Math 662 Spring 2014
Homework 1 Drew Armstrong

Problem 0 (Drawing Pictures). Sketch the curves y?> = f(x) in R? for the following
polynomials f(z) € Rlz]: f(z) =23 and f(z) = (x +1)(2% +¢) for £ <0, =0, ¢ > 0. [Hint:
First sketch y = f(x) then sketch y = +/f(x).]

The curves y = 23 and y? = x> look like:
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Note that the curve on the right has a “cusp” at x = 0 because the derivative g—g = j:%\/f
approaches 0 as  — 0 from the right.

The curves y = (x + 1)(z% + ¢) and y = (z + 1)(2? + ¢) for £ < 0 look like:
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Note that the three roots of f(x) are simple, and so the graph looks locally like a straight line
y = ax at one of these points. Then the graph of y?> = f(x) looks locally like ++/az, i.e., a
parabola opening to the side. Note: Near ¢ = —1 the blob on the right shrinks to a single
point at (z,y) = (—1,0). Why?



For € = 0, the curves y = 2%(z + 1) and 3? = 22(z + 1) look like:
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As discussed, since f(z) has a simple root at « = —1, the graph of £,/ f(z) has a vertical
tangent at * = —1. What’s going on at x = 07 Near x = 0, Newton’s binomial theorem tells
us that
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Thus the graph of y = +/22(z + 1) = £x+/1 + z looks locally like the union of the two lines
y = 2. We say that the curve has two “branches” at the “node” (z,y) = (0,0).
The curves y = (x + 1)(z% + ¢) and y? = (z + 1)(2? + ¢) for € > 0 look like:
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Again, the graph of y = ++/f(x) has a vertical tangent at z = —1 because f(z) has a simple
root there. For values 0 < ¢ < 1/3 (as pictured) there will be local extrema at
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but for values & > 1/3 these extrema will go away. In that case the curves y = (z + 1)(2? +¢)
and y? = (z + 1)(2? + ¢) will look like:
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[Now you have a mental picture of plane cubic curves. These were first classified by Isaac Newton
in 1695. In fact, any curve of the form f(z,y) = 0 where f(z,y) € Rlz,y] has degree 3 is
equivalent to one of the curves seen above. To be precise we will need to introduce projective
coordinates. Stay tuned.]

What is a polynomial? Let R be a ring and let x be a formal symbol. A polynomial is a
formal expression ag+ajx! +agx?+ - - - in which all but finitely many of the coefficients a; € R
are zero. If we define addition and multiplication by

Zaka:k + Z b = Z(ak + bk):nk
k k

k
and

(Z akxk> (Z ngz> = Z ( Z akbg) ™,

k L m k+l=m

then the set of polynomials becomes a ring which we call R[z]. Note that R is naturally
embedded in R[z] as a subring via the map a + a + 0z + 022 + ---. We define the degree
deg(f) of a nonzero polynomial f(x) =, arz* as the largest k such that aj # 0 (this ay is
called the leading coefficient), and we define the degree of the zero polynomial as deg(0) = —oo
(but this is rather arbitrary). We consider the symbols 1,z, 22, ... to be linearly independent
over R, and therefore we have >, axz® = Y, by if and only if ay, = b, for all k. This makes
RJz] into an infinite-dimensional “free” module over R.

Problem 1 (The Division Algorithm). We say that a polynomial g(z) € R[z] is monic if
its leading coefficient is a unit. Consider polynomials f(z) = Y, arz* and g(x) = Y, bya® in
R[z] with g(z) monic.

(a) Prove that there exist polynomials g(x),r(z) € R[z] such that f(z) = q(x)g(z)+r(x)
and deg(r) < deg(g) (this includes the case r(z) = 0 since deg(0) = —oo < deg(g) for
any ¢). [Hint: Use induction on deg(f). Assume that deg(g) = m > 0 with leading
coefficient b,, € R*. If deg(f) < m then we can take ¢(z) = 0 and r(x) = f(x), so



the assertion is true. Now suppose that deg(f) = n > m and consider the polynomial
fi(z) = f(z) — 22" ™Mg(x). Since deg(f1) < n there exist qi(z),r(z) with fi(z) =
@1 (x)g(x) + r(x) and deg(r) < deg(g) ]

(b) Prove that the polynomials g(x),r(z) from part (a) are unique. [Hint: Assume that
f(@) = qi(z)g(z) + ri(z) = g2(x)g(x) + r2(x) with deg(r1),deg(r2) < deg(g). Since
g(x) is monic, note that deg(gh) = deg(g) + deg(h) for any nonzero h(z) € R[x|. Note
that deg(re — 1) < max{deg(r1),deg(r2)}. Now assume that ra(x) — r1(z) # 0 and
show that this leads to a contradiction.]

(c) Give an example where ¢g(z) is not monic and the polynomials g(x),r(x) do not exist.

Proof. Let R be any ring and consider f(z),g(z) € R[x] with g(z) monic. Let g(x) = by +
bz + -+ bya™ where b,, € R* is a unit, hence deg(g) = m > 0. We will show by induction
on deg(f) that there exist q(z),r(z) € R[x] with f(z) = ¢(x)g(x) + r(z) and deg(r) < m.
First note that the result is true if deg(f) < m, in which case we can take ¢(zr) = 0 and
r(z) = f(x). So suppose that deg(f) = n > m. Since b, is a unit we can define the
polynomial fi(z) = f(z) — 22" ™g(z). Note that deg(f1) < deg(f) so by induction there
exist ¢1(x),r(z) € R[z] with fi(z) = ¢1(x)g(z) + r(z) and deg(r) < deg(g). Finally, we have

f(x) = fi(z) + an’;x”—mg@)

= qi(2)g(x) + r(z) + j—;x"—mg@)

= (@) + §2a"™) g(a) + 7o),

where deg(r) < deg(g), as desired.
To show that the quotient and remainder are unique, suppose we have

@ (z)g(z) +ri(x) = f(z) = qa(2)g(2) + r2(2)
with deg(r1),deg(r2) < deg(g). Rearranging the equations gives

(%) 9(2) (q1(z) — q2(2)) = (r2(x) = r1(2)).
Now assume for contradiction that ro(z) — 71 (z) # 0. This implies that
0 < deg(ry — 1) < max{deg(r1),deg(r2)} < deg(g).

On the other hand, since g(z) is monic we have deg(gh) = deg(g) +deg(h) for all h(z) € R|x].
Since q1(x) — g2(z) # 0 this implies in particular that

deg(g(q1 — g2)) = deg(g) + deg(q1 — q2) > deg(g).

But this contradicts the equation (¥). We conclude that ro(x) — r1(x) = 0, and hence r1(z) =
ro(x). Finally, since g(x) (¢1(z) — g2(x)) = 0 and g(x) is monic, we conclude that ¢;(z) —
g2(x) = 0, and hence ¢1(z) = ¢2(z).

Note that the existence and uniqueness of ¢(x) and r(z) can fail when g(x) is not monic.
For example, consider f(z) = 22+ x+1 and g(x) = 22 +2 in Z/(6)[x]. Then the quotient and
remainder do not exist. (If we had f(z) = ¢(z)g(x) + r(z) with deg(r) < deg(g) then the
leading coefficient a of g(z) would satisfy 2a = 1. But then 0 = 3(2a) = 3. Contradiction.)
If we change f(z) to 422 + 42 + 1 then the quotient and remainder exist, but they are not
unique:

(2x)(22% 4 2x) + 1 = 42 + 4z + 1 = (5z)(22% + 22) + 1.



[By uniqueness we can speak of “the” remainder when f(x) is divided by monic g(x). We will
write g|f (and say “g divides f") if and only if the remainder is zero.]

Problem 2 (Descartes’ Theorem). Let R be a ring (i.e. commutative).

(a) If @ € R is any element, we define a function ev,, : R[z] — R by sending >, axz* € R[z]
to 3", axa® € R. Prove that this function (called “evaluation at a”) is a morphism of
rings. For simplicity we will write f(«a) := evqo(f(x)).

(b) Consider a polynomial f(z) € R[z] and an element o« € R. Prove that we have
(x —a)|f(z) if and only if f(a) = 0. [Hint: Divide f(z) by (x — «) and evaluate at a.]

Proof. First we show that ev, : R[z] — R is a homomorphism of rings. Given f(z) =, aja*
and g(x) = Y, brz* we have

(f + (@) = Y (ax +br)a*
k
= Z apak + Z bpa®
k k

= f(a) + g(a)
and

(fg)(a) =) ( > akbé> o™

m  \k+l=m

(55
k )4
= fla)g(a).

Finally, note that the unit polynomial 1 4 O0x + 0z% 4 --- evalutes to 1 € R.
Now consider any f(z) € R[z] and o € R. Since (z — «) is monic, Problem 1 says that
there exist a unique polynomial ¢(x) € R[z] and a constant ¢ € R such that

f(z) = (x —a)q(z) +c.
By definition we have (z — a)|f(x) if and only if ¢ = 0. But part (a) tells us that f(a) =
(o —a)g(a) +c=0-¢q(a) +c=c. O

[The importance of Descartes’ Theorem cannot be overestimated.]

Problem 3 (Localization of a Ring). The construction of the field of fractions of a domain
can be generalized to arbitrary rings as follows. Let R be a ring and let S C R be any subset
closed under multiplication and containing 1 (we can say that S is a subsemigroup of (R, x, 1)).
We define the set of formal symbols

R[S7Y = {[%} .a,be R,be S}
and we declare that

[%} = EJ <= Ju € S such that u(ad — be) = 0.

(a) Prove that this is an equivalence relation.



(b) Prove that the algebraic operations

o) L) = (5]

a ¢l |ad+bc
HaFiks [ bd ]
are well-defined. It follows (don’t prove this) that R[S™!] is a ring.
(c) Prove that R[S™!] = 0 if and only if S contains 0.
(d) Prove that the natural map R — R[S™!] defined by a — [%] is a ring homomorphism.
(e) We say that u € R is a zerodivisor if there exists v € R such that uv = 0. If S contains
no zerodivisors, prove that the natural map R — R[S™!] is injective. (This holds in
particular when R is a domain and 0 ¢ S.)
(f) If P C R is a prime ideal, show that S := R — P is a subsemigroup of R. The
localization R[S™!] is denoted as Rp and is called the localization of R at the prime P.
We will discuss the geometric meaning of this later.

and

Proof. For part (a), consider any a,b € R with b € S. Since 1(ab—ba) =0 and 1 € S we have
[%] = [%] Next, consider a,b,c,d € R with b,d € S such that [%] = [3}, i.e., there exists

u € S such that u(ad — bc) = 0. But then u(chb — da) = —0 = 0, hence [§] = [¢]. Finally,
assume that [¢] = [§] and [$] = [ﬂ, i.e., there exist u,v € S such that u(ad — bc) = 0 and
v(cf — de) = 0. Then we have

Since d, u,v € S we have duv € S and hence [%] = [?]
For part (b) assume that [%] = ["—/l} and | [d/} , 1.e., assume that we have u(ab’ —a'b) =
0 and v(cd’ — ¢d) = 0 for some u,v € S. Then we have
uv(ach'd) = (uab)(ved'),
= (ua'b)(vd'd),
= uv(a’'c'bd).

Since u,v € S we have uv € S, and hence [%] = [%} We also have

wo[(ad + be)t'd'] = uvadb'd' + uvbch'd,
= (uab')vdd' + (ved )ubl,
= (ua'b)vdd’ + (vd d)ubl/,
= wva'd'bd + uvb'd'bd,
= wv[(d'd + V' )bd],

vd’
ring structure on R[S~!]. Is it possible that no one has ever checked this? Oh well.

and hence [%] = [“/d/“'blcl}. We will not bother to check that these operations define a



For part (c), first assume that 0 € S. Then for all a,b,c,d € R with b,d € S we have
0(ad — bc) = 0, and hence [%] = [g] We conclude that R[S™!] consists of just one element,
which we might as well call 0. Conversely, assume that R[S~!] consists of just one element. In
particular, we have [}] = [2]. But this means that there exists u € S such that u = u(1) =
u(l-1—1-0)=0. We conclude that 0 € S.

For part (d), first note that [}] is the unity in R[S™!], hence 1 1g[g-1) as desired.

Then, for any a,b € R we have

O A g P I PR e

as desired.
a

For part (e), assume that R has no zerodivisors. We wish to show that the map a — [{]
is injective. So consider a,b € R and assume that [%] = [%], i.e., there exists v € S such that
u(a —b) = 0. Since u is not a zerodivisor, this implies that a — b = 0, hence a = b. I should
have asked you to prove the converse statement: If the map R — R[S™!] is an injection, then
S contains no zerodivisors. I'll include the proof anyway. Assume that the map a +— [%] is
injective and suppose that S contains a zerodivisor uv € S. That is, suppose that there exists
v # 0 such that v = 0. But then we have 1 +v # 1 and u(1+v—1) = 0, hence [2%] = [1].
This contradicts injectivity.

Finally, for part (f), let P < R be a prime ideal. By definition this means that for all

a,b € R we have

abe P=—=a€PorbecP.
If we let S := R — P then the contrapositive of the above statement says that for all a,b € R
we have

aceSandbe S=abeSs.
Since 1 € S (let’s say that P # R is part of the definition of “prime”), we conclude that S is
a subsemigroup of (R, x,1). As we will see later, the localization Rp := R[S™!] “at the prime
P” is the most important example of localization. U

Problem 4 (Localization of Z).
(a) Let p € Z be prime and consider the localization Z, at the prime ideal (p):
a
Zy) = {5 ca,be Z,p)(b} .

Prove that this ring has a unique nontrivial maximal ideal. [Hint: What are the units
of Z)? Recall that an ideal is the whole ring if and only if it contains a unit.] A ring
with a unique nontrivial maximal ideal is called a local ring.

(b) Prove that every ring Z C R C Q between Z and Q is a localization of Z. [Hint: Since
R is a subring of Q it consists of fractions. Let S be the set of denominators that occur
in elements of R. Prove that R = Z[S™!].]

Proof. First we show (a). Since Z is a domain, the localization map Z — Z,) is an injection,
thus (by slight abuse) we can regard p € Z as an element of Z,). Now consider the principal
ideal generated by p:

PLp) = {% ca,b € Z,p/rb}.

Note that this is not the unit ideal (i.e. pZ,) # Z(,)) because it contains no units. Indeed, if
B is in PZp) then its inverse p% is not in Z,) because it has p in the denominator. I claim
that pZ,) is maximal and that it is the only maximal ideal of Z,). Indeed, let I < Z, be

any other ideal not contained in pZ,). Then there exists an element § € I — pZ,, i.e., such



that pfa and pfb. But then § is a unit with inverse g € Z(p) and it follows that I = Z,)
We conclude that all nontrivial ideals of Z,) are contained in pZ,. It follows that pZ, is
the unique maximal ideal.

Now we show (b). Consider any ring Z C R C Q between Z and Q. Since R is a subring of
Q it consists of fractions. Define

S = {beZ:%eRwith gcd(a,b)zl}.

(Note that the coprime condition is necessary, otherwise we have % € R and hence b € S for all
nonzero b. That’s no good.) I claim that R = Z[S~!]. Indeed, note that R C Z[S™!] because
every element of R has a denominator in the set S. Conversely, consider any § € Z[S 1 ie,
with b € S. By definition of S there exists some ¢ € Z with § € R and ged(c,d) = 1. Then by
Bézout’s Lemma there exist x,y € Z such that cx + by = 1. Dividing both sides by b gives

c 1

ga: +y= 3
Since Z C R and § € R we conclude that % € R. Finally, we conclude that 7 = a% € R, and
hence Z[S™!] C R. O

[More generally, let D be any domain in which Bézout’s Lemma holds (for example, a PID). Then
every intermediate ring D C R C Frac(D) is a localization of D. The proof is the same.]



