Problem 1 (Splitting Lemma). Let R be a commutative ring with 1 and consider a short exact sequence of R-modules:

$$
0 \longrightarrow A \xrightarrow{q} B \xrightarrow{r} C \longrightarrow 0 .
$$

Prove that if there exists $t: B \rightarrow A$ such that $t \circ q$ is the identity on A, then $B \approx A \oplus C$. [Hint: Define a map $\varphi: B \rightarrow A \oplus C$ by $\varphi(b):=(t(b), r(b))$. To show that φ is injective, assume that $\varphi(b)=\varphi\left(b^{\prime}\right)$. Show that this implies $b-b^{\prime} \in \operatorname{ker} r=\operatorname{im} q$, and hence $b-b^{\prime}=q \circ t\left(b-b^{\prime}\right)=$ $t\left(q(b)-q\left(b^{\prime}\right)\right)=t(0)=0$. To show that φ is surjective consider $(a, c) \in A \oplus C$. Since r and t are surjective there exist $b, b^{\prime} \in B$ such that $a=t(b)$ and $c=r\left(b^{\prime}\right)$. Now let $x=b^{\prime}+q \circ t\left(b-b^{\prime}\right)$ and show that $\varphi(x)=(a, c)$.]

Problem 2. We say that a matrix $A \in G L(n, \mathbb{C})$ is unitary if $A^{*} A=I$, where A^{*} is the conjugate transpose. Let $U(n) \leq G L(n, \mathbb{C})$ denote the unitary group of unitary matrices.
(a) Prove that $U(n)$ is actually a group.
(b) Let $(x, y)=x^{*} y=\sum_{i} \overline{x_{i}} y_{i}$ be the standard Hermitian form on \mathbb{C}^{n}. Prove that $A \in$ $G L(n, \mathbb{C})$ is unitary if and only if $(A x, A y)=(x, y)$ for all $x, y \in \mathbb{C}^{n}$.
(c) Prove that $A \in G L(n, K)$ is unitary if and only if its columns are orthonormal.
(d) Prove that every $A \in U(n)$ is conjugate in $U(n)$ to a diagonal matrix. [Hint: Let $A \in U(n)$. Since \mathbb{C} is algebraically closed, A has an eigenvector, say $A \mathbf{v}_{1}=\lambda \mathbf{v}_{1}$. Assume it is possible to extend this to an orthonormal basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ for \mathbb{C}^{n} (which it is, via the Gram-Schmidt algorithm). Letting $P=\left(\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right)$ gives us

$$
P^{-1} A P=\left(\begin{array}{c|ccc}
\lambda & 0 & \cdots & 0 \\
\hline 0 & & & \\
\vdots & & A^{\prime} & \\
0 & & &
\end{array}\right)
$$

with $A^{\prime} \in U(n-1)$. By induction, A^{\prime} is conjugate in $U(n-1)$ to a diagonal matrix.]

Problem 3. Prove that the center of $G L(n, K)$ is the group of scalar matrices

$$
Z(G L(n, K))=\left\{\alpha I: \alpha \in K^{\times}\right\} \approx K^{\times} .
$$

Prove that the center of $S L(n, K)$ is the group of n-th roots of unity

$$
Z(S L(n, K))=\left\{\alpha I: \alpha \in K, \alpha^{n}=1\right\} .
$$

Assuming that \mathbb{F}_{q}^{\times}is a cyclic group (this is called the Primitive Root Theorem; please don't prove it), compute the order of $\operatorname{PSL}(n, q)$.

Problem 4. Let $B \leq G L(n, K)$ be the Borel subgroup of upper triangular matrices, let $U \leq B$ be the subgroup of upper unitriangular matrices (i.e. with 1's on the diagonal) and let $T \leq B$ be the subgroup of diagonal matrices (called a maximal torus).
(a) Why is T called a torus?
(b) Prove that $B=T \ltimes U$.
(c) More generally, given $J=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$ where $n_{1}+n_{2}+\cdots+n_{k}=n$ we define the parabolic subgroup

$$
P_{J}=\left(\begin{array}{cccc}
\boxed{*} & & & * \\
& * & & \\
& & * & \\
0 & & & *
\end{array}\right) \leq G L(n, K)
$$

where the diagonal blocks are square of sizes $n_{1}, n_{2}, \ldots, n_{k}$. We also define the unipotent radical and the Levi complement:

Prove that $P_{J}=L_{J} \ltimes U_{J}$. [Hint: Consider the projection homomorphism $\varphi: P_{J} \rightarrow L_{J}$ Show that the kernel is U_{J}. Now consider any $g \in P_{J}$ and show that $g \varphi(g)^{-1} \in \operatorname{ker} \varphi=$ U_{J}. It follows that $g \in U_{J} \cdot \varphi(g) \subseteq U_{J} L_{J}$.]

