Problem 0 (Drawing Pictures). Sketch the curves $y^{2}=f(x)$ in \mathbb{R}^{2} for the following polynomials $f(x) \in \mathbb{R}[x]: f(x)=x^{3}$ and $f(x)=(x+1)\left(x^{2}+\varepsilon\right)$ for $\varepsilon<0, \varepsilon=0, \varepsilon>0$. [Hint: First sketch $y=f(x)$ then sketch $y= \pm \sqrt{f(x)}$.]

What is a polynomial? Let R be a ring and let x be a formal symbol. A polynomial is a formal expression $a_{0}+a_{1} x^{1}+a_{2} x^{2}+\cdots$ in which all but finitely many of the coefficients $a_{i} \in R$ are zero. If we define addition and multiplication by

$$
\sum_{k} a_{k} x^{k}+\sum_{k} b_{k} x^{k}:=\sum_{k}\left(a_{k}+b_{k}\right) x^{k}
$$

and

$$
\left(\sum_{k} a_{k} x^{k}\right)\left(\sum_{\ell} b_{\ell} x^{\ell}\right):=\sum_{m}\left(\sum_{k+\ell=m} a_{k} b_{\ell}\right) x^{m}
$$

then the set of polynomials becomes a ring which we call $R[x]$. Note that R is naturally embedded in $R[x]$ as a subring via the map $a \mapsto a+0 x+0 x^{2}+\cdots$. We define the degree $\operatorname{deg}(f)$ of a nonzero polynomial $f(x)=\sum_{k} a_{k} x^{k}$ as the largest k such that $a_{k} \neq 0$ (this a_{k} is called the leading coefficient), and we define the degree of the zero polynomial as $\operatorname{deg}(0)=-\infty$ (but this is rather arbitrary). We consider the symbols $1, x, x^{2}, \ldots$ to be linearly independent over R, and therefore we have $\sum_{k} a_{k} x^{k}=\sum_{k} b_{k} x^{k}$ if and only if $a_{k}=b_{k}$ for all k. This makes $R[x]$ into an infinite-dimensional "free" module over R.

Problem 1 (The Division Algorithm). We say that a polynomial $g(x) \in R[x]$ is monic if its leading coefficient is a unit. Consider polynomials $f(x)=\sum_{k} a_{k} x^{k}$ and $g(x)=\sum_{k} b_{k} x^{k}$ in $R[x]$ with $g(x)$ monic.
(a) Prove that there exist polynomials $q(x), r(x) \in R[x]$ such that $f(x)=q(x) g(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$ (this includes the case $r(x)=0$ since $\operatorname{deg}(0)=-\infty<\operatorname{deg}(g)$ for any g). [Hint: Use induction on $\operatorname{deg}(f)$. Assume that $\operatorname{deg}(g)=m \geq 0$ with leading coefficient $b_{m} \in R^{\times}$. If $\operatorname{deg}(f)<m$ then we can take $q(x)=0$ and $r(x)=f(x)$, so the assertion is true. Now suppose that $\operatorname{deg}(f)=n \geq m$ and consider the polynomial $f_{1}(x)=f(x)-\frac{a_{n}}{b_{m}} x^{n-m} g(x)$. Since $\operatorname{deg}\left(f_{1}\right)<n$ there exist $q_{1}(x), r(x)$ with $f_{1}(x)=$ $q_{1}(x) g(x)+r(x)$ and $\operatorname{deg}(r)<\operatorname{deg}(g)$.]
(b) Prove that the polynomials $q(x), r(x)$ from part (a) are unique. [Hint: Assume that $f(x)=q_{1}(x) g(x)+r_{1}(x)=q_{2}(x) g(x)+r_{2}(x)$ with $\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)<\operatorname{deg}(g)$. Since $g(x)$ is monic, note that $\operatorname{deg}(g h)=\operatorname{deg}(g)+\operatorname{deg}(h)$ for any nonzero $h(x) \in R[x]$. Note that $\operatorname{deg}\left(r_{2}-r_{1}\right) \leq \max \left\{\operatorname{deg}\left(r_{1}\right), \operatorname{deg}\left(r_{2}\right)\right\}$. Now assume that $r_{2}(x)-r_{1}(x) \neq 0$ and show that this leads to a contradiction.]
(c) Give an example where $g(x)$ is not monic and the polynomials $q(x), r(x)$ do not exist.
[By uniqueness we can speak of "the" remainder when $f(x)$ is divided by monic $g(x)$. We will write $g \mid f$ (and say " g divides f ") if and only if the remainder is zero.]

Problem 2 (Descartes' Theorem). Let R be a ring (i.e. commutative).
(a) If $\alpha \in R$ is any element, we define a function $\mathrm{ev}_{\alpha}: R[x] \rightarrow R$ by sending $\sum_{k} a_{k} x^{k} \in R[x]$ to $\sum_{k} a_{k} \alpha^{k} \in R$. Prove that this function (called "evaluation at α ") is a morphism of rings. For simplicity we will write $f(\alpha):=\operatorname{ev}_{\alpha}(f(x))$.
(b) Consider a polynomial $f(x) \in R[x]$ and an element $\alpha \in R$. Prove that we have $(x-\alpha) \mid f(x)$ if and only if $f(\alpha)=0$. [Hint: Divide $f(x)$ by $(x-\alpha)$ and evaluate at α.]

Problem 3 (Localization of a Ring). The construction of the field of fractions of a domain can be generalized to arbitrary rings as follows. Let R be a ring and let $S \subseteq R$ be any subset closed under multiplication and containing 1 (we can say that S is a subsemigroup of $(R, \times, 1)$). We define the set of formal symbols

$$
R\left[S^{-1}\right]:=\left\{\left[\frac{a}{b}\right]: a, b \in R, b \in S\right\}
$$

and we declare that

$$
\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right] \Longleftrightarrow \exists u \in S \text { such that } u(a d-b c)=0
$$

(a) Prove that this is an equivalence relation.
(b) Prove that the algebraic operations

$$
\left[\frac{a}{b}\right]\left[\frac{c}{d}\right]:=\left[\frac{a c}{b d}\right]
$$

and

$$
\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]:=\left[\frac{a d+b c}{b d}\right]
$$

are well-defined. It follows (don't prove this) that $R\left[S^{-1}\right]$ is a ring.
(c) Prove that $R\left[S^{-1}\right]=0$ if and only if S contains 0 .
(d) Prove that the natural map $R \rightarrow R\left[S^{-1}\right]$ defined by $a \mapsto\left[\frac{a}{1}\right]$ is a ring homomorphism.
(e) We say that $u \in R$ is a zerodivisor if there exists $v \in R$ such that $u v=0$. If S contains no zerodivisors, prove that the natural map $R \rightarrow R\left[S^{-1}\right]$ is injective. (This holds in particular when R is a domain and $0 \notin S$.)
(f) If $P \subseteq R$ is a prime ideal, show that $S:=R-P$ is a subsemigroup of R. The localization $R\left[S^{-1}\right]$ is denoted as R_{P} and is called the localization of R at the prime P. We will discuss the geometric meaning of this later.

Problem 4 (Localization of \mathbb{Z}).
(a) Let $p \in \mathbb{Z}$ be prime and consider the localization $\mathbb{Z}_{(p)}$ at the prime ideal (p) :

$$
\mathbb{Z}_{(p)}:=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, p \nmid b\right\} .
$$

Prove that this ring has a unique nontrivial maximal ideal. [Hint: What are the units of $\mathbb{Z}_{(p)}$? Recall that an ideal is the whole ring if and only if it contains a unit.] A ring with a unique nontrivial maximal ideal is called a local ring.
(b) Prove that every ring $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$ between \mathbb{Z} and \mathbb{Q} is a localization of \mathbb{Z}. [Hint: Since R is a subring of \mathbb{Q} it consists of fractions. Let S be the set of denominators that occur in elements of R. Prove that $R=\mathbb{Z}\left[S^{-1}\right]$.]

