Math 662 Spring 2014
Homework 2 Drew Armstrong

Problem 0. (Drawing Pictures) The equation y> = 23 — x defines a “curve” in the

complex “plane” C2?. What does it look like? Unfortunately we can only see real things, so
we substitute x = a 4+ ib and y = ¢+ id with a, b, ¢,d € R. Equating real and imaginary parts
then gives us two simultaneous equations:

(1) a® —a—3ab=c* — d°,
(2) b + b — 3a%b = —2cd.

These equations define a real 2-dimensional surface in real 4-dimensional space R* = C2.
Unfortunately we can only see 3-dimensional space so we will interpret the b coordiante as
“time”. Sketch the curve in real (a, ¢, d)-space at time b = 0. [Hint: It will look 1-dimensional
to you.] Can you imagine what it looks like at other times b?

Problem 1. (Local Rings) Let R be a ring. We say R is local if it contains a unique
(nontrivial) maximal ideal.
(a) Prove that R is local if and only if its set of non-units is an ideal.
(b) Given a prime ideal P < R, prove that the localization
Rp = {% : a,beR,ngP}
is a local ring. [Hint: The maximal ideal is called PRp.]
(c) Consider a prime ideal P < R. By part (b) we can define the residue field Rp/PRp.
Prove that we have an isomorphism of fields:

Frac(R/P) ~ Rp/PRp.
[Hint: The most obvious map R/P — Rp/PRp must factor through Frac(R/P).]

Problem 2. (Formal Power Series) Let K be a field and consider the ring of formal power
series:

K[[z]] == {ao + a1z + asa® + azz® + -+ 1 a; € K for all i € N}.
The “degree” of a power series does not necessarily exist. However, for all nonzero f(z) =
>~ aFaz* we can define the “order” ord(f) := the minimum & such that aj # 0.

(a) Prove that K[[z]] is a domain.

(b) Prove that K[[z]] is a Euclidean domain with norm function ord : K[[z]] — {0} — N.
(You can define ord(0) = —oo if you want.) [Hint: Given f,g € K|[[z]] we have f|g if
and only if ord(f) < ord(g), so the remainder is always zero.]

(c) Prove that the units of K[[z]] are just the power series with nonzero constant term.

(d) Conclude that K[[z]] is a local ring.

(e) Prove that Frac (K[[z]]) is isomorphic to the ring of formal Laurent series:

K((z)) :={a_pz™" + a1z " fa_p 02 4 g € K for all i > —n}.



Problem 3. (Partial Fraction Expansion) To what extent can we “un-add” fractions?
Let R be a PID. Consider a,b € R with b = p{*p3*---p;* where p1,...,py are distinct primes
and eq,...,e; > 1.

(a) Prove that there exist aq,...,ar € R such that
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[Hint: First prove it when b = pq with p, ¢ coprime. Use Bézout.]
Now assume that R is a Euclidean domain with norm function N : R — {0} — N.
(b) Prove that there exist ¢, r;; € R such that
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where for all ¢, j we have either r;; = 0 or N(r;;) < N(p;). [Hint: If p is prime, prove

= peq,l + e where either 7 = 0 or N(r) < N(p). Then use (a)]
Now suppose that the norm function satisfies N(a) < N(ab) and N(a—b) < max{N(a), N(b)}
for all a,b € R — {0}.

(c) Prove that the partial fraction expansion from part (b) is unique. [Hint: Suppose we
have two expansions
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Then we get a partial fraction expansion of zero:
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For all 7, j define i)ij = b/pz, so that
k €e;
b(d —c) =) > (rij —ripbi.
i=1 j=1
and let j be maximal
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Suppose for contradiction that there exist 4, j such that r;; # 7} i
with this property. Use the last equation above to show that p; divides (r;; —
hence

N(pi) < N(rij — ri;) < max{N(ry), N(ri;)} < N(pi).
Contradiction.
(d) If K is a field and R = K|[z] then the norm function N(f) = deg(f) satisfies the

hypotheses of part (c) so the expansion is unique. Compute the unique expansion of
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(e) If R = Z then the norm function N(a) = |a| does not satisfy |a — b| < max{|al, |b|}.

However, if we require remainders r, ' to be nonnegative then it is true that |r — /| <

max{|r|, ||} and the proof of uniqueness in (c¢) still goes through. Compute the
unique expansion of % € Q with nonnegative parameters 7;; > 0.

€ R(x).



