Problem 0 (Drawing Pictures). Sketch the curves $y^{2}=f(x)$ in \mathbb{R}^{2} for the following polynomials $f(x) \in \mathbb{R}[x]: f(x)=x^{3}$ and $f(x)=(x+1)\left(x^{2}+\varepsilon\right)$ for $\varepsilon<0, \varepsilon=0, \varepsilon>0$. [Hint: First sketch $y=f(x)$ then sketch $y= \pm \sqrt{f(x)}$.]

The curves $y=x^{3}$ and $y^{2}=x^{3}$ look like:

Note that the curve on the right has a "cusp" at $x=0$ because the derivative $\frac{d y}{d x}= \pm \frac{3}{2} \sqrt{x}$ approaches 0 as $x \rightarrow 0$ from the right.

The curves $y=(x+1)\left(x^{2}+\varepsilon\right)$ and $y=(x+1)\left(x^{2}+\varepsilon\right)$ for $\varepsilon<0$ look like:

Note that the three roots of $f(x)$ are simple, and so the graph looks locally like a straight line $y=\alpha x$ at one of these points. Then the graph of $y^{2}=f(x)$ looks locally like $\pm \sqrt{\alpha x}$, i.e., a parabola opening to the side. Note: Near $\varepsilon=-1$ the blob on the right shrinks to a single point at $(x, y)=(-1,0)$. Why?

For $\varepsilon=0$, the curves $y=x^{2}(x+1)$ and $y^{2}=x^{2}(x+1)$ look like:

As discussed, since $f(x)$ has a simple root at $x=-1$, the graph of $\pm \sqrt{f(x)}$ has a vertical tangent at $x=-1$. What's going on at $x=0$? Near $x=0$, Newton's binomial theorem tells us that

$$
\pm \sqrt{1+x}= \pm\left(1+\frac{(1 / 2)}{1!} x+\frac{(1 / 2)(-1 / 2)}{2!} x^{2}+\frac{(1 / 2)(-1 / 2)(-3 / 2)}{3!} x^{3}+\cdots\right)
$$

Thus the graph of $y= \pm \sqrt{x^{2}(x+1)}= \pm x \sqrt{1+x}$ looks locally like the union of the two lines $y= \pm x$. We say that the curve has two "branches" at the "node" $(x, y)=(0,0)$.

The curves $y=(x+1)\left(x^{2}+\varepsilon\right)$ and $y^{2}=(x+1)\left(x^{2}+\varepsilon\right)$ for $\varepsilon>0$ look like:

Again, the graph of $y= \pm \sqrt{f(x)}$ has a vertical tangent at $x=-1$ because $f(x)$ has a simple root there. For values $0<\varepsilon<1 / 3$ (as pictured) there will be local extrema at

$$
x=\frac{-1 \pm \sqrt{1-3 \varepsilon}}{3}
$$

but for values $\varepsilon>1 / 3$ these extrema will go away. In that case the curves $y=(x+1)\left(x^{2}+\varepsilon\right)$ and $y^{2}=(x+1)\left(x^{2}+\varepsilon\right)$ will look like:

[Now you have a mental picture of plane cubic curves. These were first classified by Isaac Newton in 1695. In fact, any curve of the form $f(x, y)=0$ where $f(x, y) \in \mathbb{R}[x, y]$ has degree 3 is equivalent to one of the curves seen above. To be precise we will need to introduce projective coordinates. Stay tuned.]

What is a polynomial? Let R be a ring and let x be a formal symbol. A polynomial is a formal expression $a_{0}+a_{1} x^{1}+a_{2} x^{2}+\cdots$ in which all but finitely many of the coefficients $a_{i} \in R$ are zero. If we define addition and multiplication by

$$
\sum_{k} a_{k} x^{k}+\sum_{k} b_{k} x^{k}:=\sum_{k}\left(a_{k}+b_{k}\right) x^{k}
$$

and

$$
\left(\sum_{k} a_{k} x^{k}\right)\left(\sum_{\ell} b_{\ell} x^{\ell}\right):=\sum_{m}\left(\sum_{k+\ell=m} a_{k} b_{\ell}\right) x^{m}
$$

then the set of polynomials becomes a ring which we call $R[x]$. Note that R is naturally embedded in $R[x]$ as a subring via the map $a \mapsto a+0 x+0 x^{2}+\cdots$. We define the degree $\operatorname{deg}(f)$ of a nonzero polynomial $f(x)=\sum_{k} a_{k} x^{k}$ as the largest k such that $a_{k} \neq 0$ (this a_{k} is called the leading coefficient), and we define the degree of the zero polynomial as $\operatorname{deg}(0)=-\infty$ (but this is rather arbitrary). We consider the symbols $1, x, x^{2}, \ldots$ to be linearly independent over R, and therefore we have $\sum_{k} a_{k} x^{k}=\sum_{k} b_{k} x^{k}$ if and only if $a_{k}=b_{k}$ for all k. This makes $R[x]$ into an infinite-dimensional "free" module over R.

Problem 1 (The Division Algorithm). We say that a polynomial $g(x) \in R[x]$ is monic if its leading coefficient is a unit. Consider polynomials $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{k} b_{k} x^{k}$ in $R[x]$ with $g(x)$ monic.
(a) Prove that there exist polynomials $q(x), r(x) \in R[x]$ such that $f(x)=q(x) g(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$ (this includes the case $r(x)=0$ since $\operatorname{deg}(0)=-\infty<\operatorname{deg}(g)$ for any g). [Hint: Use induction on $\operatorname{deg}(f)$. Assume that $\operatorname{deg}(g)=m \geq 0$ with leading coefficient $b_{m} \in R^{\times}$. If $\operatorname{deg}(f)<m$ then we can take $q(x)=0$ and $r(x)=f(x)$, so
the assertion is true. Now suppose that $\operatorname{deg}(f)=n \geq m$ and consider the polynomial $f_{1}(x)=f(x)-\frac{a_{n}}{b_{m}} x^{n-m} g(x)$. Since $\operatorname{deg}\left(f_{1}\right)<n$ there exist $q_{1}(x), r(x)$ with $f_{1}(x)=$ $q_{1}(x) g(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.]
(b) Prove that the polynomials $q(x), r(x)$ from part (a) are unique. [Hint: Assume that $f(x)=q_{1}(x) g(x)+r_{1}(x)=q_{2}(x) g(x)+r_{2}(x)$ with $\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g)$. Since $g(x)$ is monic, note that $\operatorname{deg}(g h)=\operatorname{deg}(g)+\operatorname{deg}(h)$ for any nonzero $h(x) \in R[x]$. Note that $\operatorname{deg}\left(r_{2}-r_{1}\right) \leq \max \left\{\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)\right\}$. Now assume that $r_{2}(x)-r_{1}(x) \neq 0$ and show that this leads to a contradiction.]
(c) Give an example where $g(x)$ is not monic and the polynomials $q(x), r(x)$ do not exist.

Proof. Let R be any ring and consider $f(x), g(x) \in R[x]$ with $g(x)$ monic. Let $g(x)=b_{0}+$ $b_{1} x+\cdots+b_{m} x^{m}$ where $b_{m} \in R^{\times}$is a unit, hence $\operatorname{deg}(g)=m \geq 0$. We will show by induction on $\operatorname{deg}(f)$ that there exist $q(x), r(x) \in R[x]$ with $f(x)=q(x) g(x)+r(x)$ and $\operatorname{deg}(r)<m$. First note that the result is true if $\operatorname{deg}(f)<m$, in which case we can take $q(x)=0$ and $r(x)=f(x)$. So suppose that $\operatorname{deg}(f)=n \geq m$. Since b_{m} is a unit we can define the polynomial $f_{1}(x)=f(x)-\frac{a_{n}}{b_{m}} x^{n-m} g(x)$. Note that $\operatorname{deg}\left(f_{1}\right)<\operatorname{deg}(f)$ so by induction there exist $q_{1}(x), r(x) \in R[x]$ with $f_{1}(x)=q_{1}(x) g(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$. Finally, we have

$$
\begin{aligned}
f(x) & =f_{1}(x)+\frac{a_{n}}{b_{m}} x^{n-m} g(x) \\
& =q_{1}(x) g(x)+r(x)+\frac{a_{n}}{b_{m}} x^{n-m} g(x) \\
& =\left(q_{1}(x)+\frac{a_{n}}{b_{m}} x^{n-m}\right) g(x)+r(x)
\end{aligned}
$$

where $\operatorname{deg}(r)<\operatorname{deg}(g)$, as desired.
To show that the quotient and remainder are unique, suppose we have

$$
q_{1}(x) g(x)+r_{1}(x)=f(x)=q_{2}(x) g(x)+r_{2}(x)
$$

with $\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g)$. Rearranging the equations gives

$$
g(x)\left(q_{1}(x)-q_{2}(x)\right)=\left(r_{2}(x)-r_{1}(x)\right) .
$$

Now assume for contradiction that $r_{2}(x)-r_{1}(x) \neq 0$. This implies that

$$
0 \leq \operatorname{deg}\left(r_{2}-r_{1}\right) \leq \max \left\{\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)\right\}<\operatorname{deg}(g)
$$

On the other hand, since $g(x)$ is monic we have $\operatorname{deg}(g h)=\operatorname{deg}(g)+\operatorname{deg}(h)$ for all $h(x) \in R[x]$. Since $q_{1}(x)-q_{2}(x) \neq 0$ this implies in particular that

$$
\operatorname{deg}\left(g\left(q_{1}-q_{2}\right)\right)=\operatorname{deg}(g)+\operatorname{deg}\left(q_{1}-q_{2}\right) \geq \operatorname{deg}(g)
$$

But this contradicts the equation (\star). We conclude that $r_{2}(x)-r_{1}(x)=0$, and hence $r_{1}(x)=$ $r_{2}(x)$. Finally, since $g(x)\left(q_{1}(x)-q_{2}(x)\right)=0$ and $g(x)$ is monic, we conclude that $q_{1}(x)$ $q_{2}(x)=0$, and hence $q_{1}(x)=q_{2}(x)$.

Note that the existence and uniqueness of $q(x)$ and $r(x)$ can fail when $g(x)$ is not monic. For example, consider $f(x)=x^{2}+x+1$ and $g(x)=2 x+2$ in $\mathbb{Z} /(6)[x]$. Then the quotient and remainder do not exist. (If we had $f(x)=q(x) g(x)+r(x)$ with $\operatorname{deg}(r)<\operatorname{deg}(g)$ then the leading coefficient a of $q(x)$ would satisfy $2 a=1$. But then $0=3(2 a)=3$. Contradiction.) If we change $f(x)$ to $4 x^{2}+4 x+1$ then the quotient and remainder exist, but they are not unique:

$$
(2 x)\left(2 x^{2}+2 x\right)+1=4 x^{2}+4 x+1=(5 x)\left(2 x^{2}+2 x\right)+1 .
$$

[By uniqueness we can speak of "the" remainder when $f(x)$ is divided by monic $g(x)$. We will write $g \mid f$ (and say " g divides f ") if and only if the remainder is zero.]

Problem 2 (Descartes' Theorem). Let R be a ring (i.e. commutative).
(a) If $\alpha \in R$ is any element, we define a function $\mathrm{ev}_{\alpha}: R[x] \rightarrow R$ by sending $\sum_{k} a_{k} x^{k} \in R[x]$ to $\sum_{k} a_{k} \alpha^{k} \in R$. Prove that this function (called "evaluation at α ") is a morphism of rings. For simplicity we will write $f(\alpha):=\operatorname{ev}_{\alpha}(f(x))$.
(b) Consider a polynomial $f(x) \in R[x]$ and an element $\alpha \in R$. Prove that we have $(x-\alpha) \mid f(x)$ if and only if $f(\alpha)=0$. [Hint: Divide $f(x)$ by $(x-\alpha)$ and evaluate at α.]

Proof. First we show that $\mathrm{ev}_{\alpha}: R[x] \rightarrow R$ is a homomorphism of rings. Given $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{k} b_{k} x^{k}$ we have

$$
\begin{aligned}
(f+g)(\alpha) & =\sum_{k}\left(a_{k}+b_{k}\right) \alpha^{k} \\
& =\sum_{k} a_{k} \alpha^{k}+\sum_{k} b_{k} \alpha^{k} \\
& =f(\alpha)+g(\alpha)
\end{aligned}
$$

and

$$
\begin{aligned}
(f g)(\alpha) & =\sum_{m}\left(\sum_{k+\ell=m} a_{k} b_{\ell}\right) \alpha^{m} \\
& =\left(\sum_{k} a_{k} \alpha^{k}\right)\left(\sum_{\ell} b_{\ell} \alpha^{\ell}\right) \\
& =f(\alpha) g(\alpha) .
\end{aligned}
$$

Finally, note that the unit polynomial $1+0 x+0 x^{2}+\cdots$ evalutes to $1 \in R$.
Now consider any $f(x) \in R[x]$ and $\alpha \in R$. Since $(x-\alpha)$ is monic, Problem 1 says that there exist a unique polynomial $q(x) \in R[x]$ and a constant $c \in R$ such that

$$
f(x)=(x-\alpha) q(x)+c .
$$

By definition we have $(x-\alpha) \mid f(x)$ if and only if $c=0$. But part (a) tells us that $f(\alpha)=$ $(\alpha-\alpha) q(\alpha)+c=0 \cdot q(\alpha)+c=c$.
[The importance of Descartes' Theorem cannot be overestimated.]
Problem 3 (Localization of a Ring). The construction of the field of fractions of a domain can be generalized to arbitrary rings as follows. Let R be a ring and let $S \subseteq R$ be any subset closed under multiplication and containing 1 (we can say that S is a subsemigroup of $(R, \times, 1)$). We define the set of formal symbols

$$
R\left[S^{-1}\right]:=\left\{\left[\frac{a}{b}\right]: a, b \in R, b \in S\right\}
$$

and we declare that

$$
\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right] \Longleftrightarrow \exists u \in S \text { such that } u(a d-b c)=0
$$

(a) Prove that this is an equivalence relation.
(b) Prove that the algebraic operations

$$
\left[\frac{a}{b}\right]\left[\frac{c}{d}\right]:=\left[\frac{a c}{b d}\right]
$$

and

$$
\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]:=\left[\frac{a d+b c}{b d}\right]
$$

are well-defined. It follows (don't prove this) that $R\left[S^{-1}\right]$ is a ring.
(c) Prove that $R\left[S^{-1}\right]=0$ if and only if S contains 0 .
(d) Prove that the natural map $R \rightarrow R\left[S^{-1}\right]$ defined by $a \mapsto\left[\frac{a}{1}\right]$ is a ring homomorphism.
(e) We say that $u \in R$ is a zerodivisor if there exists $v \in R$ such that $u v=0$. If S contains no zerodivisors, prove that the natural map $R \rightarrow R\left[S^{-1}\right]$ is injective. (This holds in particular when R is a domain and $0 \notin S$.)
(f) If $P \subseteq R$ is a prime ideal, show that $S:=R-P$ is a subsemigroup of R. The localization $R\left[S^{-1}\right]$ is denoted as R_{P} and is called the localization of R at the prime P. We will discuss the geometric meaning of this later.
Proof. For part (a), consider any $a, b \in R$ with $b \in S$. Since $1(a b-b a)=0$ and $1 \in S$ we have $\left[\frac{a}{b}\right]=\left[\frac{a}{b}\right]$. Next, consider $a, b, c, d \in R$ with $b, d \in S$ such that $\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right]$, i.e., there exists $u \in S$ such that $u(a d-b c)=0$. But then $u(c b-d a)=-0=0$, hence $\left[\frac{c}{d}\right]=\left[\frac{a}{b}\right]$. Finally, assume that $\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right]$ and $\left[\frac{c}{d}\right]=\left[\frac{e}{f}\right]$, i.e., there exist $u, v \in S$ such that $u(a d-b c)=0$ and $v(c f-d e)=0$. Then we have

$$
\begin{aligned}
\operatorname{duv}(a f) & =(u a d) v f \\
& =(u b c) v f, \\
& =(v c f) u b \\
& =(v d e) u b \\
& =\operatorname{duv}(b e) .
\end{aligned}
$$

Since $d, u, v \in S$ we have $d u v \in S$ and hence $\left[\frac{a}{b}\right]=\left[\begin{array}{c}e \\ f\end{array}\right]$.
For part (b) assume that $\left[\begin{array}{c}a \\ b\end{array}\right]=\left[\begin{array}{c}\frac{a^{\prime}}{b^{\prime}}\end{array}\right]$ and $\left[\begin{array}{c}\frac{c}{d}\end{array}\right]=\left[\begin{array}{c}\frac{c^{\prime}}{d^{\prime}}\end{array}\right]$, i.e., assume that we have $u\left(a b^{\prime}-a^{\prime} b\right)=$ 0 and $v\left(c d^{\prime}-c^{\prime} d\right)=0$ for some $u, v \in S$. Then we have

$$
\begin{aligned}
u v\left(a c b^{\prime} d^{\prime}\right) & =\left(u a b^{\prime}\right)\left(v c d^{\prime}\right), \\
& =\left(u a^{\prime} b\right)\left(v c^{\prime} d\right), \\
& =u v\left(a^{\prime} c^{\prime} b d\right) .
\end{aligned}
$$

Since $u, v \in S$ we have $u v \in S$, and hence $\left[\frac{a c}{b d}\right]=\left[\frac{a^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}\right]$. We also have

$$
\begin{aligned}
u v\left[(a d+b c) b^{\prime} d^{\prime}\right] & =u v a d b^{\prime} d^{\prime}+u v b c b^{\prime} d^{\prime}, \\
& =\left(u a b^{\prime}\right) v d d^{\prime}+\left(v c d^{\prime}\right) u b b^{\prime}, \\
& =\left(u a^{\prime} b\right) v d d^{\prime}+\left(v c^{\prime} d\right) u b b^{\prime}, \\
& =u v a^{\prime} d^{\prime} b d+u v b^{\prime} c^{\prime} b d, \\
& =u v\left[\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) b d\right],
\end{aligned}
$$

and hence $\left[\frac{a d+b c}{b d}\right]=\left[\frac{a^{\prime} d^{\prime}+b^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}\right]$. We will not bother to check that these operations define a ring structure on $R\left[S^{-1}\right]$. Is it possible that no one has ever checked this? Oh well.

For part (c), first assume that $0 \in S$. Then for all $a, b, c, d \in R$ with $b, d \in S$ we have $0(a d-b c)=0$, and hence $\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right]$. We conclude that $R\left[S^{-1}\right]$ consists of just one element, which we might as well call 0 . Conversely, assume that $R\left[S^{-1}\right]$ consists of just one element. In particular, we have $\left[\frac{1}{1}\right]=\left[\frac{0}{1}\right]$. But this means that there exists $u \in S$ such that $u=u(1)=$ $u(1 \cdot 1-1 \cdot 0)=0$. We conclude that $0 \in S$.

For part (d), first note that $\left[\frac{1}{1}\right]$ is the unity in $R\left[S^{-1}\right]$, hence $1_{R} \mapsto 1_{R\left[S^{-1}\right]}$ as desired. Then, for any $a, b \in R$ we have

$$
\left[\frac{a}{1}\right]\left[\frac{b}{1}\right]=\left[\frac{a b}{1 \cdot 1}\right]=\left[\frac{a b}{1}\right] \quad \text { and } \quad\left[\frac{a}{1}\right]+\left[\frac{b}{1}\right]=\left[\frac{a \cdot 1+1 \cdot b}{1}\right]=\left[\frac{a+b}{1}\right],
$$

as desired.
For part (e), assume that R has no zerodivisors. We wish to show that the map $a \mapsto\left[\frac{a}{1}\right]$ is injective. So consider $a, b \in R$ and assume that $\left[\frac{a}{1}\right]=\left[\frac{b}{1}\right]$, i.e., there exists $u \in S$ such that $u(a-b)=0$. Since u is not a zerodivisor, this implies that $a-b=0$, hence $a=b$. I should have asked you to prove the converse statement: If the map $R \rightarrow R\left[S^{-1}\right]$ is an injection, then S contains no zerodivisors. I'll include the proof anyway. Assume that the map $a \mapsto\left[\frac{a}{1}\right]$ is injective and suppose that S contains a zerodivisor $u \in S$. That is, suppose that there exists $v \neq 0$ such that $u v=0$. But then we have $1+v \neq 1$ and $u(1+v-1)=0$, hence $\left[\frac{1+v}{1}\right]=\left[\frac{1}{1}\right]$. This contradicts injectivity.

Finally, for part (f), let $P \leq R$ be a prime ideal. By definition this means that for all $a, b \in R$ we have

$$
a b \in P \Longrightarrow a \in P \text { or } b \in P
$$

If we let $S:=R-P$ then the contrapositive of the above statement says that for all $a, b \in R$ we have

$$
a \in S \text { and } b \in S \Longrightarrow a b \in S
$$

Since $1 \in S$ (let's say that $P \neq R$ is part of the definition of "prime"), we conclude that S is a subsemigroup of $(R, \times, 1)$. As we will see later, the localization $R_{P}:=R\left[S^{-1}\right]$ "at the prime $P "$ is the most important example of localization.

Problem 4 (Localization of \mathbb{Z}).

(a) Let $p \in \mathbb{Z}$ be prime and consider the localization $\mathbb{Z}_{(p)}$ at the prime ideal (p) :

$$
\mathbb{Z}_{(p)}:=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, p \nmid b\right\} .
$$

Prove that this ring has a unique nontrivial maximal ideal. [Hint: What are the units of $\mathbb{Z}_{(p)}$? Recall that an ideal is the whole ring if and only if it contains a unit.] A ring with a unique nontrivial maximal ideal is called a local ring.
(b) Prove that every ring $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$ between \mathbb{Z} and \mathbb{Q} is a localization of \mathbb{Z}. [Hint: Since R is a subring of \mathbb{Q} it consists of fractions. Let S be the set of denominators that occur in elements of R. Prove that $R=\mathbb{Z}\left[S^{-1}\right]$.]
Proof. First we show (a). Since \mathbb{Z} is a domain, the localization map $\mathbb{Z} \rightarrow \mathbb{Z}_{(p)}$ is an injection, thus (by slight abuse) we can regard $p \in \mathbb{Z}$ as an element of $\mathbb{Z}_{(p)}$. Now consider the principal ideal generated by p :

$$
p \mathbb{Z}_{(p)}:=\left\{\frac{p a}{b}: a, b \in \mathbb{Z}, p \nmid b\right\} .
$$

Note that this is not the unit ideal (i.e. $p \mathbb{Z}_{(p)} \neq \mathbb{Z}_{(p)}$) because it contains no units. Indeed, if $\frac{p a}{b}$ is in $p \mathbb{Z}_{(p)}$ then its inverse $\frac{b}{p a}$ is not in $\mathbb{Z}_{(p)}$ because it has p in the denominator. I claim that $p \mathbb{Z}_{(p)}$ is maximal and that it is the only maximal ideal of $\mathbb{Z}_{(p)}$. Indeed, let $I \leq \mathbb{Z}_{(p)}$ be any other ideal not contained in $p \mathbb{Z}_{(p)}$. Then there exists an element $\frac{a}{b} \in I-p \mathbb{Z}_{(p)}$, i.e., such
that $p \nmid a$ and $p \nmid b$. But then $\frac{a}{b}$ is a unit with inverse $\frac{b}{a} \in \mathbb{Z}_{(p)}$ and it follows that $I=\mathbb{Z}_{(p)}$. We conclude that all nontrivial ideals of $\mathbb{Z}_{(p)}$ are contained in $p \mathbb{Z}_{(p)}$. It follows that $p \mathbb{Z}_{(p)}$ is the unique maximal ideal.

Now we show (b). Consider any ring $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$ between \mathbb{Z} and \mathbb{Q}. Since R is a subring of \mathbb{Q} it consists of fractions. Define

$$
S:=\left\{b \in \mathbb{Z}: \frac{a}{b} \in R \text { with } \operatorname{gcd}(a, b)=1\right\} .
$$

(Note that the coprime condition is necessary, otherwise we have $\frac{b}{b} \in R$ and hence $b \in S$ for all nonzero b. That's no good.) I claim that $R=\mathbb{Z}\left[S^{-1}\right]$. Indeed, note that $R \subseteq \mathbb{Z}\left[S^{-1}\right]$ because every element of R has a denominator in the set S. Conversely, consider any $\frac{a}{b} \in \mathbb{Z}\left[S^{-1}\right]$; i.e., with $b \in S$. By definition of S there exists some $c \in \mathbb{Z}$ with $\frac{c}{b} \in R$ and $\operatorname{gcd}(c, d)=1$. Then by Bézout's Lemma there exist $x, y \in \mathbb{Z}$ such that $c x+b y=1$. Dividing both sides by b gives

$$
\frac{c}{b} x+y=\frac{1}{b} .
$$

Since $\mathbb{Z} \subseteq R$ and $\frac{c}{b} \in R$ we conclude that $\frac{1}{b} \in R$. Finally, we conclude that $\frac{a}{b}=a \frac{1}{b} \in R$, and hence $\mathbb{Z}\left[S^{-1}\right] \subseteq R$.
[More generally, let D be any domain in which Bézout's Lemma holds (for example, a PID). Then every intermediate ring $D \subseteq R \subseteq \operatorname{Frac}(D)$ is a localization of D. The proof is the same.]

