
Math 662 Spring 2014
Homework 1 Drew Armstrong

Problem 0 (Drawing Pictures). Sketch the curves y2 = f(x) in R2 for the following
polynomials f(x) ∈ R[x]: f(x) = x3 and f(x) = (x+ 1)(x2 + ε) for ε < 0, ε = 0, ε > 0. [Hint:

First sketch y = f(x) then sketch y = ±
√
f(x).]

The curves y = x3 and y2 = x3 look like:

Note that the curve on the right has a “cusp” at x = 0 because the derivative dy
dx = ±3

2

√
x

approaches 0 as x→ 0 from the right.
The curves y = (x+ 1)(x2 + ε) and y = (x+ 1)(x2 + ε) for ε < 0 look like:

Note that the three roots of f(x) are simple, and so the graph looks locally like a straight line
y = αx at one of these points. Then the graph of y2 = f(x) looks locally like ±

√
αx, i.e., a

parabola opening to the side. Note: Near ε = −1 the blob on the right shrinks to a single
point at (x, y) = (−1, 0). Why?



For ε = 0, the curves y = x2(x+ 1) and y2 = x2(x+ 1) look like:

As discussed, since f(x) has a simple root at x = −1, the graph of ±
√
f(x) has a vertical

tangent at x = −1. What’s going on at x = 0? Near x = 0, Newton’s binomial theorem tells
us that

±
√

1 + x = ±
(

1 +
(1/2)

1!
x+

(1/2)(−1/2)

2!
x2 +

(1/2)(−1/2)(−3/2)

3!
x3 + · · ·

)
Thus the graph of y = ±

√
x2(x+ 1) = ±x

√
1 + x looks locally like the union of the two lines

y = ±x. We say that the curve has two “branches” at the “node” (x, y) = (0, 0).
The curves y = (x+ 1)(x2 + ε) and y2 = (x+ 1)(x2 + ε) for ε > 0 look like:



Again, the graph of y = ±
√
f(x) has a vertical tangent at x = −1 because f(x) has a simple

root there. For values 0 < ε < 1/3 (as pictured) there will be local extrema at

x =
−1±

√
1− 3ε

3

but for values ε > 1/3 these extrema will go away. In that case the curves y = (x+ 1)(x2 + ε)
and y2 = (x+ 1)(x2 + ε) will look like:

[Now you have a mental picture of plane cubic curves. These were first classified by Isaac Newton
in 1695. In fact, any curve of the form f(x, y) = 0 where f(x, y) ∈ R[x, y] has degree 3 is
equivalent to one of the curves seen above. To be precise we will need to introduce projective
coordinates. Stay tuned.]

What is a polynomial? Let R be a ring and let x be a formal symbol. A polynomial is a
formal expression a0+a1x

1+a2x
2+ · · · in which all but finitely many of the coefficients ai ∈ R

are zero. If we define addition and multiplication by∑
k

akx
k +

∑
k

bkx
k :=

∑
k

(ak + bk)x
k

and (∑
k

akx
k

)(∑
`

b`x
`

)
:=
∑
m

( ∑
k+`=m

akb`

)
xm,

then the set of polynomials becomes a ring which we call R[x]. Note that R is naturally
embedded in R[x] as a subring via the map a 7→ a + 0x + 0x2 + · · · . We define the degree
deg(f) of a nonzero polynomial f(x) =

∑
k akx

k as the largest k such that ak 6= 0 (this ak is
called the leading coefficient), and we define the degree of the zero polynomial as deg(0) = −∞
(but this is rather arbitrary). We consider the symbols 1, x, x2, . . . to be linearly independent
over R, and therefore we have

∑
k akx

k =
∑

k bkx
k if and only if ak = bk for all k. This makes

R[x] into an infinite-dimensional “free” module over R.

Problem 1 (The Division Algorithm). We say that a polynomial g(x) ∈ R[x] is monic if
its leading coefficient is a unit. Consider polynomials f(x) =

∑
k akx

k and g(x) =
∑

k bkx
k in

R[x] with g(x) monic.

(a) Prove that there exist polynomials q(x), r(x) ∈ R[x] such that f(x) = q(x)g(x)+r(x)
and deg(r) < deg(g) (this includes the case r(x) = 0 since deg(0) = −∞ < deg(g) for
any g). [Hint: Use induction on deg(f). Assume that deg(g) = m ≥ 0 with leading
coefficient bm ∈ R×. If deg(f) < m then we can take q(x) = 0 and r(x) = f(x), so



the assertion is true. Now suppose that deg(f) = n ≥ m and consider the polynomial
f1(x) = f(x) − an

bm
xn−mg(x). Since deg(f1) < n there exist q1(x), r(x) with f1(x) =

q1(x)g(x) + r(x) and deg(r) < deg(g).]
(b) Prove that the polynomials q(x), r(x) from part (a) are unique. [Hint: Assume that

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x) with deg(r1),deg(r2) < deg(g). Since
g(x) is monic, note that deg(gh) = deg(g) + deg(h) for any nonzero h(x) ∈ R[x]. Note
that deg(r2 − r1) ≤ max{deg(r1), deg(r2)}. Now assume that r2(x) − r1(x) 6= 0 and
show that this leads to a contradiction.]

(c) Give an example where g(x) is not monic and the polynomials q(x), r(x) do not exist.

Proof. Let R be any ring and consider f(x), g(x) ∈ R[x] with g(x) monic. Let g(x) = b0 +
b1x+ · · ·+ bmx

m where bm ∈ R× is a unit, hence deg(g) = m ≥ 0. We will show by induction
on deg(f) that there exist q(x), r(x) ∈ R[x] with f(x) = q(x)g(x) + r(x) and deg(r) < m.
First note that the result is true if deg(f) < m, in which case we can take q(x) = 0 and
r(x) = f(x). So suppose that deg(f) = n ≥ m. Since bm is a unit we can define the
polynomial f1(x) = f(x) − an

bm
xn−mg(x). Note that deg(f1) < deg(f) so by induction there

exist q1(x), r(x) ∈ R[x] with f1(x) = q1(x)g(x) + r(x) and deg(r) < deg(g). Finally, we have

f(x) = f1(x) +
an
bm
xn−mg(x)

= q1(x)g(x) + r(x) +
an
bm
xn−mg(x)

=

(
q1(x) +

an
bm
xn−m

)
g(x) + r(x),

where deg(r) < deg(g), as desired.
To show that the quotient and remainder are unique, suppose we have

q1(x)g(x) + r1(x) = f(x) = q2(x)g(x) + r2(x)

with deg(r1), deg(r2) < deg(g). Rearranging the equations gives

(?) g(x) (q1(x)− q2(x)) = (r2(x)− r1(x)) .

Now assume for contradiction that r2(x)− r1(x) 6= 0. This implies that

0 ≤ deg(r2 − r1) ≤ max{deg(r1), deg(r2)} < deg(g).

On the other hand, since g(x) is monic we have deg(gh) = deg(g) + deg(h) for all h(x) ∈ R[x].
Since q1(x)− q2(x) 6= 0 this implies in particular that

deg(g(q1 − q2)) = deg(g) + deg(q1 − q2) ≥ deg(g).

But this contradicts the equation (?). We conclude that r2(x)− r1(x) = 0, and hence r1(x) =
r2(x). Finally, since g(x) (q1(x)− q2(x)) = 0 and g(x) is monic, we conclude that q1(x) −
q2(x) = 0, and hence q1(x) = q2(x).

Note that the existence and uniqueness of q(x) and r(x) can fail when g(x) is not monic.
For example, consider f(x) = x2 +x+1 and g(x) = 2x+2 in Z/(6)[x]. Then the quotient and
remainder do not exist. (If we had f(x) = q(x)g(x) + r(x) with deg(r) < deg(g) then the
leading coefficient a of q(x) would satisfy 2a = 1. But then 0 = 3(2a) = 3. Contradiction.)
If we change f(x) to 4x2 + 4x + 1 then the quotient and remainder exist, but they are not
unique:

(2x)(2x2 + 2x) + 1 = 4x2 + 4x+ 1 = (5x)(2x2 + 2x) + 1.

�



[By uniqueness we can speak of “the” remainder when f(x) is divided by monic g(x). We will
write g|f (and say “g divides f”) if and only if the remainder is zero.]

Problem 2 (Descartes’ Theorem). Let R be a ring (i.e. commutative).

(a) If α ∈ R is any element, we define a function evα : R[x]→ R by sending
∑

k akx
k ∈ R[x]

to
∑

k akα
k ∈ R. Prove that this function (called “evaluation at α”) is a morphism of

rings. For simplicity we will write f(α) := evα(f(x)).
(b) Consider a polynomial f(x) ∈ R[x] and an element α ∈ R. Prove that we have

(x−α)|f(x) if and only if f(α) = 0. [Hint: Divide f(x) by (x−α) and evaluate at α.]

Proof. First we show that evα : R[x]→ R is a homomorphism of rings. Given f(x) =
∑

k akx
k

and g(x) =
∑

k bkx
k we have

(f + g)(α) =
∑
k

(ak + bk)α
k

=
∑
k

akα
k +

∑
k

bkα
k

= f(α) + g(α)

and

(fg)(α) =
∑
m

( ∑
k+`=m

akb`

)
αm

=

(∑
k

akα
k

)(∑
`

b`α
`

)
= f(α)g(α).

Finally, note that the unit polynomial 1 + 0x+ 0x2 + · · · evalutes to 1 ∈ R.
Now consider any f(x) ∈ R[x] and α ∈ R. Since (x − α) is monic, Problem 1 says that

there exist a unique polynomial q(x) ∈ R[x] and a constant c ∈ R such that

f(x) = (x− α)q(x) + c.

By definition we have (x − α)|f(x) if and only if c = 0. But part (a) tells us that f(α) =
(α− α)q(α) + c = 0 · q(α) + c = c. �

[The importance of Descartes’ Theorem cannot be overestimated.]

Problem 3 (Localization of a Ring). The construction of the field of fractions of a domain
can be generalized to arbitrary rings as follows. Let R be a ring and let S ⊆ R be any subset
closed under multiplication and containing 1 (we can say that S is a subsemigroup of (R,×, 1)).
We define the set of formal symbols

R[S−1] :=
{[a
b

]
: a, b ∈ R, b ∈ S

}
and we declare that [a

b

]
=
[ c
d

]
⇐⇒ ∃u ∈ S such that u(ad− bc) = 0.

(a) Prove that this is an equivalence relation.



(b) Prove that the algebraic operations[a
b

] [ c
d

]
:=
[ac
bd

]
and [a

b

]
+
[ c
d

]
:=

[
ad+ bc

bd

]
are well-defined. It follows (don’t prove this) that R[S−1] is a ring.

(c) Prove that R[S−1] = 0 if and only if S contains 0.
(d) Prove that the natural map R→ R[S−1] defined by a 7→

[
a
1

]
is a ring homomorphism.

(e) We say that u ∈ R is a zerodivisor if there exists v ∈ R such that uv = 0. If S contains
no zerodivisors, prove that the natural map R → R[S−1] is injective. (This holds in
particular when R is a domain and 0 6∈ S.)

(f) If P ⊆ R is a prime ideal, show that S := R − P is a subsemigroup of R. The
localization R[S−1] is denoted as RP and is called the localization of R at the prime P .
We will discuss the geometric meaning of this later.

Proof. For part (a), consider any a, b ∈ R with b ∈ S. Since 1(ab− ba) = 0 and 1 ∈ S we have[
a
b

]
=
[
a
b

]
. Next, consider a, b, c, d ∈ R with b, d ∈ S such that

[
a
b

]
=
[
c
d

]
, i.e., there exists

u ∈ S such that u(ad − bc) = 0. But then u(cb − da) = −0 = 0, hence
[
c
d

]
=
[
a
b

]
. Finally,

assume that
[
a
b

]
=
[
c
d

]
and

[
c
d

]
=
[
e
f

]
, i.e., there exist u, v ∈ S such that u(ad− bc) = 0 and

v(cf − de) = 0. Then we have

duv(af) = (uad)vf,

= (ubc)vf,

= (vcf)ub,

= (vde)ub,

= duv(be).

Since d, u, v ∈ S we have duv ∈ S and hence
[
a
b

]
=
[
e
f

]
.

For part (b) assume that
[
a
b

]
=
[
a′

b′

]
and

[
c
d

]
=
[
c′

d′

]
, i.e., assume that we have u(ab′−a′b) =

0 and v(cd′ − c′d) = 0 for some u, v ∈ S. Then we have

uv(acb′d′) = (uab′)(vcd′),

= (ua′b)(vc′d),

= uv(a′c′bd).

Since u, v ∈ S we have uv ∈ S, and hence
[
ac
bd

]
=
[
a′c′

b′d′

]
. We also have

uv[(ad+ bc)b′d′] = uvadb′d′ + uvbcb′d′,

= (uab′)vdd′ + (vcd′)ubb′,

= (ua′b)vdd′ + (vc′d)ubb′,

= uva′d′bd+ uvb′c′bd,

= uv[(a′d′ + b′c′)bd],

and hence
[
ad+bc
bd

]
=
[
a′d′+b′c′

b′d′

]
. We will not bother to check that these operations define a

ring structure on R[S−1]. Is it possible that no one has ever checked this? Oh well.



For part (c), first assume that 0 ∈ S. Then for all a, b, c, d ∈ R with b, d ∈ S we have
0(ad − bc) = 0, and hence

[
a
b

]
=
[
c
d

]
. We conclude that R[S−1] consists of just one element,

which we might as well call 0. Conversely, assume that R[S−1] consists of just one element. In
particular, we have

[
1
1

]
=
[
0
1

]
. But this means that there exists u ∈ S such that u = u(1) =

u(1 · 1− 1 · 0) = 0. We conclude that 0 ∈ S.
For part (d), first note that

[
1
1

]
is the unity in R[S−1], hence 1R 7→ 1R[S−1] as desired.

Then, for any a, b ∈ R we have[a
1

] [ b
1

]
=

[
ab

1 · 1

]
=

[
ab

1

]
and

[a
1

]
+

[
b

1

]
=

[
a · 1 + 1 · b

1

]
=

[
a+ b

1

]
,

as desired.
For part (e), assume that R has no zerodivisors. We wish to show that the map a 7→

[
a
1

]
is injective. So consider a, b ∈ R and assume that

[
a
1

]
=
[
b
1

]
, i.e., there exists u ∈ S such that

u(a − b) = 0. Since u is not a zerodivisor, this implies that a − b = 0, hence a = b. I should
have asked you to prove the converse statement: If the map R→ R[S−1] is an injection, then
S contains no zerodivisors. I’ll include the proof anyway. Assume that the map a 7→

[
a
1

]
is

injective and suppose that S contains a zerodivisor u ∈ S. That is, suppose that there exists
v 6= 0 such that uv = 0. But then we have 1 + v 6= 1 and u(1 + v− 1) = 0, hence

[
1+v
1

]
=
[
1
1

]
.

This contradicts injectivity.
Finally, for part (f), let P ≤ R be a prime ideal. By definition this means that for all

a, b ∈ R we have
ab ∈ P =⇒ a ∈ P or b ∈ P.

If we let S := R− P then the contrapositive of the above statement says that for all a, b ∈ R
we have

a ∈ S and b ∈ S =⇒ ab ∈ S.
Since 1 ∈ S (let’s say that P 6= R is part of the definition of “prime”), we conclude that S is
a subsemigroup of (R,×, 1). As we will see later, the localization RP := R[S−1] “at the prime
P” is the most important example of localization. �

Problem 4 (Localization of Z).
(a) Let p ∈ Z be prime and consider the localization Z(p) at the prime ideal (p):

Z(p) :=
{a
b

: a, b ∈ Z, p6 | b
}
.

Prove that this ring has a unique nontrivial maximal ideal. [Hint: What are the units
of Z(p)? Recall that an ideal is the whole ring if and only if it contains a unit.] A ring
with a unique nontrivial maximal ideal is called a local ring.

(b) Prove that every ring Z ⊆ R ⊆ Q between Z and Q is a localization of Z. [Hint: Since
R is a subring of Q it consists of fractions. Let S be the set of denominators that occur
in elements of R. Prove that R = Z[S−1].]

Proof. First we show (a). Since Z is a domain, the localization map Z→ Z(p) is an injection,
thus (by slight abuse) we can regard p ∈ Z as an element of Z(p). Now consider the principal
ideal generated by p:

pZ(p) :=
{pa
b

: a, b ∈ Z, p6 | b
}
.

Note that this is not the unit ideal (i.e. pZ(p) 6= Z(p)) because it contains no units. Indeed, if
pa
b is in pZ(p) then its inverse b

pa is not in Z(p) because it has p in the denominator. I claim

that pZ(p) is maximal and that it is the only maximal ideal of Z(p). Indeed, let I ≤ Z(p) be
any other ideal not contained in pZ(p). Then there exists an element a

b ∈ I − pZ(p), i.e., such



that p 6 | a and p 6 | b. But then a
b is a unit with inverse b

a ∈ Z(p) and it follows that I = Z(p).
We conclude that all nontrivial ideals of Z(p) are contained in pZ(p). It follows that pZ(p) is
the unique maximal ideal.

Now we show (b). Consider any ring Z ⊆ R ⊆ Q between Z and Q. Since R is a subring of
Q it consists of fractions. Define

S :=
{
b ∈ Z :

a

b
∈ R with gcd(a, b) = 1

}
.

(Note that the coprime condition is necessary, otherwise we have b
b ∈ R and hence b ∈ S for all

nonzero b. That’s no good.) I claim that R = Z[S−1]. Indeed, note that R ⊆ Z[S−1] because
every element of R has a denominator in the set S. Conversely, consider any a

b ∈ Z[S−1]; i.e.,
with b ∈ S. By definition of S there exists some c ∈ Z with c

b ∈ R and gcd(c, d) = 1. Then by
Bézout’s Lemma there exist x, y ∈ Z such that cx+ by = 1. Dividing both sides by b gives

c

b
x+ y =

1

b
.

Since Z ⊆ R and c
b ∈ R we conclude that 1

b ∈ R. Finally, we conclude that a
b = a1

b ∈ R, and

hence Z[S−1] ⊆ R. �

[More generally, let D be any domain in which Bézout’s Lemma holds (for example, a PID). Then
every intermediate ring D ⊆ R ⊆ Frac(D) is a localization of D. The proof is the same.]


