
Math 662 Spring 2014
Final Exam Drew Armstrong

1. (Galois Connections) Let R be any ring. Given any set of points S ⊆ Kn we define
a set of polynomials I(S) := {f ∈ R[x1, . . . , xn] : f(α) = 0 for all α ∈ S}, and given any
set of polynomials T ⊆ R[x1, . . . , xn] we define a set of points V(T ) := {α ∈ Rn : f(α) =
0 for all f ∈ T}.

(a) Given S ⊆ Rn, prove that I(S) is an ideal of R[x1, . . . , xn].

Proof. Given f, g ∈ I(S) and h ∈ R[x1, . . . , xn] we have (f − gh)(α) = f(α) −
h(α)g(α) = 0− h(α) · 0 = 0. Hence f − hg ∈ I(S). �

(b) Given T ⊆ T ′ ⊆ R[x1, . . . , xn], prove that V(T ′) ⊆ V(T ).

Proof. Let α ∈ V(T ′) so that f(α) = 0 for all f ∈ T ′. Since T ⊆ T ′ we also have
f(α) = 0 for all f ∈ T , hence α ∈ V(T ). �

(c) Given T ⊆ R[x1, . . . , xn], prove that T ⊆ I(V(T )).

Proof. Fix f ∈ T . We want to show that f ∈ I(V(T )), in other words that f(α) = 0
for all α ∈ V(T ). But given any fixed α ∈ V(T ) we have g(α) = 0 for all g ∈ T . In
particular we have f(α) = 0. Since this is true for all α ∈ V(T ) we conclude that
f ∈ I(V(T )). �

(d) Given T ⊆ R[x1, . . . , xn], prove that V(I(V(T ))) = V(T ). [Hint: Use (b) and (c). You
can also assume that S ⊆ V(I(S)) for all S ⊆ Rn, the proof of which is similar to (c).]

Proof. By part (c) we have T ⊆ I(V(T )). Then applying V to both sides and using
(b) gives V(I(V(T ))) ⊆ V(T ). On the other hand we know that S ⊆ V(I(S)) for all
sets S ⊆ Rn. Taking S = V(T ) gives V(T ) ⊆ V(I(V(T ))). �

(e) Consider S ⊆ Rn. If S = V(T ) for some set T ⊆ R[x1, . . . , xn] prove that S = V(I)
for some ideal I ≤ R[x1, . . . , xn] containing T .

Proof. Let I := I(V(T )). Parts (a) and (c) say that I is an ideal containing T and
part (d) says that V(T ) = V(I(V(T ))) = V(I). �

[Remark: We say that V ∈ Rn is a variety if V = V(T ) for some set of functions T ⊆ R[x1, . . . , xn].
This problems says that we lose nothing by assuming T to be an ideal.]

2. (Systems of Equations) Let R be a Noetherian ring.

(a) State the definition of Noetherian ring.

Proof. We say that a ring is Noetherian if it satisfies either of the following two equiv-
alent conditions:
• There is no infinite increasing chain of ideals.
• Every ideal is finitely generated.

�

(b) State the Hilbert Basis Theorem.

Proof. Let R be a ring. The Hilbert Basis Theorem says

R is Noetherian =⇒ R[x] is Noetherian.



By induction we conclude that if R is Noetherian then so is R[x1, . . . , xn]. �

(c) Given polynomials f1, . . . , fk ∈ R[x1, . . . , xn] we define the set

V(f1, . . . , fk) := {α ∈ Rn : fi(α) = 0 for all 1 ≤ i ≤ k}.
Prove that V(f1, . . . , fk) = V((f1, . . . , fk)) where (f1, . . . , fk) ≤ R[x1, . . . , xn] is the
ideal generated by f1, . . . , fk.

Proof. Since {f1, . . . , fk} ⊆ (f1, . . . , fk), Problem 1(b) implies that V((f1, . . . , fk)) ⊆
V(f1, . . . , fk). Conversely, suppose that α ∈ V (f1, . . . , fk) so that fi(α) = 0 for all
1 ≤ i ≤ k. Then consider any f ∈ (f1, . . . , fk) so that we have f = g1f1 + · · ·+gkfk for
some g1, . . . , gk ∈ R[x1, . . . , xn]. It follows that f(α) = g1(α)f1(α)+ · · ·+gk(α)fk(α) =
g1(α) · 0 + · · ·+ gk(α) · 0 = 0, hence f ∈ V ((f1, . . . , fk)). �

(d) Given any set T ⊆ R[x1, . . . , xn] prove that we have V(T ) = V(f1, . . . , fk) for some
finite set of polynomials f1, . . . , fk ∈ R[x1, . . . , xn]. [Hint: Problem 1.]

Proof. By Problem 1(e) we know that V(T ) = V(I) for some ideal I ≤ R[x1, . . . , xn]
and by the Hilbert Basis Theorem we know that I = (f1, . . . , fk) for some finite set of
generators f1, . . . , fk ∈ R[x1, . . . , xn]. Then by part (c) we have

V(T ) = V(I) = V((f1, . . . , fk)) = V(f1, . . . , fk).

�

[Remark: When working over a Noetherian ring, Problems 1 and 2 say that a variety is the same
thing as the solution set of a finite system of polynomial equations.]

3. (The Radical of an Ideal) Let R be any ring. Given an ideal I ≤ R[x1, . . . , xn] we define

its radical
√
I := {f ∈ R[x1, . . . , xn] : fn ∈ I for some n}. We say that I ≤ R[x1, . . . , xn] is

a“radical ideal” if I =
√
I.

(a) Given an ideal I ≤ R[x1, . . . , xn], prove that the set
√
I is an ideal. [Hint: Given

f, g ∈
√
I and r ∈ R[x1, . . . , xn] prove that (f − rg)N ∈ I for some N . Which N?]

Proof. Consider f, g ∈
√
I and r ∈ R[x1, . . . , xn]. Since f, g ∈

√
I there exist m,n such

that fm ∈ I and gn ∈ I. Then we have

(f − rg)m+n =
∑

i+j=m+n

(
i+ j

i

)
f i(−r)jgj .

Note that i + j = m + n implies that i ≥ m (hence f i ∈ I) or j ≥ n (hence gj ∈ I).
Thus every term in the above equation is in I, hence (f − rg)m+n ∈ I. We conclude

that f − rg ∈
√
I. �

(b) Given an ideal I ≤ R[x1, . . . , xn], prove that I ≤
√
I and hence V(

√
I) ⊆ V(I).

Proof. Let f ∈ I. Then since f1 ∈ I we have f ∈
√
I. We conclude that I ≤

√
I and

then Problem 1(b) implies that V(
√
I) ⊆ V(I). �

(c) If R is reduced (i.e. contains no nilpotent elements), prove that V(I) ⊆ V(
√
I).

Proof. Now suppose R is reduced and fix α ∈ V(I) so that f(α) = 0 for all f ∈ I. We

want to show that f(α) = 0 for all f ∈
√
I. But if f ∈

√
I then we have fm ∈ I for

some m and then f(α)m = 0. Since R is reduced this implies that f(α) = 0. �

(d) Following part (c), conclude that
√
I ⊆ I(V(I)). [Hint: Problem 1(c).]



Proof. By parts (b) and (c) we know that V(
√
I) = V(I). Then Problem 1(c) implies

that
√
I ⊆ I(V(

√
I)) = I(V(I)). �

[Remark: When working over a reduced ring, Problem 3 says that a variety is the same as the set
of zeroes of a radical ideal. This is stronger than the conclusion of Problem 1(e).]

4. (Weak Nullstellensatz) Let K be any field. Given any point α ∈ Kn we consider the
ideal of functions that vanish at α:

mα := I({α}) = {f ∈ K[x1, . . . , xn] : f(α) = 0}.
(a) Given α ∈ Kn, prove that mα is a maximal ideal. [Hint: It’s the kernel of something.]

Proof. Consider the evaluation homomorphism evα : K[x1, . . . , xn] → K. This map
is surjective because given any β ∈ K we can apply evα to the constant function
β ∈ K[x1, . . . , xn] to get evα(β) = β. Note that the kernel is mα = ker(evα). By the
First Isomorphism Theorem we know that K[x1, . . . , xn]/mα ≈ K. Since K is a field
this implies that mα < K[x1, . . . , xn] is a maximal ideal. �

(b) If α = (α1, . . . , αn) ∈ Kn, prove that mα = (x1 − α1, . . . , xn − αn). [Hint: Consider
f(x1, . . . , xn) such that f(α) = 0. First divide f by (x1−α1), then divide the remainder
by (x2 − α2), then . . . ]

Proof. Consider f ∈ K[x1, . . . , xn]. Divide f by (x1 − α1) in the ring K[x1, . . . , xn] to
get f = q1(x1 − α1) + r1 where r1 is in the subring K[x2, . . . , xn]. Then divide r1 by
(x2 −α2) in the subring K[x2, . . . , xn] to get f = q1(x1 −α1) + q2(x2 −α2) + r2 where
r2 is in the subring r2 ∈ K[x3, . . . , xn]. Continuing in this way we get

f = q1(x1 − α1) + · · ·+ qn(xn − αn) + r

where r ∈ K is a constant. Finally, evaluating at α gives

0 = f(α) = q1(α) ·+ · · ·+ qn(α) ·+r = r.

and we conclude that f ∈ (x1 − α1, . . . , xn − αn). Conversely, every f in this ideal
satisfies f(α) = 0, hence f ∈ mα. �

(c) If every maximal ideal of K[x1, . . . , xn] has the form mα for some α ∈ Kn, prove that
for all ideals I we have I 6= K[x1, . . . , xn] =⇒ V(I) 6= ∅. [Hint: If I 6= K[x1, . . . , xn]
then you can assume (Zorn) that I is contained in a maximal ideal.]

Proof. Suppose that every maximal ideal of K[x1, . . . , xn] has the form mα for some
α ∈ Kn and assume that I 6= K[x1, . . . , xn]. By Zorn’s Lemma, I is contained in a
maximal ideal mα = I({α}). Then by Problem 1 we have {α} ⊆ V(I({α})) ⊆ V(I),
hence V(I) 6= ∅. �

[Remark: In (c) we assumed that every maximal ideal of K[x1, . . . , xn] has the form mα. If K
is algebraically closed then this assumption is true, but (as you know) it is not easy to prove.]



5. (Strong Nullstellensatz) Let K be an algebraically closed field. In this case Hilbert

proved that
√
I = I(V(I)) (compare Problem 3(d)). Please don’t prove this!! You will apply

Hilbert’s result to prove something called “Study’s Lemma”.

(a) Use a small number of words to tell me why K[x1, . . . , xn] is a UFD.

Proof. Here is an acceptable solution: say “Gauss’ Lemma”. You can of course go into
more detail at your own risk. �

(b) Prove that every irreducible element in a UFD is prime. [Hint: If a|bc then we have
ak = bc. Factor both sides into irreducibles and compare.]

Proof. Suppose that we have ak = bc in a UFD and suppose that a irreducible. Factor
k, b, and c into irreducibles and compare the irreducible factorization on both sides of
the equation ak = bc. Since a is an irreducible factor on the left it must be associate
to some irreducible factor on the right. That is, a must be associate to an irreducible
factor of b or c. But this implies that a|b or a|c. �

(c) Given a polynomial f ∈ K[x1, . . . , xn] we define the “hypersurface”

V(f) := V((f)) = {α ∈ Kn : f(α) = 0}.
Consider f, g ∈ K[x1, . . . , xn] such that f divides g. Prove that V(f) ⊆ V(g).

Proof. Suppose that f |g, say g = fh. Then for all α ∈ V (f) we have g(α) =
f(α)h(α) = 0 · h(α) = 0, hence α ∈ V (g). �

(d) (Study’s Lemma) Consider f, g ∈ K[x1, . . . , xn] such that f is irreducible. Prove
that if V(f) ⊆ V(g) then f divides g. [Hint: Show that g ∈ I(V(f)). If f divides gn

use (a) and (b) to show that f divides g.]

Proof. Consider f, g ∈ K[x1, . . . , xn] with f irreducible, and suppose that V (f) ⊆ V (g).
Then by Problem 1 we have g ∈ (g) ⊆ I(V(g)) ⊆ I(V(f)). By Hilbert’s Nullstellensatz

this implies that g ∈
√

(f) and hence gn ∈ (f) for some n. In other words, f |gn. Since
f an irreducible element of the UFD K[x1, . . . , xn] we know that f is prime by part
(b). Hence f |gn ⇒ f |g. �

[Remark: Study’s Lemma says the following. Let K be algebraically closed. Then any polynomial
that vanishes on a hypersurface is divisible by the “minimal polynomial” of the hypersurface.]


