Math 662 Spring 2014
Final Exam Drew Armstrong

1. (Galois Connections) Let R be any ring. Given any set of points S C K™ we define
a set of polynomials Z(S) := {f € R[z1,...,zy] : f(a) = 0 for all @« € S}, and given any
set of polynomials T C R|x1,...,zy,] we define a set of points V(T') := {a € R" : f(a) =
0 for all f € T}.

(a) Given S C R", prove that Z(S) is an ideal of R[x1,...,zy].
Proof. Given f,g € I(S) and h € R[z1,...,x,] we have (f — gh)(a) = f(a) —
h(a)g(a) =0 — h(a) - 0= 0. Hence f — hg € I(S). O
(b) Given T C T" C Rlx1,...,xy], prove that V(T") C V(T).
Proof. Let a € V(T") so that f(a) = 0 for all f € T'. Since T C T” we also have
f(a) =0 for all f €T, hence a € V(T). O
(c) Given T C R[z1,...,xy,], prove that T C Z(V(T)).

Proof. Fix f € T. We want to show that f € Z(V(T)), in other words that f(a) =0
for all & € V(T'). But given any fixed a € V(T') we have g(a) = 0 for all g € T. In
particular we have f(«) = 0. Since this is true for all o € V(T') we conclude that
fezZwV(r)). O

(d) Given T' C R[z1,...,xy,], prove that V(Z(V(T))) = V(T). [Hint: Use (b) and (c). You
can also assume that S C V(Z(95)) for all S C R", the proof of which is similar to (c).]

Proof. By part (c) we have T C Z(V(T')). Then applying V to both sides and using
(b) gives V(Z(V(T))) € V(T). On the other hand we know that S C V(Z(S5)) for all

sets S C R™. Taking S = V(T) gives V(T') C V(Z(V(T))). O
(e) Consider S C R™. If S = V(T) for some set T C R|x1,...,xz,] prove that S = V(I)

for some ideal I < Rx1,...,z,] containing T'.

Proof. Let I := Z(V(T)). Parts (a) and (c) say that I is an ideal containing 7" and

part (d) says that V(T') = V(Z(V(T))) = V(I). O

[Remark: We say that V' € R" is a variety if V. = V(T') for some set of functions T' C R[z1, ..., Ty].
This problems says that we lose nothing by assuming 7" to be an ideal.]

2. (Systems of Equations) Let R be a Noetherian ring.

(a) State the definition of Noetherian ring.

Proof. We say that a ring is Noetherian if it satisfies either of the following two equiv-
alent conditions:

e There is no infinite increasing chain of ideals.

e Every ideal is finitely generated.

(b) State the Hilbert Basis Theorem.
Proof. Let R be a ring. The Hilbert Basis Theorem says

R is Noetherian = R]z| is Noetherian.



By induction we conclude that if R is Noetherian then so is R[z1, ..., Zy)]. (|

Given polynomials fi,..., fx € R[z1,...,zy,] we define the set

V(fi,.o s fr) ={a € R": fi(a) =0forall 1 <i<k}.
Prove that V(f1,..., fx) = V((f1,--., fx)) where (f1,...,fr) < Rlz1,...,zy] is the
ideal generated by f1,..., f.

Proof. Since {f1,...,fx} € (f1,..., fx), Problem 1(b) implies that V((f1,..., fx)) C
V(f1,..., fr). Conversely, suppose that o € V(f1,..., fr) so that f;(o) = 0 for all
1 <i < k. Then consider any f € (f1,..., fx) so that we have f = g1 f1 + -+ gi fx for
some g1, ...,gx € R[z1,...,2z,]. It follows that f(a) = g1(a) fi(a@)+- -+ gr (@) fr(a) =
g1(@) - 04+ gr(a)-0=0, hence f € V((f1,..., fr)). O

Given any set T' C R[z1,...,x,| prove that we have V(T') = V(f1,..., fr) for some
finite set of polynomials fi,..., fx € R[x1,...,zy]. [Hint: Problem 1.]

Proof. By Problem 1(e) we know that V(T') = V(I) for some ideal I < Rx1,...,xy]
and by the Hilbert Basis Theorem we know that I = (fi,..., fi) for some finite set of
generators fi,..., fx € R[x1,...,x,]). Then by part (c) we have

V(T)=VI) =V((fi,--- fx) =V(f1,---, fu)
O

[Remark: When working over a Noetherian ring, Problems 1 and 2 say that a variety is the same
thing as the solution set of a finite system of polynomial equations.]

3. (The Radical of an Ideal) Let R be any ring. Given anideal I < R[xy,...,z,] we define
its radical VT := {f € R[x1,...,2,] : f* € I for some n}. We say that I < R[xy,...,x,] is
a“radical ideal” if T = v/I.

(a)

(d)

Given an ideal I < R[xi,...,x,|, prove that the set v/T is an ideal. [Hint: Given
f.g€VIand r e R[xy,...,x,] prove that (f —rg)N € I for some N. Which N?|

Proof. Consider f,g € VI and r € R[z,...,2,]. Since f,g € v/T there exist m,n such
that f™ € I and ¢g" € I. Then we have

G-rgmn= S ()
i+j=m+n L
Note that i + j = m + n implies that i > m (hence f' € I) or j > n (hence ¢/ € I).

Thus every term in the above equation is in I, hence (f —rg)™*" € I. We conclude
that f —rg € V1. a

Given an ideal I < R[x1,...,x,), prove that I < /T and hence V(v/T) C V(I).

Proof. Let f € I. Then since f! € I we have f € v/I. We conclude that I < /T and
then Problem 1(b) implies that V(v/T) C V(I). O

If R is reduced (i.e. contains no nilpotent elements), prove that V(I) C V(V/1).

Proof. Now suppose R is reduced and fix a € V(I) so that f(a) =0 for all f € I. We
want to show that f(a) = 0 for all f € I. But if f € v/ then we have f™ € I for
some m and then f(a)™ = 0. Since R is reduced this implies that f(a) = 0. O

Following part (c), conclude that v/T C Z(V(I)). [Hint: Problem 1(c).]



Proof. By parts (b) and (c) we know that V(v/T) = V(I). Then Problem 1(c) implies
that VI C Z(V(VT)) = Z(V(D)). O

[Remark: When working over a reduced ring, Problem 3 says that a variety is the same as the set
of zeroes of a radical ideal. This is stronger than the conclusion of Problem 1(e).]

4. (Weak Nullstellensatz) Let K be any field. Given any point a € K™ we consider the
ideal of functions that vanish at a:

(a)

my :=Z({a}) ={f € K[z1,...,2,) : f(a) =0}.
Given a € K", prove that m, is a maximal ideal. [Hint: It’s the kernel of something.]

Proof. Consider the evaluation homomorphism ev,, : K[z1,...,2,] — K. This map
is surjective because given any S € K we can apply ev, to the constant function
B € Klxy,...,z,] to get evy(B) = B. Note that the kernel is m, = ker(ev,). By the
First Isomorphism Theorem we know that Klzi,...,x,]/ms &~ K. Since K is a field
this implies that m, < K[z1,...,2,] is a maximal ideal. U

If a = (aq,...,ap) € K", prove that my, = (1 — aq,...,%, — ay). [Hint: Consider
f(x1,...,x,) such that f(a) = 0. First divide f by (z1—aq), then divide the remainder
by (x3 — ), then ...]

Proof. Consider f € K[z1,...,x,]. Divide f by (z1 — 1) in the ring K[z1,...,x,] to
get f = qi(x1 — a1) + m1 where 71 is in the subring K|z, ..., x,]. Then divide r; by
(x2 — ag) in the subring K|xg,...,x,] to get f = q1(x1 — 1) + g2(x2 — ag) + ro where
r9 is in the subring r9 € K|xs,...,z,]. Continuing in this way we get
fZQ1(371_a1)+"‘+Qn(xn_an)+r

where r € K is a constant. Finally, evaluating at « gives

and we conclude that f € (z1 — aq,...,2, — ay). Conversely, every f in this ideal
satisfies f(a) = 0, hence f € m,,. O

If every maximal ideal of K|x1,...,z,] has the form m, for some o € K™, prove that
for all ideals I we have I # Klx1,...,x,) = V(I) # 0. [Hint: If I # K[z1,...,2y)

then you can assume (Zorn) that I is contained in a maximal ideal.]

Proof. Suppose that every maximal ideal of K[xy,...,x,]| has the form m, for some
a € K™ and assume that [ # K[x1,...,x,]. By Zorn’s Lemma, [ is contained in a
maximal ideal my = I({a}). Then by Problem 1 we have {a} C V(Z({a})) C V(I),
hence V(I) # 0. O

[Remark: In (c) we assumed that every maximal ideal of K[z1,...,x,] has the form m,. If K
is algebraically closed then this assumption is true, but (as you know) it is not easy to prove.]



5. (Strong Nullstellensatz) Let K be an algebraically closed field. In this case Hilbert
proved that v/I = Z(V(I)) (compare Problem 3(d)). Please don’t prove this!! You will apply
Hilbert’s result to prove something called “Study’s Lemma”.

(a) Use a small number of words to tell me why K[z1,...,z,] is a UFD.

Proof. Here is an acceptable solution: say “Gauss’ Lemma”. You can of course go into
more detail at your own risk. O

(b) Prove that every irreducible element in a UFD is prime. [Hint: If a|bc then we have
ak = be. Factor both sides into irreducibles and compare.]

Proof. Suppose that we have ak = bc in a UFD and suppose that a irreducible. Factor
k, b, and c¢ into irreducibles and compare the irreducible factorization on both sides of
the equation ak = be. Since a is an irreducible factor on the left it must be associate
to some irreducible factor on the right. That is, a must be associate to an irreducible
factor of b or ¢. But this implies that a|b or alc. O

(c) Given a polynomial f € K[z1,...,x,] we define the “hypersurface”

V(f) :=V((f) ={ae K": f(a) = 0}.
Consider f,g € K[x1,...,x,] such that f divides g. Prove that V(f) C V(g).

Proof. Suppose that fl|g, say ¢ = fh. Then for all &« € V(f) we have g(a) =
f(a)h(a) =0- h(a) =0, hence a € V(g). O

(d) (Study’s Lemma) Consider f,g € K[x1,...,xy] such that f is irreducible. Prove
that if V(f) € V(g) then f divides g. [Hint: Show that g € Z(V(f)). If f divides g"
use (a) and (b) to show that f divides g.]

Proof. Consider f,g € K[z1,...,x,] with f irreducible, and suppose that V(f) C V(g).
Then by Problem 1 we have g € (¢9) € Z(V(g)) € Z(V(f)). By Hilbert’s Nullstellensatz
this implies that g € \/(f) and hence g" € (f) for some n. In other words, f|g". Since
f an irreducible element of the UFD KJz1,...,x,] we know that f is prime by part
(b). Hence f|g" = flg. O

[Remark: Study’'s Lemma says the following. Let K be algebraically closed. Then any polynomial
that vanishes on a hypersurface is divisible by the “minimal polynomial” of the hypersurface.]



