Problem 0 (Abelianization). Let G be a group and for all $g, h \in G$ define the commutator $[g, h]:=g h g^{-1} h^{-1} \in G$. The subgroup of G generated by commutators is called the commutator subgroup:

$$
[G, G]:=\langle[g, h]: g, h \in G\rangle .
$$

(a) Prove that $[G, G] \triangleleft G$.
(b) Prove that the quotient $G^{\text {ab }}:=G /[G, G]$ (called the abelianization of G) is abelian.
(c) If $N \triangleleft G$ is any normal subgroup such that G / N is abelian, prove that $[G, G] \leq N$.
(d) Put everything together to prove the universal property of abelianization: Given a homomorphism $\varphi: G \rightarrow A$ to an abelian group A, there exists a unique homomorphism $\bar{\varphi}:=G^{\mathrm{ab}} \rightarrow A$ such that $\varphi=\bar{\varphi} \circ \pi$, where $\pi: G \rightarrow G^{\mathrm{ab}}$ is the canonical surjection.

Proof. To show (a), first note that elements of $[G, G]$ are products of commutators and inverses of commutators. But the inverse of a commutator is also a commutator:

$$
[g, h]^{-1}=\left(g h g^{-1} h^{-1}\right)^{-1}=h g h^{-1} g^{-1}=[h, g] .
$$

Thus every element of $[G, G]$ is a product of commutators. Next note that the conjugate of a commutator is a commutator. Indeed, for all $s, g, h \in G$ we have

$$
s[g, h] s^{-1}=s\left(g h g^{-1} h^{-1}\right) s^{-1}=\left(s g s^{-1}\right)\left(s h s^{-1}\right)\left(s g^{-1} s^{-1}\right)\left(s h s^{-1}\right)=\left[s g s^{-1}, s h s^{-1}\right] .
$$

Finally, given any $x=\left[g_{1}, h_{1}\right] \cdots\left[g_{k}, h_{k}\right] \in[G, G]$ and $s \in G$ we have

$$
\begin{aligned}
s x s^{-1} & =s\left(\left[g_{1}, h_{1}\right] \cdots\left[g_{k}, h_{k}\right]\right) s^{-1} \\
& =\left(s\left[g_{1}, h_{1}\right] s^{-1}\right) \cdots\left(s\left[g_{k}, h_{k}\right] s^{-1}\right) \\
& =\left[s g_{1} s^{-1}, s h_{1} s^{-1}\right] \cdots\left[s g_{k} s^{-1}, s h_{k} s^{-1}\right] \in[G, G],
\end{aligned}
$$

and we conclude that $[G, G] \triangleleft G$.
For part (b) we will write $G^{\prime}:=[G, G]$ to save space. To show that G / G^{\prime} is abelian consider any cosets $g G^{\prime}$ and $h G^{\prime}$ with $g, h \in G$. We will be done if we can show that $\left[g G^{\prime}, h G^{\prime}\right]$ is the identity coset G^{\prime}. And this is true because

$$
\begin{aligned}
{\left[g G^{\prime}, h G^{\prime}\right] } & =\left(g G^{\prime}\right)\left(h G^{\prime}\right)\left(g G^{\prime}\right)^{-1}\left(h G^{\prime}\right)^{-1} \\
& =\left(g G^{\prime}\right)\left(h G^{\prime}\right)\left(g^{-1} G^{\prime}\right)\left(h^{-1} G^{\prime}\right) \\
& =\left(g h g^{-1} h^{-1}\right) G^{\prime} \\
& =[g, h] G^{\prime} \\
& =G^{\prime} .
\end{aligned}
$$

For part (c), assume that $N \triangleleft G$ with G / N abelian and consider any $g, h \in G$. Then since $(g N)(h N)=(h N)(g N)$ we have

$$
N=(g N)(h N)(g N)^{-1}(h N)^{-1}=\left(g h g^{-1} h^{-1}\right) N=[g, h] N,
$$

which implies that $[g, h] \in N$. Since N contains all commutators $[g, n]$ for $g, h \in G$ we conclude that $[G, G] \leq N$.

For part (d) assume we have $\varphi: G \rightarrow A$ where A is abelian and let $N=\operatorname{Ker} \varphi$. By part (c) we know that $\operatorname{Ker} \pi=[G, G] \leq N=\operatorname{Ker} \varphi$. This allows us to define a map $\bar{\varphi}: G^{\mathrm{ab}} \rightarrow A$ by setting $\bar{\varphi}(g[G, G]):=\varphi(g)$. To see that this is well-defined, suppose that $g[G, G]=h[G, G]$, so that $g h^{-1} \in[G, G] \leq N$. Then we have $\varphi(g) \varphi(h)^{-1}=\varphi\left(g h^{-1}\right)=1_{A}$, which implies that $\varphi(g)=\varphi(h)$. Also note that $\bar{\varphi}: G^{\mathrm{ab}} \rightarrow A$ is a homomorphism because

$$
\bar{\varphi}(g h[G, G])=\varphi(g h)=\varphi(g) \varphi(h)=\bar{\varphi}(g[G, G]) \bar{\varphi}(h[G, G]),
$$

and note that $\varphi=\bar{\varphi} \circ \pi$ since for all $g \in G$ we have

$$
\bar{\varphi} \circ \pi(g)=\bar{\varphi}(g[G, G])=\varphi(g) .
$$

Finally, suppose that $F: G^{\text {ab }} \rightarrow A$ is another morphism satisfying $\varphi=F \circ \pi$. Then for all $g \in G$ we have

$$
\bar{\varphi}(g[G, G])=\varphi(g)=F(\pi(g))=F(g[G, G])
$$

so that $F=\bar{\varphi}$ as desired.

Problem 1 (Splitting Lemma). Let R be a commutative ring with 1 and consider a short exact sequence of R-modules:

$$
0 \longrightarrow A \xrightarrow{q} B \xrightarrow{r} C \longrightarrow 0 .
$$

Prove that if there exists $t: B \rightarrow A$ such that $t \circ q$ is the identity on A, then $B \approx A \oplus C$. [Hint: Define a map $\varphi: B \rightarrow A \oplus C$ by $\varphi(b):=(t(b), r(b))$. To show that φ is injective, assume that $\varphi(b)=\varphi\left(b^{\prime}\right)$. Show that this implies $b-b^{\prime} \in \operatorname{Ker} r=\operatorname{Im} q$, and hence $b-b^{\prime}=q \circ t\left(b-b^{\prime}\right)=$ $q\left(t(b)-t\left(b^{\prime}\right)\right)=q(0)=0$. To show that φ is surjective consider $(a, c) \in A \oplus C$. Since r and t are surjective there exist $b, b^{\prime} \in B$ such that $a=t(b)$ and $c=r\left(b^{\prime}\right)$. Now let $x=b^{\prime}+q \circ t\left(b-b^{\prime}\right)$ and show that $\varphi(x)=(a, c)$.]

Proof. Note that the map $\varphi(b):=(t(b), r(b))$ is an R-homomorphism because $t: B \rightarrow A$ and $r: B \rightarrow C$ are both R-homomorphisms. We must show that φ is bijective.

To show that φ is injective, consider any $b, b^{\prime} \in B$ such that $\varphi(b)=\varphi\left(b^{\prime}\right)$. Equivalently, we have $t(b)=t\left(b^{\prime}\right)$ and $r(b)=r\left(b^{\prime}\right)$. Since $0=r(b)-r\left(b^{\prime}\right)=r\left(b-b^{\prime}\right)$ we see that $b-b^{\prime} \in \operatorname{Ker} r$. By exactness, this implies $b-b^{\prime} \in \operatorname{Im} q$, hence there exists $a \in A$ with $b-b^{\prime}=q(a)$. Since $t \circ q$ is the identity on A this implies

$$
q \circ t \circ q(a)=q(t \circ q(a))=q(a) .
$$

In other words, we have

$$
b-b^{\prime}=q \circ t\left(b-b^{\prime}\right)=q\left(t(b)-t\left(b^{\prime}\right)\right)=q(0)=0,
$$

where we used the assumption that $t(b)=t\left(b^{\prime}\right)$. We conclude that $b=b^{\prime}$ as desired.
To show that φ is surjective, first note that t is surjective because for all $a \in A$ we have $t(q(a))=a$. Now fix an arbitrary element $(a, c) \in A \oplus C$. Since t it surjective and r is surjective (by exactness), there exist $b, b^{\prime} \in B$ such that $a=t(b)$ and $c=q\left(b^{\prime}\right)$. Now consider the element $x=b^{\prime}+q \circ t\left(b-b^{\prime}\right) \in B$. Note that

$$
t(x)=t\left(b^{\prime}\right)+t \circ q \circ t\left(b-b^{\prime}\right)=t\left(b^{\prime}\right)+t\left(b-b^{\prime}\right)=t\left(b^{\prime}\right)+t(b)-t\left(b^{\prime}\right)=t(b)=a
$$

because $t \circ q$ is the identity. Since $\operatorname{Im} q=\operatorname{Ker} r$ we also have

$$
r(x)=r\left(b^{\prime}\right)+r\left(q\left(t\left(b-b^{\prime}\right)\right)\right)=r\left(b^{\prime}\right)+0=r\left(b^{\prime}\right)=c,
$$

and we conclude that $\varphi(x)=(t(x), r(x))=(a, c)$ as desired.

Problem 2. We say that a matrix $A \in G L(n, \mathbb{C})$ is unitary if $A^{*} A=I$, where A^{*} is the conjugate transpose. Let $U(n) \leq G L(n, \mathbb{C})$ denote the unitary group of unitary matrices.
(a) Prove that $U(n)$ is actually a group.
(b) Let $(x, y)=x^{*} y=\sum_{i} \overline{x_{i}} y_{i}$ be the standard Hermitian form on \mathbb{C}^{n}. Prove that $A \in$ $G L(n, \mathbb{C})$ is unitary if and only if $(A x, A y)=(x, y)$ for all $x, y \in \mathbb{C}^{n}$.
(c) Prove that $A \in G L(n, K)$ is unitary if and only if its columns are orthonormal.
(d) Prove that every $A \in U(n)$ is conjugate in $U(n)$ to a diagonal matrix. [Hint: Let $A \in U(n)$. Since \mathbb{C} is algebraically closed, A has an eigenvector, say $A \mathbf{v}_{1}=\lambda \mathbf{v}_{1}$. Assume it is possible to extend this to an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ for \mathbb{C}^{n} (which it is, via the Gram-Schmidt algorithm). Letting $P=\left(\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right)$ gives us

$$
P^{-1} A P=\left(\begin{array}{c|ccc}
\lambda & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & A^{\prime} & \\
0 & & &
\end{array}\right)
$$

with $A^{\prime} \in U(n-1)$. By induction, A^{\prime} is conjugate in $U(n-1)$ to a diagonal matrix.]

Proof. First we establish a few properties of conjugate transpose. For all column vectors $x \in \mathbb{C}^{n}$ let x^{*} denote the complex conjugate transpose row vector, and define the standard Hermitian form by $(x, y):=x^{*} y$. Note that for all $A \in G L(n, \mathbb{C})$ the conjugate transpose matrix A^{*} is characterized by

$$
(A x, y)=\left(x, A^{*} y\right) \quad \text { for all } x, y \in \mathbb{C}^{n}
$$

Indeed, if $e_{i} \in \mathbb{C}^{n}$ is a standard basis vector then for all $x \in \mathbb{C}^{n}$ we have

$$
e_{i}^{*} A^{*} x=\left(e_{i}, A^{*} x\right)=\left(A e_{i}, x\right)=\left(A e_{i}\right)^{*} x,
$$

and it follows that $e_{i}^{*} A^{*}=\left(A e_{i}\right)^{*}$. But $e_{i}^{*} A^{*}$ is the i-th row of A^{*} and $\left(A e_{i}\right)^{*}$ is the conjugate transpose of the i-th column of A. Now for all $A, B \in \mathbb{C}^{*}$ and $x, y \in \mathbb{C}^{n}$ we have

$$
(A B x, y)=\left(B x, A^{*} y\right)=\left(x, B^{*} A^{*} y\right),
$$

which by the previous remarks implies that $(A B)^{*}=B^{*} A^{*}$. Finally, note that for all $A \in$ $G L(n, \mathbb{C})$ we have $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}$ because $\left(A^{-1}\right)^{*} A^{*}=\left(A A^{-1}\right)^{*}=I^{*}=I$.

To show part (a), consider $A, B \in G L(n, \mathbb{C})$ such that $A^{*} A=I$ and $B^{*} B=I$. By RankNullity we also have $B B^{*}=I$ and hence

$$
\begin{aligned}
\left(A B^{-1}\right)^{*}\left(A B^{-1}\right) & =\left(B^{-1}\right)^{*} A^{*} A B^{-1} \\
& =\left(B^{-1}\right)^{*} B^{-1} \\
& =\left(B^{*}\right)^{-1} B^{-1} \\
& =\left(B B^{*}\right)^{-1} \\
& =I
\end{aligned}
$$

We conclude that $A B^{-1}$ is unitary, hence $U(n)$ is a group.
To show part (b) first suppose that $A^{*} A=I$. Then for all $x, y \in \mathbb{C}^{n}$ we have

$$
(A x, A y)=\left(x, A^{*} A y\right)=(x, y)
$$

Conversely, suppose that $(A x, A y)=(x, y)$ for all $x, y \in \mathbb{C}^{n}$. Setting $y=e_{i}$ gives

$$
x^{*} e_{i}=\left(x, e_{i}\right)=\left(A x, A e_{i}\right)=\left(x, A^{*} A e_{i}\right)=x^{*} A^{*} A e_{i} .
$$

Since this holds for all $x \in \mathbb{C}^{n}$ we conclude that e_{i} is equal to $A^{*} A e_{i}$ (which is the i-th column of $A^{*} A$), hence $A^{*} A=I$.

To show (c), let a_{i} denote the i-th column of A, so that a_{i}^{*} is the i-th row of A^{*}. By definition the i, j entry of $A^{*} A$ is $\left(a_{i}, a_{j}\right)=a_{i}^{*} a_{j}$ and since $A^{*} A=I$ we have

$$
\left(a_{i}, a_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

In other words, the columns of A are orthonormal.
To show (d) consider $A \in U(n)$. We first show that A has an eigenvalue. Given any vector $x \in \mathbb{C}^{n}$, the $n+1$ vectors

$$
x, A x, A^{2} x, \ldots, A^{n} x
$$

cannot be linearly independent because \mathbb{C}^{n} has dimension n. Thus there exist numbers $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{C}$ not all zero such that

$$
0=a_{0} x+a_{1} A x+\cdots+a_{n} A^{n} x .
$$

Since A commutes with its powers we can think of $a_{0}+a_{1} A+\cdots+a_{n} A^{n}$ as a polynomial with complex coefficients. Then since \mathbb{C} is algebraically closed, there exist $c, \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ such that

$$
\begin{aligned}
0 & =a_{0} x+a_{1} A x+\cdots+a_{n} A^{n} x \\
& =\left(a_{0}+a_{1} A+\cdots+a_{n} A^{n}\right) x \\
& =c\left(A-\lambda_{1} I\right) \cdots\left(A-\lambda_{n} I\right) x,
\end{aligned}
$$

which means that $A-\lambda_{i} I$ is not injective for at least one i. In other words, A has an eigenvalue. We assume that $A \mathbf{v}_{1}=\lambda \mathbf{v}_{1}$ for some $0 \neq \mathbf{v}_{1} \in \mathbb{C}^{n}$.

Now use the Gram-Schmidt process to extend \mathbf{v}_{1} to an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ for \mathbb{C}^{n} and let $P=\left(\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right)$. After changing basis we obtain

$$
P^{-1} A P=\left(\begin{array}{c|ccc}
\lambda & * & \cdots & * \\
\hline 0 & & & \\
\vdots & & A^{\prime} & \\
0 & & &
\end{array}\right)
$$

with $A^{\prime} \in U(n-1)$. Since the columns of P are orthonormal we have $P^{*} P=I$ and hence $P^{-1} A P$ is unitary. Then since the columns of $P^{-1} A P$ are orthonormal we conclude that

$$
P^{-1} A P=\left(\begin{array}{c|ccc}
\lambda & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & A^{\prime} & \\
0 & & &
\end{array}\right) .
$$

By induction, there exists $Q^{\prime} \in U(n-1)$ such that $\left(Q^{\prime}\right)^{-1} A^{\prime} Q^{\prime}=D$ is diagonal. Finally, after defining the unitary matrix

$$
Q=\left(\begin{array}{c|ccc}
1 & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & Q^{\prime} & \\
0 & & &
\end{array}\right),
$$

we see that $P Q$ is unitary and

$$
(P Q)^{-1} A(P Q)=Q^{-1}\left(P^{-1} A P\right) Q=\left(\begin{array}{c|ccc}
\lambda & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & D & \\
0 & & &
\end{array}\right)
$$

Problem 3. Prove that the center of $G L(n, K)$ is the group of scalar matrices

$$
Z(G L(n, K))=\left\{\alpha I: \alpha \in K^{\times}\right\} \approx K^{\times} .
$$

Prove that the center of $S L(n, K)$ is the group of n-th roots of unity

$$
Z(S L(n, K))=\left\{\alpha I: \alpha \in K, \alpha^{n}=1\right\} .
$$

Assuming that \mathbb{F}_{q}^{\times}is a cyclic group (this is called the Primitive Root Theorem; please don't prove it), compute the order of $\operatorname{PSL}(n, q)$.

Proof. Let $e_{i j}(k)$ be the $n \times n$ matrix with $k \in K$ in the i, j position and zeroes elsewhere, and let $E_{i j}(k)=I+e_{i j}(k)$. Note that for $i \neq j$ we have $E_{i j}(k)^{-1}=E_{i j}(-k)$ and hence $E_{i j}(k)$ is invertible. Now suppose that $A=\left(a_{i j}\right)$ is in the center of $G L(n, K)$. Since A commutes with $E_{i j}(k)$ it must also commute with $e_{i j}(k)$. But note that $A e_{i j}(1)$ has j-th column equal the i-th column of A and zeroes elsewhere, while $e_{i j}(1) A$ has i-th row equal to the j-th row of A and zeroes elsewhere. Then the equation $A e_{i j}(1)=e_{i j}(1) A$ says

$$
\begin{aligned}
& j \quad j
\end{aligned}
$$

which implies that $a_{i j}=0$ and $a_{i i}=a_{j j}$ for all $i \neq j$. In other words A is a scalar matrix. The invertible scalar matrices are precisely αI for $\alpha \in K^{\times}$. [Note that the same proof works more generally when K is a ring with 1.]

Now we wish to show that the center of $S L(n, K)$ consists of scalar matrices. Indeed, note that the matrix $E_{i j}(k)$ with $i \neq j$ has determinant 1 and hence $E_{i j}(k) \in S L(n, K)$. Then the same argument shows that every $A \in Z(S L(n, K))$ has the form αI for some $\alpha \in K$. Since the determinant of αI is α^{n} we must also have $\alpha^{n}=1$.

Finally, let $K=\mathbb{F}_{q}$. By the primitive root theorem we know that \mathbb{F}_{q}^{\times}is cyclic of order $q-1$, say $\mathbb{F}_{q}^{\times}=\langle g\rangle$. Then the center of $S L(n, q)$ has the form

$$
Z(S L(n, q))=\left\{g^{x} I:\left(g^{x}\right)^{n}=1\right\} .
$$

But note that

$$
\left(g^{x}\right)^{n}=1 \quad \Longleftrightarrow \quad g^{x n}=1 \quad \Longleftrightarrow \quad x n \equiv 1 \quad(\bmod q-1)
$$

Thus we want to solve the linear congruence $x n \equiv 1(\bmod q-1)$. We will first solve the linear diophantine equation

$$
x n+y(q-1)=0
$$

which translates to

$$
-\frac{x}{y}=\frac{q-1}{n} .
$$

If we let $d=\operatorname{gcd}(n, q-1)$ then the most general way to write this fraction is

$$
-\frac{x}{y}=\frac{k(q-1) / d}{k n / d} \quad \text { for all } k \in \mathbb{Z}
$$

and it follows that the general solution is

$$
(x, y)=\left(k \frac{q-1}{d},-k \frac{n}{d}\right) \quad \text { for all } k \in \mathbb{Z}
$$

After reducing everything $\bmod q-1$, we find that the general solution to $x n \equiv 0(\bmod q-1)$ is given by

$$
x \equiv k \frac{q-1}{d} \quad(\bmod q-1) \quad \text { for all } k \in \mathbb{Z}
$$

and there are d distinct solutions: $0, \frac{q-1}{d}, 2 \frac{q-1}{d}, \ldots,(d-1) \frac{q-1}{d}$. We conclude that

$$
|Z(S L(n, q))|=d=\operatorname{gcd}(n, q-1)
$$

Finally, we have

$$
|P S L(n, q)|=\frac{|S L(n, q)|}{\mid Z(S L(n, q) \mid}=\frac{q^{\binom{n}{2}}\left(q^{2}-1\right)\left(q^{3}-1\right) \cdots\left(q^{n}-1\right)}{\operatorname{gcd}(n, q-1)} .
$$

[Recall that $P S L(n, q)$ are the finite simple groups of "type A_{n-1} ". For comparison, there exists a sequence of finite simple groups $E_{6}(q)$ of "type E_{6} " with order

$$
\left|E_{6}(q)\right|=\frac{q^{36}\left(q^{2}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{8}-1\right)\left(q^{9}-1\right)\left(q^{12}-1\right)}{\operatorname{gcd}(2, q-1)}
$$

Wow, that looks similar.]
Problem 4. Let $B \leq G L(n, K)$ be the Borel subgroup of upper triangular matrices, let $U \leq B$ be the subgroup of upper unitriangular matrices (i.e. with 1's on the diagonal) and let $T \leq B$ be the subgroup of diagonal matrices (called a maximal torus).
(a) Why is T called a torus?
(b) Prove that $B=T \ltimes U$.
(c) More generally, given $J=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$ where $n_{1}+n_{2}+\cdots+n_{k}=n$ we define the parabolic subgroup

$$
P_{J}=\left(\begin{array}{cccc}
\begin{array}{|c}
* \\
\\
\\
\\
\\
\\
*
\end{array} & & * \\
0 & & * & \\
0 & & *
\end{array}\right) \leq G L(n, K)
$$

where the diagonal blocks are square of sizes $n_{1}, n_{2}, \ldots, n_{k}$. We also define the unipotent radical and the Levi complement:

Prove that $P_{J}=L_{J} \ltimes U_{J}$. [Hint: Consider the projection homomorphism $\varphi: P_{J} \rightarrow L_{J}$ Show that the kernel is U_{J}. Now consider any $g \in P_{J}$ and show that $g \varphi(g)^{-1} \in \operatorname{Ker} \varphi=$ U_{J}. It follows that $g \in U_{J} \cdot \varphi(g) \subseteq U_{J} L_{J}$.]

Proof. For part (a) note that T is isomorphic to the direct product of multiplicative groups $K^{\times} \times K^{\times} \times \cdots \times K^{\times}$. In the case $K=\mathbb{C}$ note that \mathbb{C}^{\times}is homotopy equivalent to a circle. In this case T is homotopy equivalent to a product of n circles, i.e., a torus. The intersection of $T \leq G L(n, \mathbb{C})$ with the subgroup of unitary matrices $U(n)$ is isomorphic to $U(1) \times U(1) \times \cdots \times U(1)$, and this really is a torus. The general use of the word "torus" refers to this special case.

Now we will prove (c), of which (b) is a special case. To prove $P_{J}=L_{J} \ltimes U_{J}$ we must show that (1) $L_{J} \cap U_{J}=1$, (2) $U_{J} \triangleleft P_{J}$, and (3) $P_{J}=L_{J} U_{J}$. (1) is trivial. Now consider the function $\varphi: P_{J} \rightarrow L_{J}$ that sends all elements outisde the diagonal blocks to zero. Since matrix multiplication respects block partitions it is easy to see that this is a group homomorphism. (Also note that L_{J} is isomorphic to $G L\left(n_{1}, K\right) \times \cdots \times G L\left(n_{k}, K\right)$.) The kernel of φ is clearly U_{J}, which implies (2). Finally, consider any element

$$
A=\left(\begin{array}{cccc}
\left.\begin{array}{|cccc}
A_{1} & & & * \\
& A_{2} & & \\
& & \ddots & \\
0 & & & A_{k}
\end{array}\right) \in P_{J}
\end{array}\right.
$$

Note that
and hence

$$
\varphi(A)^{-1} A=\left(\begin{array}{cccc}
\begin{array}{|c|cc|}
\hline A_{1}^{-1} A_{1} & & \\
\\
& A_{2}^{-1} A_{2} & \\
\\
0 & & \ddots
\end{array} & \\
0 & & & A_{k}^{-1} A_{k}
\end{array}\right)=\left(\begin{array}{cccc}
\begin{array}{|l|ll}
I & & * \\
& I & \\
& & I \\
\hline 0 & & I
\end{array}
\end{array}\right) \in U_{J} .
$$

We conclude that $A \in \varphi(A) U_{J} \subseteq L_{J} U_{J}$, i.e., (3).
[There is a relationship between Problems 2 and 4. As mentioned, the diagonal matrices inside $U(n)$ form an actual torus $T \approx U(1) \times \cdots \times U(1)$. You proved in Problem 2 that the conjugates of $T \leq U(n)$ cover the group. This is a general phenomenon that holds in all compact Lie groups G. The major technique of Lie theory is to express everything about G in terms of an arbitrary maximal torus $T \leq G$.]

