
Math 662 Spring 2014
Homework 1 Drew Armstrong

Problem 0 (Drawing Pictures). Sketch the curves y2 = f(x) in R2 for the following
polynomials f(x) ∈ R[x]: f(x) = x3 and f(x) = (x+ 1)(x2 + ε) for ε < 0, ε = 0, ε > 0. [Hint:

First sketch y = f(x) then sketch y = ±
√
f(x).]

What is a polynomial? Let R be a ring and let x be a formal symbol. A polynomial is a
formal expression a0+a1x

1+a2x
2+ · · · in which all but finitely many of the coefficients ai ∈ R

are zero. If we define addition and multiplication by∑
k

akx
k +

∑
k

bkx
k :=

∑
k

(ak + bk)x
k

and (∑
k

akx
k

)(∑
`

b`x
`

)
:=
∑
m

( ∑
k+`=m

akb`

)
xm,

then the set of polynomials becomes a ring which we call R[x]. Note that R is naturally
embedded in R[x] as a subring via the map a 7→ a + 0x + 0x2 + · · · . We define the degree
deg(f) of a nonzero polynomial f(x) =

∑
k akx

k as the largest k such that ak 6= 0 (this ak is
called the leading coefficient), and we define the degree of the zero polynomial as deg(0) = −∞
(but this is rather arbitrary). We consider the symbols 1, x, x2, . . . to be linearly independent
over R, and therefore we have

∑
k akx

k =
∑

k bkx
k if and only if ak = bk for all k. This makes

R[x] into an infinite-dimensional “free” module over R.

Problem 1 (The Division Algorithm). We say that a polynomial g(x) ∈ R[x] is monic if
its leading coefficient is a unit. Consider polynomials f(x) =

∑
k akx

k and g(x) =
∑

k bkx
k in

R[x] with g(x) monic.

(a) Prove that there exist polynomials q(x), r(x) ∈ R[x] such that f(x) = q(x)g(x)+r(x)
and deg(r) < deg(g) (this includes the case r(x) = 0 since deg(0) = −∞ < deg(g) for
any g). [Hint: Use induction on deg(f). Assume that deg(g) = m ≥ 0 with leading
coefficient bm ∈ R×. If deg(f) < m then we can take q(x) = 0 and r(x) = f(x), so
the assertion is true. Now suppose that deg(f) = n ≥ m and consider the polynomial
f1(x) = f(x) − an

bm
xn−mg(x). Since deg(f1) < n there exist q1(x), r(x) with f1(x) =

q1(x)g(x) + r(x) and deg(r) < deg(g).]
(b) Prove that the polynomials q(x), r(x) from part (a) are unique. [Hint: Assume that

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x) with deg(r1),deg(r2) < deg(g). Since
g(x) is monic, note that deg(gh) = deg(g) + deg(h) for any nonzero h(x) ∈ R[x]. Note
that deg(r2 − r1) ≤ max{deg(r1), deg(r2)}. Now assume that r2(x) − r1(x) 6= 0 and
show that this leads to a contradiction.]

(c) Give an example where g(x) is not monic and the polynomials q(x), r(x) do not exist.

[By uniqueness we can speak of “the” remainder when f(x) is divided by monic g(x). We will
write g|f (and say “g divides f”) if and only if the remainder is zero.]



Problem 2 (Descartes’ Theorem). Let R be a ring (i.e. commutative).

(a) If α ∈ R is any element, we define a function evα : R[x]→ R by sending
∑

k akx
k ∈ R[x]

to
∑

k akα
k ∈ R. Prove that this function (called “evaluation at α”) is a morphism of

rings. For simplicity we will write f(α) := evα(f(x)).
(b) Consider a polynomial f(x) ∈ R[x] and an element α ∈ R. Prove that we have

(x−α)|f(x) if and only if f(α) = 0. [Hint: Divide f(x) by (x−α) and evaluate at α.]

Problem 3 (Localization of a Ring). The construction of the field of fractions of a domain
can be generalized to arbitrary rings as follows. Let R be a ring and let S ⊆ R be any subset
closed under multiplication and containing 1 (we can say that S is a subsemigroup of (R,×, 1)).
We define the set of formal symbols

R[S−1] :=
{[a
b

]
: a, b ∈ R, b ∈ S

}
and we declare that [a

b

]
=
[ c
d

]
⇐⇒ ∃u ∈ S such that u(ad− bc) = 0.

(a) Prove that this is an equivalence relation.
(b) Prove that the algebraic operations[a

b

] [ c
d

]
:=
[ac
bd

]
and [a

b

]
+
[ c
d

]
:=

[
ad+ bc

bd

]
are well-defined. It follows (don’t prove this) that R[S−1] is a ring.

(c) Prove that R[S−1] = 0 if and only if S contains 0.
(d) Prove that the natural map R→ R[S−1] defined by a 7→

[
a
1

]
is a ring homomorphism.

(e) We say that u ∈ R is a zerodivisor if there exists v ∈ R such that uv = 0. If S contains
no zerodivisors, prove that the natural map R → R[S−1] is injective. (This holds in
particular when R is a domain and 0 6∈ S.)

(f) If P ⊆ R is a prime ideal, show that S := R − P is a subsemigroup of R. The
localization R[S−1] is denoted as RP and is called the localization of R at the prime P .
We will discuss the geometric meaning of this later.

Problem 4 (Localization of Z).
(a) Let p ∈ Z be prime and consider the localization Z(p) at the prime ideal (p):

Z(p) :=
{a
b

: a, b ∈ Z, p6 | b
}
.

Prove that this ring has a unique nontrivial maximal ideal. [Hint: What are the units
of Z(p)? Recall that an ideal is the whole ring if and only if it contains a unit.] A ring
with a unique nontrivial maximal ideal is called a local ring.

(b) Prove that every ring Z ⊆ R ⊆ Q between Z and Q is a localization of Z. [Hint: Since
R is a subring of Q it consists of fractions. Let S be the set of denominators that occur
in elements of R. Prove that R = Z[S−1].]


