1. (Galois Connections) Let R be any ring. Given any set of points $S \subseteq K^{n}$ we define a set of polynomials $\mathcal{I}(S):=\left\{f \in R\left[x_{1}, \ldots, x_{n}\right]: f(\alpha)=0\right.$ for all $\left.\alpha \in S\right\}$, and given any set of polynomials $T \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ we define a set of points $\mathcal{V}(T):=\left\{\alpha \in R^{n}: f(\alpha)=\right.$ 0 for all $f \in T\}$.
(a) Given $S \subseteq R^{n}$, prove that $\mathcal{I}(S)$ is an ideal of $R\left[x_{1}, \ldots, x_{n}\right]$.

Proof. Given $f, g \in I(S)$ and $h \in R\left[x_{1}, \ldots, x_{n}\right]$ we have $(f-g h)(\alpha)=f(\alpha)-$ $h(\alpha) g(\alpha)=0-h(\alpha) \cdot 0=0$. Hence $f-h g \in I(S)$.
(b) Given $T \subseteq T^{\prime} \subseteq R\left[x_{1}, \ldots, x_{n}\right]$, prove that $\mathcal{V}\left(T^{\prime}\right) \subseteq \mathcal{V}(T)$.

Proof. Let $\alpha \in \mathcal{V}\left(T^{\prime}\right)$ so that $f(\alpha)=0$ for all $f \in T^{\prime}$. Since $T \subseteq T^{\prime}$ we also have $f(\alpha)=0$ for all $f \in T$, hence $\alpha \in \mathcal{V}(T)$.
(c) Given $T \subseteq R\left[x_{1}, \ldots, x_{n}\right]$, prove that $T \subseteq \mathcal{I}(\mathcal{V}(T))$.

Proof. Fix $f \in T$. We want to show that $f \in \mathcal{I}(\mathcal{V}(T))$, in other words that $f(\alpha)=0$ for all $\alpha \in \mathcal{V}(T)$. But given any fixed $\alpha \in \mathcal{V}(T)$ we have $g(\alpha)=0$ for all $g \in T$. In particular we have $f(\alpha)=0$. Since this is true for all $\alpha \in \mathcal{V}(T)$ we conclude that $f \in \mathcal{I}(\mathcal{V}(T))$.
(d) Given $T \subseteq R\left[x_{1}, \ldots, x_{n}\right]$, prove that $\mathcal{V}(\mathcal{I}(\mathcal{V}(T)))=\mathcal{V}(T)$. [Hint: Use (b) and (c). You can also assume that $S \subseteq \mathcal{V}(\mathcal{I}(S))$ for all $S \subseteq R^{n}$, the proof of which is similar to (c).]
Proof. By part (c) we have $T \subseteq \mathcal{I}(\mathcal{V}(T))$. Then applying \mathcal{V} to both sides and using (b) gives $\mathcal{V}(\mathcal{I}(\mathcal{V}(T))) \subseteq \mathcal{V}(T)$. On the other hand we know that $S \subseteq \mathcal{V}(\mathcal{I}(S))$ for all sets $S \subseteq R^{n}$. Taking $S=\mathcal{V}(T)$ gives $\mathcal{V}(T) \subseteq \mathcal{V}(\mathcal{I}(\mathcal{V}(T)))$.
(e) Consider $S \subseteq R^{n}$. If $S=\mathcal{V}(T)$ for some set $T \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ prove that $S=\mathcal{V}(I)$ for some ideal $I \leq R\left[x_{1}, \ldots, x_{n}\right]$ containing T.
Proof. Let $I:=\mathcal{I}(\mathcal{V}(T))$. Parts (a) and (c) say that I is an ideal containing T and part (d) says that $\mathcal{V}(T)=\mathcal{V}(\mathcal{I}(\mathcal{V}(T)))=\mathcal{V}(I)$.
[Remark: We say that $V \in R^{n}$ is a variety if $V=\mathcal{V}(T)$ for some set of functions $T \subseteq R\left[x_{1}, \ldots, x_{n}\right]$. This problems says that we lose nothing by assuming T to be an ideal.]
2. (Systems of Equations) Let R be a Noetherian ring.
(a) State the definition of Noetherian ring.

Proof. We say that a ring is Noetherian if it satisfies either of the following two equivalent conditions:

- There is no infinite increasing chain of ideals.
- Every ideal is finitely generated.
(b) State the Hilbert Basis Theorem.

Proof. Let R be a ring. The Hilbert Basis Theorem says

$$
R \text { is Noetherian } \Longrightarrow R[x] \text { is Noetherian. }
$$

By induction we conclude that if R is Noetherian then so is $R\left[x_{1}, \ldots, x_{n}\right]$.
(c) Given polynomials $f_{1}, \ldots, f_{k} \in R\left[x_{1}, \ldots, x_{n}\right]$ we define the set

$$
\mathcal{V}\left(f_{1}, \ldots, f_{k}\right):=\left\{\alpha \in R^{n}: f_{i}(\alpha)=0 \text { for all } 1 \leq i \leq k\right\} .
$$

Prove that $\mathcal{V}\left(f_{1}, \ldots, f_{k}\right)=\mathcal{V}\left(\left(f_{1}, \ldots, f_{k}\right)\right)$ where $\left(f_{1}, \ldots, f_{k}\right) \leq R\left[x_{1}, \ldots, x_{n}\right]$ is the ideal generated by f_{1}, \ldots, f_{k}.

Proof. Since $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq\left(f_{1}, \ldots, f_{k}\right)$, Problem 1(b) implies that $\mathcal{V}\left(\left(f_{1}, \ldots, f_{k}\right)\right) \subseteq$ $\mathcal{V}\left(f_{1}, \ldots, f_{k}\right)$. Conversely, suppose that $\alpha \in V\left(f_{1}, \ldots, f_{k}\right)$ so that $f_{i}(\alpha)=0$ for all $1 \leq i \leq k$. Then consider any $f \in\left(f_{1}, \ldots, f_{k}\right)$ so that we have $f=g_{1} f_{1}+\cdots+g_{k} f_{k}$ for some $g_{1}, \ldots, g_{k} \in R\left[x_{1}, \ldots, x_{n}\right]$. It follows that $f(\alpha)=g_{1}(\alpha) f_{1}(\alpha)+\cdots+g_{k}(\alpha) f_{k}(\alpha)=$ $g_{1}(\alpha) \cdot 0+\cdots+g_{k}(\alpha) \cdot 0=0$, hence $f \in V\left(\left(f_{1}, \ldots, f_{k}\right)\right)$.
(d) Given any set $T \subseteq R\left[x_{1}, \ldots, x_{n}\right]$ prove that we have $\mathcal{V}(T)=\mathcal{V}\left(f_{1}, \ldots, f_{k}\right)$ for some finite set of polynomials $f_{1}, \ldots, f_{k} \in R\left[x_{1}, \ldots, x_{n}\right]$. [Hint: Problem 1.]

Proof. By Problem 1(e) we know that $\mathcal{V}(T)=\mathcal{V}(I)$ for some ideal $I \leq R\left[x_{1}, \ldots, x_{n}\right]$ and by the Hilbert Basis Theorem we know that $I=\left(f_{1}, \ldots, f_{k}\right)$ for some finite set of generators $f_{1}, \ldots, f_{k} \in R\left[x_{1}, \ldots, x_{n}\right]$. Then by part (c) we have

$$
\mathcal{V}(T)=\mathcal{V}(I)=\mathcal{V}\left(\left(f_{1}, \ldots, f_{k}\right)\right)=\mathcal{V}\left(f_{1}, \ldots, f_{k}\right) .
$$

[Remark: When working over a Noetherian ring, Problems 1 and 2 say that a variety is the same thing as the solution set of a finite system of polynomial equations.]
3. (The Radical of an Ideal) Let R be any ring. Given an ideal $I \leq R\left[x_{1}, \ldots, x_{n}\right]$ we define its radical $\sqrt{I}:=\left\{f \in R\left[x_{1}, \ldots, x_{n}\right]: f^{n} \in I\right.$ for some $\left.n\right\}$. We say that $I \leq R\left[x_{1}, \ldots, x_{n}\right]$ is a"radical ideal" if $I=\sqrt{I}$.
(a) Given an ideal $I \leq R\left[x_{1}, \ldots, x_{n}\right]$, prove that the set \sqrt{I} is an ideal. [Hint: Given $f, g \in \sqrt{I}$ and $r \in R\left[x_{1}, \ldots, x_{n}\right]$ prove that $(f-r g)^{N} \in I$ for some N. Which N ?]

Proof. Consider $f, g \in \sqrt{I}$ and $r \in R\left[x_{1}, \ldots, x_{n}\right]$. Since $f, g \in \sqrt{I}$ there exist m, n such that $f^{m} \in I$ and $g^{n} \in I$. Then we have

$$
(f-r g)^{m+n}=\sum_{i+j=m+n}\binom{i+j}{i} f^{i}(-r)^{j} g^{j} .
$$

Note that $i+j=m+n$ implies that $i \geq m$ (hence $f^{i} \in I$) or $j \geq n$ (hence $g^{j} \in I$). Thus every term in the above equation is in I, hence $(f-r g)^{m+n} \in I$. We conclude that $f-r g \in \sqrt{I}$.
(b) Given an ideal $I \leq R\left[x_{1}, \ldots, x_{n}\right]$, prove that $I \leq \sqrt{I}$ and hence $\mathcal{V}(\sqrt{I}) \subseteq \mathcal{V}(I)$.

Proof. Let $f \in I$. Then since $f^{1} \in I$ we have $f \in \sqrt{I}$. We conclude that $I \leq \sqrt{I}$ and then Problem 1(b) implies that $\mathcal{V}(\sqrt{I}) \subseteq \mathcal{V}(I)$.
(c) If R is reduced (i.e. contains no nilpotent elements), prove that $\mathcal{V}(I) \subseteq \mathcal{V}(\sqrt{I})$.

Proof. Now suppose R is reduced and fix $\alpha \in \mathcal{V}(I)$ so that $f(\alpha)=0$ for all $f \in I$. We want to show that $f(\alpha)=0$ for all $f \in \sqrt{I}$. But if $f \in \sqrt{I}$ then we have $f^{m} \in I$ for some m and then $f(\alpha)^{m}=0$. Since R is reduced this implies that $f(\alpha)=0$.
(d) Following part (c), conclude that $\sqrt{I} \subseteq \mathcal{I}(\mathcal{V}(I))$. [Hint: Problem 1(c).]

Proof. By parts (b) and (c) we know that $\mathcal{V}(\sqrt{I})=\mathcal{V}(I)$. Then Problem 1(c) implies that $\sqrt{I} \subseteq \mathcal{I}(\mathcal{V}(\sqrt{I}))=\mathcal{I}(\mathcal{V}(I))$.
[Remark: When working over a reduced ring, Problem 3 says that a variety is the same as the set of zeroes of a radical ideal. This is stronger than the conclusion of Problem 1(e).]
4. (Weak Nullstellensatz) Let K be any field. Given any point $\alpha \in K^{n}$ we consider the ideal of functions that vanish at α :

$$
\mathfrak{m}_{\alpha}:=\mathcal{I}(\{\alpha\})=\left\{f \in K\left[x_{1}, \ldots, x_{n}\right]: f(\alpha)=0\right\}
$$

(a) Given $\alpha \in K^{n}$, prove that \mathfrak{m}_{α} is a maximal ideal. [Hint: It's the kernel of something.]

Proof. Consider the evaluation homomorphism $\mathrm{ev}_{\alpha}: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K$. This map is surjective because given any $\beta \in K$ we can apply ev_{α} to the constant function $\beta \in K\left[x_{1}, \ldots, x_{n}\right]$ to get $\operatorname{ev}_{\alpha}(\beta)=\beta$. Note that the kernel is $\mathfrak{m}_{\alpha}=\operatorname{ker}\left(\operatorname{ev}_{\alpha}\right)$. By the First Isomorphism Theorem we know that $K\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{m}_{\alpha} \approx K$. Since K is a field this implies that $\mathfrak{m}_{\alpha}<K\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal.
(b) If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in K^{n}$, prove that $m_{\alpha}=\left(x_{1}-\alpha_{1}, \ldots, x_{n}-\alpha_{n}\right)$. [Hint: Consider $f\left(x_{1}, \ldots, x_{n}\right)$ such that $f(\alpha)=0$. First divide f by $\left(x_{1}-\alpha_{1}\right)$, then divide the remainder by $\left(x_{2}-\alpha_{2}\right)$, then \ldots]
Proof. Consider $f \in K\left[x_{1}, \ldots, x_{n}\right]$. Divide f by $\left(x_{1}-\alpha_{1}\right)$ in the ring $K\left[x_{1}, \ldots, x_{n}\right]$ to get $f=q_{1}\left(x_{1}-\alpha_{1}\right)+r_{1}$ where r_{1} is in the subring $K\left[x_{2}, \ldots, x_{n}\right]$. Then divide r_{1} by $\left(x_{2}-\alpha_{2}\right)$ in the subring $K\left[x_{2}, \ldots, x_{n}\right]$ to get $f=q_{1}\left(x_{1}-\alpha_{1}\right)+q_{2}\left(x_{2}-\alpha_{2}\right)+r_{2}$ where r_{2} is in the subring $r_{2} \in K\left[x_{3}, \ldots, x_{n}\right]$. Continuing in this way we get

$$
f=q_{1}\left(x_{1}-\alpha_{1}\right)+\cdots+q_{n}\left(x_{n}-\alpha_{n}\right)+r
$$

where $r \in K$ is a constant. Finally, evaluating at α gives

$$
0=f(\alpha)=q_{1}(\alpha) \cdot+\cdots+q_{n}(\alpha) \cdot+r=r
$$

and we conclude that $f \in\left(x_{1}-\alpha_{1}, \ldots, x_{n}-\alpha_{n}\right)$. Conversely, every f in this ideal satisfies $f(\alpha)=0$, hence $f \in \mathfrak{m}_{\alpha}$.
(c) If every maximal ideal of $K\left[x_{1}, \ldots, x_{n}\right]$ has the form \mathfrak{m}_{α} for some $\alpha \in K^{n}$, prove that for all ideals I we have $I \neq K\left[x_{1}, \ldots, x_{n}\right] \Longrightarrow \mathcal{V}(I) \neq \emptyset$. [Hint: If $I \neq K\left[x_{1}, \ldots, x_{n}\right]$ then you can assume (Zorn) that I is contained in a maximal ideal.]

Proof. Suppose that every maximal ideal of $K\left[x_{1}, \ldots, x_{n}\right]$ has the form \mathfrak{m}_{α} for some $\alpha \in K^{n}$ and assume that $I \neq K\left[x_{1}, \ldots, x_{n}\right]$. By Zorn's Lemma, I is contained in a maximal ideal $\mathfrak{m}_{\alpha}=I(\{\alpha\})$. Then by Problem 1 we have $\{\alpha\} \subseteq \mathcal{V}(\mathcal{I}(\{\alpha\})) \subseteq \mathcal{V}(I)$, hence $\mathcal{V}(I) \neq \emptyset$.
[Remark: In (c) we assumed that every maximal ideal of $K\left[x_{1}, \ldots, x_{n}\right.$] has the form \mathfrak{m}_{α}. If K is algebraically closed then this assumption is true, but (as you know) it is not easy to prove.]
5. (Strong Nullstellensatz) Let K be an algebraically closed field. In this case Hilbert proved that $\sqrt{I}=\mathcal{I}(\mathcal{V}(I))$ (compare Problem 3(d)). Please don't prove this!! You will apply Hilbert's result to prove something called "Study's Lemma".
(a) Use a small number of words to tell me why $K\left[x_{1}, \ldots, x_{n}\right]$ is a UFD.

Proof. Here is an acceptable solution: say "Gauss' Lemma". You can of course go into more detail at your own risk.
(b) Prove that every irreducible element in a UFD is prime. [Hint: If $a \mid b c$ then we have $a k=b c$. Factor both sides into irreducibles and compare.]

Proof. Suppose that we have $a k=b c$ in a UFD and suppose that a irreducible. Factor k, b, and c into irreducibles and compare the irreducible factorization on both sides of the equation $a k=b c$. Since a is an irreducible factor on the left it must be associate to some irreducible factor on the right. That is, a must be associate to an irreducible factor of b or c. But this implies that $a \mid b$ or $a \mid c$.
(c) Given a polynomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ we define the "hypersurface"

$$
\mathcal{V}(f):=\mathcal{V}((f))=\left\{\alpha \in K^{n}: f(\alpha)=0\right\} .
$$

Consider $f, g \in K\left[x_{1}, \ldots, x_{n}\right]$ such that f divides g. Prove that $\mathcal{V}(f) \subseteq \mathcal{V}(g)$.
Proof. Suppose that $f \mid g$, say $g=f h$. Then for all $\alpha \in V(f)$ we have $g(\alpha)=$ $f(\alpha) h(\alpha)=0 \cdot h(\alpha)=0$, hence $\alpha \in V(g)$.
(d) (Study's Lemma) Consider $f, g \in K\left[x_{1}, \ldots, x_{n}\right]$ such that f is irreducible. Prove that if $\mathcal{V}(f) \subseteq \mathcal{V}(g)$ then f divides g. [Hint: Show that $g \in \mathcal{I}(\mathcal{V}(f))$. If f divides g^{n} use (a) and (b) to show that f divides g.]
Proof. Consider $f, g \in K\left[x_{1}, \ldots, x_{n}\right]$ with f irreducible, and suppose that $V(f) \subseteq V(g)$. Then by Problem 1 we have $g \in(g) \subseteq \mathcal{I}(\mathcal{V}(g)) \subseteq \mathcal{I}(\mathcal{V}(f))$. By Hilbert's Nullstellensatz this implies that $g \in \sqrt{(f)}$ and hence $g^{n} \in(f)$ for some n. In other words, $f \mid g^{n}$. Since f an irreducible element of the UFD $K\left[x_{1}, \ldots, x_{n}\right]$ we know that f is prime by part (b). Hence $f\left|g^{n} \Rightarrow f\right| g$.
[Remark: Study's Lemma says the following. Let K be algebraically closed. Then any polynomial that vanishes on a hypersurface is divisible by the "minimal polynomial" of the hypersurface.]

