidean domain with norm function ord : $K[[x]]-\{0\} \rightarrow \mathbb{N}$. (You can define ord $(0)=-\infty$ if you want.) [Hint: Given $f, g \in K[[x]]$ we have $f \mid g$ if and only if $\operatorname{ord}(f) \leq \operatorname{ord}(g)$, so the remainder is always zero.]
(c) Prove that the units of $K[[x]]$ are just the power series with nonzero constant term.
(d) Conclude that $K[[x]]$ is a local ring.
(e) Prove that $\operatorname{Frac}(K[[x]])$ is isomorphic to the ring of formal Laurent series:

$$
K((x)):=\left\{a_{-n} x^{-n}+a_{-n+1} x^{-n+1}+a_{-n+2} x^{-n+2}+\cdots: a_{i} \in K \text { for all } i \geq-n\right\} .
$$

Problem 3. (Partial Fraction Expansion) To what extent can we "un-add" fractions? Let R be a PID. Consider $a, b \in R$ with $b=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ where p_{1}, \ldots, p_{k} are distinct primes and $e_{1}, \ldots, e_{k} \geq 1$.
(a) Prove that there exist $a_{1}, \ldots, a_{k} \in R$ such that

$$
\frac{a}{b}=\frac{a_{1}}{p_{1}^{e_{1}}}+\frac{a_{2}}{p_{2}^{e_{2}}}+\cdots+\frac{a_{k}}{p_{k}^{e_{1}}} .
$$

[Hint: First prove it when $b=p q$ with p, q coprime. Use Bézout.]
Now assume that R is a Euclidean domain with norm function $N: R-\{0\} \rightarrow \mathbb{N}$.
(b) Prove that there exist $c, r_{i j} \in R$ such that

$$
\frac{a}{b}=c+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}},
$$

where for all i, j we have either $r_{i j}=0$ or $N\left(r_{i j}\right)<N\left(p_{i}\right)$. [Hint: If p is prime, prove that we can write $\frac{a}{p^{e}}$ as $\frac{q}{p^{e-1}}+\frac{r}{p^{e}}$ where either $r=0$ or $N(r)<N(p)$. Then use (a).]
Now suppose that the norm function satisfies $N(a) \leq N(a b)$ and $N(a-b) \leq \max \{N(a), N(b)\}$ for all $a, b \in R-\{0\}$.
(c) Prove that the partial fraction expansion from part (b) is unique. [Hint: Suppose we have two expansions

$$
c+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}}{p_{i}^{j}}=\frac{a}{b}=c^{\prime}+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{r_{i j}^{\prime}}{p_{i}^{j}} .
$$

Then we get a partial fraction expansion of zero:

$$
\frac{0}{b}=\frac{a-a}{b}=\left(c-c^{\prime}\right)+\sum_{i=1}^{k} \sum_{j=1}^{e_{i}} \frac{\left(r_{i j}-r_{i j}^{\prime}\right)}{p_{i}^{j}} .
$$

For all i, j define $\hat{b}_{i j}:=b / p_{i}^{j}$, so that

$$
b\left(c^{\prime}-c\right)=\sum_{i=1}^{k} \sum_{j=1}^{e_{i}}\left(r_{i j}-r_{i j}^{\prime}\right) \hat{b}_{i j} .
$$

Suppose for contradiction that there exist i, j such that $r_{i j} \neq r_{i j}^{\prime}$ and let j be maximal with this property. Use the last equation above to show that p_{i} divides $\left(r_{i j}-r_{i j}^{\prime}\right)$ and hence

$$
N\left(p_{i}\right) \leq N\left(r_{i j}-r_{i j}^{\prime}\right) \leq \max \left\{N\left(r_{i j}\right), N\left(r_{i j}^{\prime}\right)\right\}<N\left(p_{i}\right)
$$

Contradiction.]
(d) If K is a field and $R=K[x]$ then the norm function $N(f)=\operatorname{deg}(f)$ satisfies the hypotheses of part (c) so the expansion is unique. Compute the unique expansion of

$$
\frac{x^{5}+x+1}{(x+1)^{2}\left(x^{2}+1\right)} \in \mathbb{R}(x) .
$$

(e) If $R=\mathbb{Z}$ then the norm function $N(a)=|a|$ does not satisfy $|a-b| \leq \max \{|a|,|b|\}$. However, if we require remainders r, r^{\prime} to be nonnegative then it is true that $\left|r-r^{\prime}\right| \leq$ $\max \left\{|r|,\left|r^{\prime}\right|\right\}$ and the proof of uniqueness in (c) still goes through. Compute the unique expansion of $\frac{77}{12} \in \mathbb{Q}$ with nonnegative parameters $r_{i j} \geq 0$.

