Math 661 Fall 2013
Homework 5 Drew Armstrong

Problem 0 (Abelianization). Let G' be a group and for all g,h € G define the commu-
tator [g,h] := ghg~'h~! € G. The subgroup of G generated by commutators is called the
commutator subgroup:

G,G] :={[g,h] : g,h € G).
(a) Prove that [G,G] < G.
(b) Prove that the quotient G* := G/[G, G] (called the abelianization of G) is abelian.
(c) If N <G is any normal subgroup such that G/N is abelian, prove that [G,G] < N.
(d) Put everything together to prove the universal property of abelianization: Given a
homomorphism ¢ : G — A to an abelian group A, there exists a unique homomorphism
@ := G* — A such that ¢ = ¢ o7, where 7 : G — G?" is the canonical surjection.
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Proof. To show (a), first note that elements of [G, G| are products of commutators and inverses
of commutators. But the inverse of a commutator is also a commutator:

lg.h) " = (ghg 'k ) = hgh™'g™! = [h, g].

Thus every element of [G, G] is a product of commutators. Next note that the conjugate of a
commutator is a commutator. Indeed, for all s, g, h € G we have

s[g,h)s™t = s(ghg ' h™Y)s™! = (sgs ') (shs 1) (sg 7 s ) (shs™!) = [sgs™!, shsT1].
Finally, given any x = [g1, h1] - - - gk, hx] € [G, G] and s € G we have
sws™ = s (lg1, h] - g, hu]) s
= (slgr, hals™) -+ (slgw. hals ™)
= [sg1s™ ', shis™] - [sgrps ™, shps ™) € [G, G,

and we conclude that [G,G] < G.

For part (b) we will write G’ := [G, G] to save space. To show that G/G’ is abelian consider
any cosets gG’ and hG" with g,h € G. We will be done if we can show that [¢G’, hG'] is the
identity coset G’. And this is true because

[9G", hG'] = (9G")(hG')(9G") " (RG") ™
= (9G")(hG")(g7' G (h'E)
= (ghg”'h 1
= [g’ h]G,
=G

For part (c), assume that N << G with G/N abelian and consider any g,h € G. Then since
(gN)(hN) = (hN)(gN) we have
N = (gN)(hN)(gN) " (AN) ™" = (ghg™'h™")N = [g, h]N,



which implies that [g, h] € N. Since N contains all commutators [g,n] for g, h € G we conclude
that [G,G] < N.

For part (d) assume we have ¢ : G — A where A is abelian and let N = Ker ¢. By part (c)
we know that Ker7 = [G,G] < N = Kery. This allows us to define a map ¢ : G — A by
setting ¢(g[G, G]) := ¢(g). To see that this is well-defined, suppose that g|G,G] = h[G, G,
so that gh~! € [G,G] < N. Then we have ¢(g)¢(h)~! = ¢(gh™') = 14, which implies that
©(g) = @(h). Also note that ¢ : G* — A is a homomorphism because

@(gh[G, G]) = w(gh) = (g)p(h) = ¢(g[G, G])p(h[G, G]),

and note that ¢ = @ o 7 since for all g € G we have

pom(g) =¢9lG,G]) = ¢(g)-
Finally, suppose that F' : G® — A is another morphism satisfying ¢ = F o 7. Then for all
g € G we have

e(9lG, G]) = ¢lg) = F(r(9)) = F(9G,G])
so that F' = ¢ as desired. O

Problem 1 (Splitting Lemma). Let R be a commutative ring with 1 and consider a short
exact sequence of R-modules:

0—A-YL B0 —0.

Prove that if there exists t : B — A such that togq is the identity on A, then B ~ A®C. [Hint:
Define a map ¢ : B — A® C by ¢(b) := (¢t(b),r(b)). To show that ¢ is injective, assume that
©(b) = p(b'). Show that this implies b — b’ € Kerr = Img, and hence b — b = got(b—1V') =
q(t(b) —t(b')) = ¢q(0) = 0. To show that ¢ is surjective consider (a,c) € A® C. Since r and ¢
are surjective there exist b, b’ € B such that a = ¢(b) and ¢ = r(b'). Now let © =¥ +qot(b—1V)
and show that ¢(x) = (a,c).]

Proof. Note that the map ¢(b) := (¢(b), (b)) is an R-homomorphism because ¢ : B — A and
r: B — C are both R-homomorphisms. We must show that ¢ is bijective.

To show that ¢ is injective, consider any b, b’ € B such that ¢(b) = (V). Equivalently, we
have t(b) = t(b') and r(b) = r(b'). Since 0 = r(b) — (/) = r(b— V') we see that b — b' € Kerr.
By exactness, this implies b — b’ € Im ¢, hence there exists a € A with b— = ¢g(a). Since togq
is the identity on A this implies

gotog(a) =q(toq(a)) =qla).
In other words, we have
b—V =qot(b—V)=q(t(b) —t(')) = q(0) =0,

where we used the assumption that ¢(b) = ¢(d’). We conclude that b = b" as desired.

To show that ¢ is surjective, first note that ¢ is surjective because for all a € A we have
t(¢(a)) = a. Now fix an arbitrary element (a,c) € A @® C. Since t it surjective and r is
surjective (by exactness), there exist b,b’ € B such that a = ¢(b) and ¢ = ¢(b’). Now consider
the element x =V + qo t(b—¥') € B. Note that

t(x) =t(t))+toqot(b—b)=tl)+t(b—0b)=tl")+t0b)—t()=t0b)=a
because t o g is the identity. Since Im ¢ = Kerr we also have
r(@) =r) +r(qtd—v)) =r@) +0=r@¥) =c,
and we conclude that ¢(x) = (t(z),r(x)) = (a,c) as desired. O



Problem 2. We say that a matrix A € GL(n,C) is unitary if A*A = I, where A* is the
conjugate transpose. Let U(n) < GL(n,C) denote the unitary group of unitary matrices.

(a) Prove that U(n) is actually a group.

(b) Let (x,y) = x*y = >, T;y; be the standard Hermitian form on C". Prove that A €
GL(n,C) is unitary if and only if (Az, Ay) = (z,y) for all z,y € C".

(c) Prove that A € GL(n, K) is unitary if and only if its columns are orthonormal.

(d) Prove that every A € U(n) is conjugate in U(n) to a diagonal matrix. [Hint: Let
A € U(n). Since C is algebraically closed, A has an eigenvector, say Av; = Avj.
Assume it is possible to extend this to an orthonormal basis vi,vs,...,v, for C"
(which it is, via the Gram-Schmidt algorithm). Letting P = (V1 vn) gives us

P7'AP =

with A" € U(n — 1). By induction, A" is conjugate in U(n — 1) to a diagonal matrix.|

Proof. First we establish a few properties of conjugate transpose. For all column vectors
x € C™ let * denote the complex conjugate transpose row vector, and define the standard
Hermitian form by (z,y) := z*y. Note that for all A € GL(n,C) the conjugate transpose
matrix A* is characterized by

(Ax,y) = (z,A%y) for all z,y € C".
Indeed, if ¢; € C™ is a standard basis vector then for all z € C™ we have
e; A = (e;, A%x) = (Aej,x) = (Ae;)*x,

and it follows that ef A* = (Ae;)*. But ef A* is the i-th row of A* and (Ae;)* is the conjugate
transpose of the i-th column of A. Now for all A, B € C* and z,y € C" we have

(ABz,y) = (Bx, A*y) = (z, B*A%y),

which by the previous remarks implies that (AB)* = B*A*. Finally, note that for all A €
GL(n,C) we have (A*)~! = (A71)* because (A™1)*A* = (AA™H)* =I*=1.

To show part (a), consider A, B € GL(n,C) such that A*A = I and B*B = I. By Rank-
Nullity we also have BB* = I and hence

(AB™Y)*(AB™1) = (B 1)*A*AB™!
— B—l)*B—l

B*)—IB—I

BB*)—I

—~~

N —~

We conclude that AB~ is unitary, hence U(n) is a group.
To show part (b) first suppose that A*A = I. Then for all z,y € C" we have

(Az, Ay) = (z, A" Ay) = (z,y).
Conversely, suppose that (Az, Ay) = (x,y) for all z,y € C™. Setting y = e; gives
x¥e; = (x,¢;) = (Ax, Ae;) = (x, A" Ae;) = x* A* Ae;.



Since this holds for all z € C™ we conclude that e; is equal to A* Ae; (which is the i-th column
of A*A), hence A*A =1.

To show (c), let a; denote the i-th column of A, so that a} is the i-th row of A*. By
definition the i, j entry of A*A is (a;,a;) = afa; and since A*A = I we have

o 1 1=
(awaj)—{o Iy

In other words, the columns of A are orthonormal.

To show (d) consider A € U(n). We first show that A has an eigenvalue. Given any vector
x € C", the n + 1 vectors

z, Az, A%z, ... A"z
cannot be linearly independent because C" has dimension n. Thus there exist numbers
ap, ai, ..., a, € C not all zero such that

0=apx +a1dz+ -+ a, A x.

Since A commutes with its powers we can think of ag+a1A+- -+ a, A" as a polynomial with
complex coefficients. Then since C is algebraically closed, there exist ¢, A1,..., A, € C such
that

0=aqapz +a1Az + -+ a,A"x
=(ao+aA+---+a,A")x
=c(A=MI)--- (A= A1)z,
which means that A— ;I is not injective for at least one 7. In other words, A has an eigenvalue.
We assume that Avy = Avy for some 0 # vy € C™.

Now use the Gram-Schmidt process to extend vy to an orthonormal basis vi, vo, ..., v, for
C" and let P = (v1 Vo - vn). After changing basis we obtain

PlAP =

with A’ € U(n — 1). Since the columns of P are orthonormal we have P*P = [ and hence
P~1AP is unitary. Then since the columns of P~'AP are orthonormal we conclude that

P7lAP =

By induction, there exists Q' € U(n — 1) such that (Q") ' A’Q’ = D is diagonal. Finally, after
defining the unitary matrix




we see that PQ is unitary and

(PQ)'A(PQ)=Q ' (PT'AP)Q =

Problem 3. Prove that the center of GL(n, K) is the group of scalar matrices
Z(GL(n,K))={al:a e K*} ~ K*.

Prove that the center of SL(n, K) is the group of n-th roots of unity
Z(SL(n,K))={al: € K,a" =1}.

Assuming that F is a cyclic group (this is called the Primitive Root Theorem; please don’t
prove it), compute the order of PSL(n,q).

Proof. Let e;;(k) be the n x n matrix with &k € K in the 4, j position and zeroes elsewhere,
and let E;;(k) = I +¢;j(k). Note that for i # j we have E;;(k)~! = E;;(—k) and hence E;;(k)
is invertible. Now suppose that A = (a;;) is in the center of GL(n, K). Since A commutes
with E;;(k) it must also commute with e;;(k). But note that Ae;;(1) has j-th column equal
the i-th column of A and zeroes elsewhere, while e;;(1)A has i-th row equal to the j-th row
of A and zeroes elsewhere. Then the equation Ae;;(1) = e;;(1)A says

J J
ai; 0
7 0 Qi 0 = 9 a1 ajj Ajn
b
An; 0

which implies that a;; = 0 and a;; = aj; for all @ # j. In other words A is a scalar matrix.
The invertible scalar matrices are precisely ol for « € K*. [Note that the same proof works
more generally when K is a ring with 1.]

Now we wish to show that the center of SL(n, K) consists of scalar matrices. Indeed, note
that the matrix Ej;(k) with ¢ # j has determinant 1 and hence E;;(k) € SL(n, K). Then the
same argument shows that every A € Z(SL(n, K)) has the form ol for some o € K. Since
the determinant of af is o we must also have o™ = 1.

Finally, let K = F,. By the primitive root theorem we know that F is cyclic of order ¢ —1,
say 0 = (g). Then the center of SL(n,q) has the form

Z(SL(n,q)) ={g*1: (¢")" =1}.
But note that
(¢ )"'=1 <= ¢"=1 <= 2zn=1 (modg-—1).

Thus we want to solve the linear congruence zn = 1 (mod ¢—1). We will first solve the linear
diophantine equation
an+y(lg—1)=0



which translates to

_r_g=l
y on
If we let d = ged(n, g — 1) then the most general way to write this fraction is
x _ k(g—1)/d
——=————2" forallkeZ
” k:n/d or a S
and it follows that the general solution is
-1
(z,y) = (k QT, —k Z) for all k € Z.

After reducing everything mod ¢ — 1, we find that the general solution to xn =0 (mod g —1)
is given by
—1
xquT (modg—1) forallkeZ

and there are d distinct solutions: 0, q%‘ll, 2 %, oy (d=1) %. We conclude that
|Z(SL(n,q))| = d = ged(n, q — 1).
Finally, we have

~SLng)] (@ =)@ —1)--- ("= 1)
PS Lm0 = 1705 q)] ged(ng— 1) |

O

[Recall that PSL(n,q) are the finite simple groups of “type A,,_;". For comparison, there exists
a sequence of finite simple groups Fs(q) of “type Fg" with order

(> = 1)@ ~ D(¢® ~ (& ~ (e = (e ~ 1)

|E6(q)| = ged(2,q—1)

Wow, that looks similar.]

Problem 4. Let B < GL(n,K) be the Borel subgroup of upper triangular matrices, let
U < B be the subgroup of upper unitriangular matrices (i.e. with 1’s on the diagonal) and
let T'< B be the subgroup of diagonal matrices (called a maximal torus).

(a) Why is T called a torus?
(b) Prove that B=T x U.
(c) More generally, given J = (n1,...,n;) € N¥ where ny +ng + --- + np = n we define
the parabolic subgroup
[ ] *

PJ: SGL(?”L,K)

o =

where the diagonal blocks are square of sizes ny,no, ..., ng. We also define the unipotent
radical and the Levi complement:

’T * ’T 0

Uj= <Py and Ljy= < Pj.

0 7] 0 ]




Prove that Py = Ly x U;. [Hint: Consider the projection homomorphism ¢ : P; — L
Show that the kernel is U;. Now consider any g € P; and show that gp(g) ™! € Kerp =
Uy. It follows that g € Uy - ¢(g) C U Ly.]

Proof. For part (a) note that 7" is isomorphic to the direct product of multiplicative
groups K* x K* x --- x K*. In the case K = C note that C* is homotopy equivalent
to a circle. In this case T is homotopy equivalent to a product of n circles, i.e., a
torus. The intersection of T' < GL(n,C) with the subgroup of unitary matrices U(n)
is isomorphic to U(1) x U(1) x --- x U(1), and this really is a torus. The general use
of the word “torus” refers to this special case.

Now we will prove (c), of which (b) is a special case. To prove Py = L;xU; we must
show that (1) LyNU; =1, (2) Uy< Py, and (3) Py = Ly Uy. (1) is trivial. Now consider
the function ¢ : P; — L; that sends all elements outisde the diagonal blocks to zero.
Since matrix multiplication respects block partitions it is easy to see that this is a group
homomorphism. (Also note that L; is isomorphic to GL(n1, K) x --- x GL(ng, K).)
The kernel of ¢ is clearly Uy, which implies (2). Finally, consider any element

Ay *

Ao
0 Ay
Note that
AT 0
AT
p(A)~ =
0 At
and hence
Al_ Aq * ’T *
1 A2_1A2 I
(AT A= . = T e Uy
0 A T4, 0 7]
We conclude that A € p(A)U; C L;Uy, ie., (3). O

[There is a relationship between Problems 2 and 4. As mentioned, the diagonal matrices inside
U(n) form an actual torus '~ U(1) x --- x U(1). You proved in Problem 2 that the conjugates
of T' < U(n) cover the group. This is a general phenomenon that holds in all compact Lie groups
G. The major technique of Lie theory is to express everything about G in terms of an arbitrary
maximal torus 7' < G']



