
Math 661 Fall 2013
Homework 5 Drew Armstrong

Problem 0 (Abelianization). Let G be a group and for all g, h ∈ G define the commu-
tator [g, h] := ghg−1h−1 ∈ G. The subgroup of G generated by commutators is called the
commutator subgroup:

[G,G] := 〈[g, h] : g, h ∈ G〉.
(a) Prove that [G,G]CG.
(b) Prove that the quotient Gab := G/[G,G] (called the abelianization of G) is abelian.
(c) If N CG is any normal subgroup such that G/N is abelian, prove that [G,G] ≤ N .
(d) Put everything together to prove the universal property of abelianization: Given a

homomorphism ϕ : G→ A to an abelian group A, there exists a unique homomorphism
ϕ̄ := Gab → A such that ϕ = ϕ̄ ◦ π, where π : G→ Gab is the canonical surjection.

G
ϕ //

π !! !!

A

Gab
∃! ϕ̄

==

Proof. To show (a), first note that elements of [G,G] are products of commutators and inverses
of commutators. But the inverse of a commutator is also a commutator:

[g, h]−1 = (ghg−1h−1)−1 = hgh−1g−1 = [h, g].

Thus every element of [G,G] is a product of commutators. Next note that the conjugate of a
commutator is a commutator. Indeed, for all s, g, h ∈ G we have

s[g, h]s−1 = s(ghg−1h−1)s−1 = (sgs−1)(shs−1)(sg−1s−1)(shs−1) = [sgs−1, shs−1].

Finally, given any x = [g1, h1] · · · [gk, hk] ∈ [G,G] and s ∈ G we have

sxs−1 = s ([g1, h1] · · · [gk, hk]) s−1

= (s[g1, h1]s−1) · · · (s[gk, hk]s−1)

= [sg1s
−1, sh1s

−1] · · · [sgks−1, shks
−1] ∈ [G,G],

and we conclude that [G,G]CG.
For part (b) we will write G′ := [G,G] to save space. To show that G/G′ is abelian consider

any cosets gG′ and hG′ with g, h ∈ G. We will be done if we can show that [gG′, hG′] is the
identity coset G′. And this is true because

[gG′, hG′] = (gG′)(hG′)(gG′)−1(hG′)−1

= (gG′)(hG′)(g−1G′)(h−1G′)

= (ghg−1h−1)G′

= [g, h]G′

= G′.

For part (c), assume that N CG with G/N abelian and consider any g, h ∈ G. Then since
(gN)(hN) = (hN)(gN) we have

N = (gN)(hN)(gN)−1(hN)−1 = (ghg−1h−1)N = [g, h]N,



which implies that [g, h] ∈ N . Since N contains all commutators [g, n] for g, h ∈ G we conclude
that [G,G] ≤ N .

For part (d) assume we have ϕ : G→ A where A is abelian and let N = Kerϕ. By part (c)
we know that Kerπ = [G,G] ≤ N = Kerϕ. This allows us to define a map ϕ̄ : Gab → A by
setting ϕ̄(g[G,G]) := ϕ(g). To see that this is well-defined, suppose that g[G,G] = h[G,G],
so that gh−1 ∈ [G,G] ≤ N . Then we have ϕ(g)ϕ(h)−1 = ϕ(gh−1) = 1A, which implies that
ϕ(g) = ϕ(h). Also note that ϕ̄ : Gab → A is a homomorphism because

ϕ̄(gh[G,G]) = ϕ(gh) = ϕ(g)ϕ(h) = ϕ̄(g[G,G])ϕ̄(h[G,G]),

and note that ϕ = ϕ̄ ◦ π since for all g ∈ G we have

ϕ̄ ◦ π(g) = ϕ̄(g[G,G]) = ϕ(g).

Finally, suppose that F : Gab → A is another morphism satisfying ϕ = F ◦ π. Then for all
g ∈ G we have

ϕ̄(g[G,G]) = ϕ(g) = F (π(g)) = F (g[G,G])

so that F = ϕ̄ as desired. �

Problem 1 (Splitting Lemma). Let R be a commutative ring with 1 and consider a short
exact sequence of R-modules:

0 −→ A
q−→ B

r−→ C −→ 0.

Prove that if there exists t : B → A such that t◦q is the identity on A, then B ≈ A⊕C. [Hint:
Define a map ϕ : B → A⊕C by ϕ(b) := (t(b), r(b)). To show that ϕ is injective, assume that
ϕ(b) = ϕ(b′). Show that this implies b − b′ ∈ Ker r = Im q, and hence b − b′ = q ◦ t(b − b′) =
q(t(b)− t(b′)) = q(0) = 0. To show that ϕ is surjective consider (a, c) ∈ A⊕ C. Since r and t
are surjective there exist b, b′ ∈ B such that a = t(b) and c = r(b′). Now let x = b′+q◦ t(b−b′)
and show that ϕ(x) = (a, c).]

Proof. Note that the map ϕ(b) := (t(b), r(b)) is an R-homomorphism because t : B → A and
r : B → C are both R-homomorphisms. We must show that ϕ is bijective.

To show that ϕ is injective, consider any b, b′ ∈ B such that ϕ(b) = ϕ(b′). Equivalently, we
have t(b) = t(b′) and r(b) = r(b′). Since 0 = r(b)− r(b′) = r(b− b′) we see that b− b′ ∈ Ker r.
By exactness, this implies b− b′ ∈ Im q, hence there exists a ∈ A with b− b′ = q(a). Since t ◦ q
is the identity on A this implies

q ◦ t ◦ q(a) = q(t ◦ q(a)) = q(a).

In other words, we have

b− b′ = q ◦ t(b− b′) = q(t(b)− t(b′)) = q(0) = 0,

where we used the assumption that t(b) = t(b′). We conclude that b = b′ as desired.
To show that ϕ is surjective, first note that t is surjective because for all a ∈ A we have

t(q(a)) = a. Now fix an arbitrary element (a, c) ∈ A ⊕ C. Since t it surjective and r is
surjective (by exactness), there exist b, b′ ∈ B such that a = t(b) and c = q(b′). Now consider
the element x = b′ + q ◦ t(b− b′) ∈ B. Note that

t(x) = t(b′) + t ◦ q ◦ t(b− b′) = t(b′) + t(b− b′) = t(b′) + t(b)− t(b′) = t(b) = a

because t ◦ q is the identity. Since Im q = Ker r we also have

r(x) = r(b′) + r(q(t(b− b′))) = r(b′) + 0 = r(b′) = c,

and we conclude that ϕ(x) = (t(x), r(x)) = (a, c) as desired. �



Problem 2. We say that a matrix A ∈ GL(n,C) is unitary if A∗A = I, where A∗ is the
conjugate transpose. Let U(n) ≤ GL(n,C) denote the unitary group of unitary matrices.

(a) Prove that U(n) is actually a group.
(b) Let (x, y) = x∗y =

∑
i xiyi be the standard Hermitian form on Cn. Prove that A ∈

GL(n,C) is unitary if and only if (Ax,Ay) = (x, y) for all x, y ∈ Cn.
(c) Prove that A ∈ GL(n,K) is unitary if and only if its columns are orthonormal.
(d) Prove that every A ∈ U(n) is conjugate in U(n) to a diagonal matrix. [Hint: Let

A ∈ U(n). Since C is algebraically closed, A has an eigenvector, say Av1 = λv1.
Assume it is possible to extend this to an orthonormal basis v1,v2, . . . ,vn for Cn
(which it is, via the Gram-Schmidt algorithm). Letting P =

(
v1 · · · vn

)
gives us

P−1AP =


λ 0 · · · 0
0
... A′

0

 ,

with A′ ∈ U(n− 1). By induction, A′ is conjugate in U(n− 1) to a diagonal matrix.]

Proof. First we establish a few properties of conjugate transpose. For all column vectors
x ∈ Cn let x∗ denote the complex conjugate transpose row vector, and define the standard
Hermitian form by (x, y) := x∗y. Note that for all A ∈ GL(n,C) the conjugate transpose
matrix A∗ is characterized by

(Ax, y) = (x,A∗y) for all x, y ∈ Cn.

Indeed, if ei ∈ Cn is a standard basis vector then for all x ∈ Cn we have

e∗iA
∗x = (ei, A

∗x) = (Aei, x) = (Aei)
∗x,

and it follows that e∗iA
∗ = (Aei)

∗. But e∗iA
∗ is the i-th row of A∗ and (Aei)

∗ is the conjugate
transpose of the i-th column of A. Now for all A,B ∈ C∗ and x, y ∈ Cn we have

(ABx, y) = (Bx,A∗y) = (x,B∗A∗y),

which by the previous remarks implies that (AB)∗ = B∗A∗. Finally, note that for all A ∈
GL(n,C) we have (A∗)−1 = (A−1)∗ because (A−1)∗A∗ = (AA−1)∗ = I∗ = I.

To show part (a), consider A,B ∈ GL(n,C) such that A∗A = I and B∗B = I. By Rank-
Nullity we also have BB∗ = I and hence

(AB−1)∗(AB−1) = (B−1)∗A∗AB−1

= (B−1)∗B−1

= (B∗)−1B−1

= (BB∗)−1

= I.

We conclude that AB−1 is unitary, hence U(n) is a group.
To show part (b) first suppose that A∗A = I. Then for all x, y ∈ Cn we have

(Ax,Ay) = (x,A∗Ay) = (x, y).

Conversely, suppose that (Ax,Ay) = (x, y) for all x, y ∈ Cn. Setting y = ei gives

x∗ei = (x, ei) = (Ax,Aei) = (x,A∗Aei) = x∗A∗Aei.



Since this holds for all x ∈ Cn we conclude that ei is equal to A∗Aei (which is the i-th column
of A∗A), hence A∗A = I.

To show (c), let ai denote the i-th column of A, so that a∗i is the i-th row of A∗. By
definition the i, j entry of A∗A is (ai, aj) = a∗i aj and since A∗A = I we have

(ai, aj) =

{
1 i = j

0 i 6= j

In other words, the columns of A are orthonormal.
To show (d) consider A ∈ U(n). We first show that A has an eigenvalue. Given any vector

x ∈ Cn, the n+ 1 vectors

x,Ax,A2x, . . . , Anx

cannot be linearly independent because Cn has dimension n. Thus there exist numbers
a0, a1, . . . , an ∈ C not all zero such that

0 = a0x+ a1Ax+ · · ·+ anA
nx.

Since A commutes with its powers we can think of a0 +a1A+ · · ·+anA
n as a polynomial with

complex coefficients. Then since C is algebraically closed, there exist c, λ1, . . . , λn ∈ C such
that

0 = a0x+ a1Ax+ · · ·+ anA
nx

= (a0 + a1A+ · · ·+ anA
n)x

= c(A− λ1I) · · · (A− λnI)x,

which means that A−λiI is not injective for at least one i. In other words, A has an eigenvalue.
We assume that Av1 = λv1 for some 0 6= v1 ∈ Cn.

Now use the Gram-Schmidt process to extend v1 to an orthonormal basis v1,v2, . . . ,vn for
Cn and let P =

(
v1 v2 · · · vn

)
. After changing basis we obtain

P−1AP =


λ ∗ · · · ∗
0
... A′

0


with A′ ∈ U(n − 1). Since the columns of P are orthonormal we have P ∗P = I and hence
P−1AP is unitary. Then since the columns of P−1AP are orthonormal we conclude that

P−1AP =


λ 0 · · · 0
0
... A′

0

 .

By induction, there exists Q′ ∈ U(n− 1) such that (Q′)−1A′Q′ = D is diagonal. Finally, after
defining the unitary matrix

Q =


1 0 · · · 0
0
... Q′

0

 ,



we see that PQ is unitary and

(PQ)−1A(PQ) = Q−1(P−1AP )Q =


λ 0 · · · 0
0
... D
0

 .

�

Problem 3. Prove that the center of GL(n,K) is the group of scalar matrices

Z(GL(n,K)) =
{
αI : α ∈ K×

}
≈ K×.

Prove that the center of SL(n,K) is the group of n-th roots of unity

Z(SL(n,K)) = {αI : α ∈ K,αn = 1} .
Assuming that F×q is a cyclic group (this is called the Primitive Root Theorem; please don’t
prove it), compute the order of PSL(n, q).

Proof. Let eij(k) be the n × n matrix with k ∈ K in the i, j position and zeroes elsewhere,
and let Eij(k) = I + eij(k). Note that for i 6= j we have Eij(k)−1 = Eij(−k) and hence Eij(k)
is invertible. Now suppose that A = (aij) is in the center of GL(n,K). Since A commutes
with Eij(k) it must also commute with eij(k). But note that Aeij(1) has j-th column equal
the i-th column of A and zeroes elsewhere, while eij(1)A has i-th row equal to the j-th row
of A and zeroes elsewhere. Then the equation Aeij(1) = eij(1)A says

j

i



a1i
...

0 · · · · · · aii · · · 0
...
...
ani


=

j

i



0
...

aj1 · · · · · · ajj · · · ajn
...
...
0


,

which implies that aij = 0 and aii = ajj for all i 6= j. In other words A is a scalar matrix.
The invertible scalar matrices are precisely αI for α ∈ K×. [Note that the same proof works
more generally when K is a ring with 1.]

Now we wish to show that the center of SL(n,K) consists of scalar matrices. Indeed, note
that the matrix Eij(k) with i 6= j has determinant 1 and hence Eij(k) ∈ SL(n,K). Then the
same argument shows that every A ∈ Z(SL(n,K)) has the form αI for some α ∈ K. Since
the determinant of αI is αn we must also have αn = 1.

Finally, let K = Fq. By the primitive root theorem we know that F×q is cyclic of order q−1,

say F×q = 〈g〉. Then the center of SL(n, q) has the form

Z(SL(n, q)) = {gxI : (gx)n = 1} .
But note that

(gx)n = 1 ⇐⇒ gxn = 1 ⇐⇒ xn ≡ 1 (mod q − 1).

Thus we want to solve the linear congruence xn ≡ 1 (mod q−1). We will first solve the linear
diophantine equation

xn+ y(q − 1) = 0



which translates to

−x
y

=
q − 1

n
.

If we let d = gcd(n, q − 1) then the most general way to write this fraction is

−x
y

=
k(q − 1)/d

kn/d
for all k ∈ Z

and it follows that the general solution is

(x, y) =

(
k
q − 1

d
,−k n

d

)
for all k ∈ Z.

After reducing everything mod q− 1, we find that the general solution to xn ≡ 0 (mod q− 1)
is given by

x ≡ k q − 1

d
(mod q − 1) for all k ∈ Z

and there are d distinct solutions: 0, q−1
d , 2 q−1

d , . . . , (d− 1) q−1
d . We conclude that

|Z(SL(n, q))| = d = gcd(n, q − 1).

Finally, we have

|PSL(n, q)| = |SL(n, q)|
|Z(SL(n, q)|

=
q(

n
2)(q2 − 1)(q3 − 1) · · · (qn − 1)

gcd(n, q − 1)
.

�

[Recall that PSL(n, q) are the finite simple groups of “type An−1”. For comparison, there exists
a sequence of finite simple groups E6(q) of “type E6” with order

|E6(q)| = q36(q2 − 1)(q5 − 1)(q6 − 1)(q8 − 1)(q9 − 1)(q12 − 1)

gcd(2, q − 1)
.

Wow, that looks similar.]

Problem 4. Let B ≤ GL(n,K) be the Borel subgroup of upper triangular matrices, let
U ≤ B be the subgroup of upper unitriangular matrices (i.e. with 1’s on the diagonal) and
let T ≤ B be the subgroup of diagonal matrices (called a maximal torus).

(a) Why is T called a torus?
(b) Prove that B = T n U .
(c) More generally, given J = (n1, . . . , nk) ∈ Nk where n1 + n2 + · · · + nk = n we define

the parabolic subgroup

PJ =


∗ ∗
∗
∗

0 ∗

 ≤ GL(n,K)

where the diagonal blocks are square of sizes n1, n2, . . . , nk. We also define the unipotent
radical and the Levi complement:

UJ =


I ∗

I
I

0 I

 ≤ PJ and LJ =


∗ 0
∗
∗

0 ∗

 ≤ PJ .



Prove that PJ = LJ nUJ . [Hint: Consider the projection homomorphism ϕ : PJ → LJ
Show that the kernel is UJ . Now consider any g ∈ PJ and show that gϕ(g)−1 ∈ Kerϕ =
UJ . It follows that g ∈ UJ · ϕ(g) ⊆ UJLJ .]

Proof. For part (a) note that T is isomorphic to the direct product of multiplicative
groups K××K×× · · · ×K×. In the case K = C note that C× is homotopy equivalent
to a circle. In this case T is homotopy equivalent to a product of n circles, i.e., a
torus. The intersection of T ≤ GL(n,C) with the subgroup of unitary matrices U(n)
is isomorphic to U(1)×U(1)× · · · ×U(1), and this really is a torus. The general use
of the word “torus” refers to this special case.

Now we will prove (c), of which (b) is a special case. To prove PJ = LJnUJ we must
show that (1) LJ∩UJ = 1, (2) UJCPJ , and (3) PJ = LJ UJ . (1) is trivial. Now consider
the function ϕ : PJ → LJ that sends all elements outisde the diagonal blocks to zero.
Since matrix multiplication respects block partitions it is easy to see that this is a group
homomorphism. (Also note that LJ is isomorphic to GL(n1,K) × · · · × GL(nk,K).)
The kernel of ϕ is clearly UJ , which implies (2). Finally, consider any element

A =


A1 ∗

A2

. . .

0 Ak

 ∈ PJ .
Note that

ϕ(A)−1 =


A−1

1 0
A−1

2
. . .

0 A−1
k


and hence

ϕ(A)−1A =


A−1

1 A1 ∗
A−1

2 A2

. . .

0 A−1
k Ak

 =


I ∗

I
I

0 I

 ∈ UJ .
We conclude that A ∈ ϕ(A)UJ ⊆ LJ UJ , i.e., (3). �

[There is a relationship between Problems 2 and 4. As mentioned, the diagonal matrices inside
U(n) form an actual torus T ≈ U(1)× · · · × U(1). You proved in Problem 2 that the conjugates
of T ≤ U(n) cover the group. This is a general phenomenon that holds in all compact Lie groups
G. The major technique of Lie theory is to express everything about G in terms of an arbitrary
maximal torus T ≤ G.]


