**Problem 0 (Drawing Pictures).** Sketch the curves  $y^2 = f(x)$  in  $\mathbb{R}^2$  for the following polynomials  $f(x) \in \mathbb{R}[x]$ :  $f(x) = x^3$  and  $f(x) = (x+1)(x^2 + \varepsilon)$  for  $\varepsilon < 0$ ,  $\varepsilon = 0$ ,  $\varepsilon > 0$ . [Hint: First sketch y = f(x) then sketch  $y = \pm \sqrt{f(x)}$ .]

The curves  $y = x^3$  and  $y^2 = x^3$  look like:



Note that the curve on the right has a "cusp" at x = 0 because the derivative  $\frac{dy}{dx} = \pm \frac{3}{2}\sqrt{x}$  approaches 0 as  $x \to 0$  from the right.

The curves  $y = (x+1)(x^2 + \varepsilon)$  and  $y = (x+1)(x^2 + \varepsilon)$  for  $\varepsilon < 0$  look like:



Note that the three roots of f(x) are simple, and so the graph looks locally like a straight line  $y = \alpha x$  at one of these points. Then the graph of  $y^2 = f(x)$  looks locally like  $\pm \sqrt{\alpha x}$ , i.e., a parabola opening to the side. Note: Near  $\varepsilon = -1$  the blob on the right shrinks to a single point at (x, y) = (-1, 0). Why?

For  $\varepsilon = 0$ , the curves  $y = x^2(x+1)$  and  $y^2 = x^2(x+1)$  look like:



As discussed, since f(x) has a simple root at x = -1, the graph of  $\pm \sqrt{f(x)}$  has a vertical tangent at x = -1. What's going on at x = 0? Near x = 0, Newton's binomial theorem tells us that

$$\pm\sqrt{1+x} = \pm\left(1 + \frac{(1/2)}{1!}x + \frac{(1/2)(-1/2)}{2!}x^2 + \frac{(1/2)(-1/2)(-3/2)}{3!}x^3 + \cdots\right)$$

Thus the graph of  $y = \pm \sqrt{x^2(x+1)} = \pm x\sqrt{1+x}$  looks locally like the union of the two lines  $y = \pm x$ . We say that the curve has two "branches" at the "node" (x, y) = (0, 0). The curves  $y = (x+1)(x^2 + \varepsilon)$  and  $y^2 = (x+1)(x^2 + \varepsilon)$  for  $\varepsilon > 0$  look like:



Again, the graph of  $y = \pm \sqrt{f(x)}$  has a vertical tangent at x = -1 because f(x) has a simple root there. For values  $0 < \varepsilon < 1/3$  (as pictured) there will be local extrema at

$$x = \frac{-1 \pm \sqrt{1 - 3\varepsilon}}{3}$$

but for values  $\varepsilon > 1/3$  these extrema will go away. In that case the curves  $y = (x+1)(x^2 + \varepsilon)$ and  $y^2 = (x+1)(x^2 + \varepsilon)$  will look like:



[Now you have a mental picture of plane cubic curves. These were first classified by Isaac Newton in 1695. In fact, any curve of the form f(x,y) = 0 where  $f(x,y) \in \mathbb{R}[x,y]$  has degree 3 is equivalent to one of the curves seen above. To be precise we will need to introduce projective coordinates. Stay tuned.]

What is a polynomial? Let R be a ring and let x be a formal symbol. A polynomial is a formal expression  $a_0 + a_1 x^1 + a_2 x^2 + \cdots$  in which all but finitely many of the coefficients  $a_i \in R$  are zero. If we define addition and multiplication by

$$\sum_{k} a_k x^k + \sum_{k} b_k x^k := \sum_{k} (a_k + b_k) x^k$$

and

$$\left(\sum_{k} a_{k} x^{k}\right) \left(\sum_{\ell} b_{\ell} x^{\ell}\right) := \sum_{m} \left(\sum_{k+\ell=m} a_{k} b_{\ell}\right) x^{m},$$

then the set of polynomials becomes a ring which we call R[x]. Note that R is naturally embedded in R[x] as a subring via the map  $a \mapsto a + 0x + 0x^2 + \cdots$ . We define the degree  $\deg(f)$  of a nonzero polynomial  $f(x) = \sum_k a_k x^k$  as the largest k such that  $a_k \neq 0$  (this  $a_k$  is called the **leading coefficient**), and we define the degree of the zero polynomial as  $\deg(0) = -\infty$ (but this is rather arbitrary). We consider the symbols  $1, x, x^2, \ldots$  to be linearly independent over R, and therefore we have  $\sum_k a_k x^k = \sum_k b_k x^k$  if and only if  $a_k = b_k$  for all k. This makes R[x] into an infinite-dimensional "free" module over R.

**Problem 1 (The Division Algorithm).** We say that a polynomial  $g(x) \in R[x]$  is monic if its leading coefficient is a unit. Consider polynomials  $f(x) = \sum_k a_k x^k$  and  $g(x) = \sum_k b_k x^k$  in R[x] with g(x) monic.

(a) Prove that **there exist** polynomials  $q(x), r(x) \in R[x]$  such that f(x) = q(x)g(x) + r(x)and  $\deg(r) < \deg(g)$  (this includes the case r(x) = 0 since  $\deg(0) = -\infty < \deg(g)$  for any g). [Hint: Use induction on  $\deg(f)$ . Assume that  $\deg(g) = m \ge 0$  with leading coefficient  $b_m \in R^{\times}$ . If  $\deg(f) < m$  then we can take q(x) = 0 and r(x) = f(x), so the assertion is true. Now suppose that  $\deg(f) = n \ge m$  and consider the polynomial  $f_1(x) = f(x) - \frac{a_n}{b_m} x^{n-m} g(x)$ . Since  $\deg(f_1) < n$  there exist  $q_1(x), r(x)$  with  $f_1(x) = q_1(x)g(x) + r(x)$  and  $\deg(r) < \deg(g)$ .]

- (b) Prove that the polynomials q(x), r(x) from part (a) are **unique**. [Hint: Assume that  $f(x) = q_1(x)g(x) + r_1(x) = q_2(x)g(x) + r_2(x)$  with  $\deg(r_1), \deg(r_2) < \deg(g)$ . Since g(x) is monic, note that  $\deg(gh) = \deg(g) + \deg(h)$  for any nonzero  $h(x) \in R[x]$ . Note that  $\deg(r_2 r_1) \leq \max\{\deg(r_1), \deg(r_2)\}$ . Now assume that  $r_2(x) r_1(x) \neq 0$  and show that this leads to a contradiction.]
- (c) Give an example where g(x) is not monic and the polynomials q(x), r(x) do not exist.

Proof. Let R be any ring and consider  $f(x), g(x) \in R[x]$  with g(x) monic. Let  $g(x) = b_0 + b_1x + \cdots + b_mx^m$  where  $b_m \in R^{\times}$  is a unit, hence  $\deg(g) = m \ge 0$ . We will show by induction on  $\deg(f)$  that there exist  $q(x), r(x) \in R[x]$  with f(x) = q(x)g(x) + r(x) and  $\deg(r) < m$ . First note that the result is true if  $\deg(f) < m$ , in which case we can take q(x) = 0 and r(x) = f(x). So suppose that  $\deg(f) = n \ge m$ . Since  $b_m$  is a unit we can define the polynomial  $f_1(x) = f(x) - \frac{a_n}{b_m}x^{n-m}g(x)$ . Note that  $\deg(f) < \deg(f)$  so by induction there exist  $q_1(x), r(x) \in R[x]$  with  $f_1(x) = q_1(x)g(x) + r(x)$  and  $\deg(r) < \deg(g)$ . Finally, we have

$$f(x) = f_1(x) + \frac{a_n}{b_m} x^{n-m} g(x)$$
  
=  $q_1(x)g(x) + r(x) + \frac{a_n}{b_m} x^{n-m} g(x)$   
=  $\left(q_1(x) + \frac{a_n}{b_m} x^{n-m}\right) g(x) + r(x)$ 

where  $\deg(r) < \deg(g)$ , as desired.

To show that the quotient and remainder are unique, suppose we have

$$q_1(x)g(x) + r_1(x) = f(x) = q_2(x)g(x) + r_2(x)$$

with  $\deg(r_1), \deg(r_2) < \deg(g)$ . Rearranging the equations gives

(\*) 
$$g(x)(q_1(x) - q_2(x)) = (r_2(x) - r_1(x))$$

Now assume for contradiction that  $r_2(x) - r_1(x) \neq 0$ . This implies that

$$0 \le \deg(r_2 - r_1) \le \max\{\deg(r_1), \deg(r_2)\} < \deg(g).$$

On the other hand, since g(x) is monic we have  $\deg(gh) = \deg(g) + \deg(h)$  for all  $h(x) \in R[x]$ . Since  $q_1(x) - q_2(x) \neq 0$  this implies in particular that

$$\deg(g(q_1 - q_2)) = \deg(g) + \deg(q_1 - q_2) \ge \deg(g)$$

But this contradicts the equation  $(\star)$ . We conclude that  $r_2(x) - r_1(x) = 0$ , and hence  $r_1(x) = r_2(x)$ . Finally, since  $g(x)(q_1(x) - q_2(x)) = 0$  and g(x) is monic, we conclude that  $q_1(x) - q_2(x) = 0$ , and hence  $q_1(x) = q_2(x)$ .

Note that the existence and uniqueness of q(x) and r(x) can fail when g(x) is not monic. For example, consider  $f(x) = x^2 + x + 1$  and g(x) = 2x + 2 in  $\mathbb{Z}/(6)[x]$ . Then the quotient and remainder do **not exist**. (If we had f(x) = q(x)g(x) + r(x) with deg $(r) < \deg(g)$  then the leading coefficient a of q(x) would satisfy 2a = 1. But then 0 = 3(2a) = 3. Contradiction.) If we change f(x) to  $4x^2 + 4x + 1$  then the quotient and remainder exist, but they are **not unique**:

$$(2x)(2x^{2}+2x) + 1 = 4x^{2} + 4x + 1 = (5x)(2x^{2}+2x) + 1.$$

[By uniqueness we can speak of "the" remainder when f(x) is divided by monic g(x). We will write g|f (and say "g divides f") if and only if the remainder is zero.]

## **Problem 2 (Descartes' Theorem).** Let R be a ring (i.e. commutative).

- (a) If  $\alpha \in R$  is any element, we define a function  $ev_{\alpha} : R[x] \to R$  by sending  $\sum_{k} a_{k}x^{k} \in R[x]$  to  $\sum_{k} a_{k}\alpha^{k} \in R$ . Prove that this function (called "evaluation at  $\alpha$ ") is a morphism of rings. For simplicity we will write  $f(\alpha) := ev_{\alpha}(f(x))$ .
- (b) Consider a polynomial  $f(x) \in R[x]$  and an element  $\alpha \in R$ . Prove that we have  $(x-\alpha)|f(x)$  if and only if  $f(\alpha) = 0$ . [Hint: Divide f(x) by  $(x-\alpha)$  and evaluate at  $\alpha$ .]

*Proof.* First we show that  $ev_{\alpha} : R[x] \to R$  is a homomorphism of rings. Given  $f(x) = \sum_{k} a_k x^k$  and  $g(x) = \sum_{k} b_k x^k$  we have

$$(f+g)(\alpha) = \sum_{k} (a_k + b_k)\alpha^k$$
$$= \sum_{k} a_k \alpha^k + \sum_{k} b_k \alpha^k$$
$$= f(\alpha) + g(\alpha)$$

and

$$(fg)(\alpha) = \sum_{m} \left( \sum_{k+\ell=m} a_k b_\ell \right) \alpha^m$$
$$= \left( \sum_k a_k \alpha^k \right) \left( \sum_\ell b_\ell \alpha^\ell \right)$$
$$= f(\alpha)g(\alpha).$$

Finally, note that the unit polynomial  $1 + 0x + 0x^2 + \cdots$  evalutes to  $1 \in R$ .

Now consider any  $f(x) \in R[x]$  and  $\alpha \in R$ . Since  $(x - \alpha)$  is monic, Problem 1 says that there exist a unique polynomial  $q(x) \in R[x]$  and a constant  $c \in R$  such that

$$f(x) = (x - \alpha)q(x) + c.$$

By definition we have  $(x - \alpha)|f(x)$  if and only if c = 0. But part (a) tells us that  $f(\alpha) = (\alpha - \alpha)q(\alpha) + c = 0 \cdot q(\alpha) + c = c$ .

[The importance of Descartes' Theorem cannot be overestimated.]

**Problem 3 (Localization of a Ring).** The construction of the field of fractions of a domain can be generalized to arbitrary rings as follows. Let R be a ring and let  $S \subseteq R$  be any subset closed under multiplication and containing 1 (we can say that S is a subsemigroup of  $(R, \times, 1)$ ). We define the set of formal symbols

$$R[S^{-1}] := \left\{ \left[ \frac{a}{b} \right] : a, b \in R, b \in S \right\}$$

and we declare that

$$\begin{bmatrix} a \\ \overline{b} \end{bmatrix} = \begin{bmatrix} c \\ \overline{d} \end{bmatrix} \iff \exists u \in S \text{ such that } u(ad - bc) = 0.$$

(a) Prove that this is an equivalence relation.

(b) Prove that the algebraic operations

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} \begin{bmatrix} \frac{c}{d} \end{bmatrix} := \begin{bmatrix} \frac{ac}{bd} \end{bmatrix}$$

and

$$\left[\frac{a}{b}\right] + \left[\frac{c}{d}\right] := \left[\frac{ad+bc}{bd}\right]$$

are well-defined. It follows (don't prove this) that  $R[S^{-1}]$  is a ring.

- (c) Prove that  $R[S^{-1}] = 0$  if and only if S contains 0.
- (d) Prove that the natural map  $R \to R[S^{-1}]$  defined by  $a \mapsto \begin{bmatrix} a \\ 1 \end{bmatrix}$  is a ring homomorphism.
- (e) We say that  $u \in R$  is a zerodivisor if there exists  $v \in R$  such that uv = 0. If S contains no zerodivisors, prove that the natural map  $R \to R[S^{-1}]$  is injective. (This holds in particular when R is a domain and  $0 \notin S$ .)
- (f) If  $P \subseteq R$  is a prime ideal, show that S := R P is a subsemigroup of R. The localization  $R[S^{-1}]$  is denoted as  $R_P$  and is called the localization of R at the prime P. We will discuss the geometric meaning of this later.

*Proof.* For part (a), consider any  $a, b \in R$  with  $b \in S$ . Since 1(ab - ba) = 0 and  $1 \in S$  we have  $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$ . Next, consider  $a, b, c, d \in R$  with  $b, d \in S$  such that  $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$ , i.e., there exists  $u \in S$  such that u(ad - bc) = 0. But then u(cb - da) = -0 = 0, hence  $\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$ . Finally, assume that  $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$  and  $\begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix}$ , i.e., there exist  $u, v \in S$  such that u(ad - bc) = 0 and v(cf - de) = 0. Then we have

$$\begin{split} luv(af) &= (uad)vf, \ &= (ubc)vf, \ &= (vcf)ub, \ &= (vde)ub, \ &= duv(be). \end{split}$$

Since  $d, u, v \in S$  we have  $duv \in S$  and hence  $\left[\frac{a}{b}\right] = \left[\frac{e}{f}\right]$ .

For part (b) assume that  $\begin{bmatrix} \frac{a}{b} \end{bmatrix} = \begin{bmatrix} \frac{a'}{b'} \end{bmatrix}$  and  $\begin{bmatrix} \frac{c}{d} \end{bmatrix} = \begin{bmatrix} \frac{c'}{d'} \end{bmatrix}$ , i.e., assume that we have u(ab' - a'b) = 0 and v(cd' - c'd) = 0 for some  $u, v \in S$ . Then we have

$$uv(acb'd') = (uab')(vcd'),$$
  
=  $(ua'b)(vc'd),$   
=  $uv(a'c'bd).$ 

Since  $u, v \in S$  we have  $uv \in S$ , and hence  $\left[\frac{ac}{bd}\right] = \left[\frac{a'c'}{b'd'}\right]$ . We also have uv[(ad + bc)b'd'] = uvadb'd' + uvbcb'd', = (uab')vdd' + (vcd')ubb', = (ua'b)vdd' + (vc'd)ubb', = uva'd'bd + uvb'c'bd,= uv[(a'd' + b'c')bd],

and hence  $\left[\frac{ad+bc}{bd}\right] = \left[\frac{a'd'+b'c'}{b'd'}\right]$ . We will not bother to check that these operations define a ring structure on  $R[S^{-1}]$ . Is it possible that no one has ever checked this? Oh well.

For part (c), first assume that  $0 \in S$ . Then for all  $a, b, c, d \in R$  with  $b, d \in S$  we have 0(ad - bc) = 0, and hence  $\left[\frac{a}{b}\right] = \left[\frac{c}{d}\right]$ . We conclude that  $R[S^{-1}]$  consists of just one element, which we might as well call 0. Conversely, assume that  $R[S^{-1}]$  consists of just one element. In particular, we have  $\left[\frac{1}{1}\right] = \left[\frac{0}{1}\right]$ . But this means that there exists  $u \in S$  such that  $u = u(1) = u(1 \cdot 1 - 1 \cdot 0) = 0$ . We conclude that  $0 \in S$ .

For part (d), first note that  $\begin{bmatrix} 1\\ 1 \end{bmatrix}$  is the unity in  $R[S^{-1}]$ , hence  $1_R \mapsto 1_{R[S^{-1}]}$  as desired. Then, for any  $a, b \in R$  we have

$$\begin{bmatrix} \frac{a}{1} \end{bmatrix} \begin{bmatrix} \frac{b}{1} \end{bmatrix} = \begin{bmatrix} \frac{ab}{1 \cdot 1} \end{bmatrix} = \begin{bmatrix} \frac{ab}{1} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \frac{a}{1} \end{bmatrix} + \begin{bmatrix} \frac{b}{1} \end{bmatrix} = \begin{bmatrix} \frac{a \cdot 1 + 1 \cdot b}{1} \end{bmatrix} = \begin{bmatrix} \frac{a+b}{1} \end{bmatrix},$$

as desired.

For part (e), assume that R has no zerodivisors. We wish to show that the map  $a \mapsto \begin{bmatrix} a \\ 1 \end{bmatrix}$  is injective. So consider  $a, b \in R$  and assume that  $\begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} b \\ 1 \end{bmatrix}$ , i.e., there exists  $u \in S$  such that u(a-b) = 0. Since u is not a zerodivisor, this implies that a-b=0, hence a=b. I should have asked you to prove the converse statement: If the map  $R \to R[S^{-1}]$  is an injection, then S contains no zerodivisors. I'll include the proof anyway. Assume that the map  $a \mapsto \begin{bmatrix} a \\ 1 \end{bmatrix}$  is injective and suppose that S contains a zerodivisor  $u \in S$ . That is, suppose that there exists  $v \neq 0$  such that uv = 0. But then we have  $1 + v \neq 1$  and u(1 + v - 1) = 0, hence  $\begin{bmatrix} 1+v \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ . This contradicts injectivity.

Finally, for part (f), let  $P \leq R$  be a prime ideal. By definition this means that for all  $a, b \in R$  we have

$$ab \in P \Longrightarrow a \in P \text{ or } b \in P.$$

If we let S := R - P then the contrapositive of the above statement says that for all  $a, b \in R$  we have

$$a \in S$$
 and  $b \in S \Longrightarrow ab \in S$ .

Since  $1 \in S$  (let's say that  $P \neq R$  is part of the definition of "prime"), we conclude that S is a subsemigroup of  $(R, \times, 1)$ . As we will see later, the localization  $R_P := R[S^{-1}]$  "at the prime P" is the most important example of localization.

## Problem 4 (Localization of $\mathbb{Z}$ ).

(a) Let  $p \in \mathbb{Z}$  be prime and consider the localization  $\mathbb{Z}_{(p)}$  at the prime ideal (p):

$$\mathbb{Z}_{(p)} := \left\{ \frac{a}{b} : a, b \in \mathbb{Z}, p \not\mid b \right\}.$$

Prove that this ring has a unique nontrivial **maximal** ideal. [Hint: What are the units of  $\mathbb{Z}_{(p)}$ ? Recall that an ideal is the whole ring if and only if it contains a unit.] A ring with a unique nontrivial maximal ideal is called a local ring.

(b) Prove that every ring  $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$  between  $\mathbb{Z}$  and  $\mathbb{Q}$  is a localization of  $\mathbb{Z}$ . [Hint: Since R is a subring of  $\mathbb{Q}$  it consists of fractions. Let S be the set of denominators that occur in elements of R. Prove that  $R = \mathbb{Z}[S^{-1}]$ .]

*Proof.* First we show (a). Since  $\mathbb{Z}$  is a domain, the localization map  $\mathbb{Z} \to \mathbb{Z}_{(p)}$  is an injection, thus (by slight abuse) we can regard  $p \in \mathbb{Z}$  as an element of  $\mathbb{Z}_{(p)}$ . Now consider the principal ideal generated by p:

$$p\mathbb{Z}_{(p)} := \left\{ \frac{pa}{b} : a, b \in \mathbb{Z}, p \not| b \right\}.$$

Note that this is not the unit ideal (i.e.  $p\mathbb{Z}_{(p)} \neq \mathbb{Z}_{(p)}$ ) because it contains no units. Indeed, if  $\frac{pa}{b}$  is in  $p\mathbb{Z}_{(p)}$  then its inverse  $\frac{b}{pa}$  is not in  $\mathbb{Z}_{(p)}$  because it has p in the denominator. I claim that  $p\mathbb{Z}_{(p)}$  is maximal and that it is the **only** maximal ideal of  $\mathbb{Z}_{(p)}$ . Indeed, let  $I \leq \mathbb{Z}_{(p)}$  be any other ideal not contained in  $p\mathbb{Z}_{(p)}$ . Then there exists an element  $\frac{a}{b} \in I - p\mathbb{Z}_{(p)}$ , i.e., such

that  $p \not| a$  and  $p \not| b$ . But then  $\frac{a}{b}$  is a unit with inverse  $\frac{b}{a} \in \mathbb{Z}_{(p)}$  and it follows that  $I = \mathbb{Z}_{(p)}$ . We conclude that all nontrivial ideals of  $\mathbb{Z}_{(p)}$  are contained in  $p\mathbb{Z}_{(p)}$ . It follows that  $p\mathbb{Z}_{(p)}$  is the unique maximal ideal.

Now we show (b). Consider any ring  $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$  between  $\mathbb{Z}$  and  $\mathbb{Q}$ . Since R is a subring of  $\mathbb{Q}$  it consists of fractions. Define

$$S := \left\{ b \in \mathbb{Z} : \frac{a}{b} \in R \text{ with } \gcd(a, b) = 1 \right\}.$$

(Note that the coprime condition is necessary, otherwise we have  $\frac{b}{b} \in R$  and hence  $b \in S$  for all nonzero b. That's no good.) I claim that  $R = \mathbb{Z}[S^{-1}]$ . Indeed, note that  $R \subseteq \mathbb{Z}[S^{-1}]$  because every element of R has a denominator in the set S. Conversely, consider any  $\frac{a}{b} \in \mathbb{Z}[S^{-1}]$ ; i.e., with  $b \in S$ . By definition of S there exists some  $c \in \mathbb{Z}$  with  $\frac{c}{b} \in R$  and gcd(c, d) = 1. Then by Bézout's Lemma there exist  $x, y \in \mathbb{Z}$  such that cx + by = 1. Dividing both sides by b gives

$$\frac{c}{b}x + y = \frac{1}{b}.$$

Since  $\mathbb{Z} \subseteq R$  and  $\frac{c}{b} \in R$  we conclude that  $\frac{1}{b} \in R$ . Finally, we conclude that  $\frac{a}{b} = a\frac{1}{b} \in R$ , and hence  $\mathbb{Z}[S^{-1}] \subseteq R$ .

[More generally, let D be any domain in which Bézout's Lemma holds (for example, a PID). Then every intermediate ring  $D \subseteq R \subseteq Frac(D)$  is a localization of D. The proof is the same.]