1. Given a group, define its center (Zentrum):

$$
Z(G):=\{g \in G: g h=h g \text { for all } h \in G\}
$$

Note that $Z(G)$ is abelian and $Z(G) \unlhd G$. If $G / Z(G)$ is cyclic, show that G is abelian.
Proof. Assume that $G / Z(G)$ is cyclic. Then we have $G / Z(G)=\langle g Z(G)\rangle$ for some coset $g Z(G)$, which means that every coset has the form $g^{i} Z(g)$ for some $i \in \mathbb{Z}$. Since the cosets partition G, every element of G has the form $g^{i} z$ for some $i \in \mathbb{Z}$ and $z \in Z(G)$. Finally, consider any two elements $g^{i} z_{1}$ and $g^{j} z_{2}$ of G, with $i, j \in \mathbb{Z}$ and $z_{1}, z_{2} \in Z(G)$. Then we have

$$
g^{i} z_{1} g^{j} z_{2}=g^{i} g^{j} z_{1} z_{2}=g^{i+j} z_{1} z_{2}=g^{j+i} z_{1} z_{2}=g^{j} g^{i} z_{1} z_{2}=g^{j} g^{i} z_{2} z_{1}=g^{j} z_{2} g^{i} z_{1} .
$$

Hence G is abelian.
2. Let p be prime and consider a group G of order p^{2}.
(a) Use the class equation to show that p divides $|Z(G)|$.
(b) Use Problem 1 to show that G must be abelian.
(c) Show that G must be isomorphic to \mathbb{Z} / p^{2} or $\mathbb{Z} / p \times \mathbb{Z} / p$.

Proof. Suppose that $|G|=p^{2}$, where p is prime, and let G act on itself by conjugation. That is, consider the homomorphism $\alpha: G \rightarrow \operatorname{Aut}(G)$ defined by $\alpha_{g}(h):=g h g^{-1}$ for all $g, h \in G$. Given $x \in G$, the orbit $\operatorname{Orb}(x)$ is called a conjugacy class and the stabilizer $C(x):=\operatorname{Stab}(x)$ is called the centralizer. By the Orbit-Stabilizer theorem we have $|\operatorname{Orb}(x)|=|G| /|C(x)|$. Note also that $|\operatorname{Orb}(x)|=1$ if and only if $x \in Z(G)$. Then since G is a disjoint union of conjugacy classes $G=\cup_{i} \operatorname{Orb}\left(x_{i}\right)$, we can write

$$
|G|=\sum_{i}\left|\operatorname{Orb}\left(x_{i}\right)\right|=\sum_{i}|G| /\left|C\left(x_{i}\right)\right|=|Z(G)|+\sum_{C\left(x_{i}\right) \neq G}|G| /\left|C\left(x_{i}\right)\right| .
$$

This is called the class equation. If $C\left(x_{i}\right) \neq G$ then we have $\left|C\left(x_{i}\right)\right|=1$ or $\left|C\left(x_{i}\right)\right|=p$ by Lagrange. In either case we see that p divides $|G| /\left|C\left(x_{i}\right)\right|$. Since p also divides $|G|$, we conclude from the class equation that p divides $|Z(G)|$. This implies that $|G| /|Z(G)|=1$ or $|G| /|Z(G)|=p$. In either case, we see that $G / Z(G)$ is cyclic, so Problem 1 implies that G is abelian.

For all $1 \neq x \in G$, the order $|\langle x\rangle|$ divides p^{2}. If G has an element of order p^{2}, then G is isomorphic to the cyclic group \mathbb{Z} / p^{2}. So suppose that every nonidentity element of G has order p. Choose $1 \neq x \in G$ and define $H:=\langle x\rangle \leq G$. Then choose $y \in G-H$ and define $K:=\langle y\rangle \leq G$. We claim that $G \approx H \times K$. Indeed, since G is abelian we only need to check that $H \cap K=1$ and $H K=G$. Suppose $H \cap K \neq 1$. Then since $|H \cap K|$ divides p we conclude that $|H \cap K|=p$ and hence $H=H \cap K=K$. This contradicts the fact that $y \in G-H$. Thus $H \cap K=1$. Applying the counting formula gives

$$
|H K|=\frac{|H||K|}{|H \cap K|}=\frac{p \cdot p}{1}=p^{2},
$$

and it follows that $H K=G$. We conclude that

$$
G \approx H \times K=\langle x\rangle \times\langle y\rangle \approx \mathbb{Z} / p \times \mathbb{Z} / p .
$$

3. Let $p>2$ be prime. Prove that every group of order $2 p$ is either cyclic or dihedral.

Proof. Suppose that $|G|=2 p$, where $p>2$ is prime. By Cauchy's Theorem G has an element of order 2, say $x \in G$, and an element of order p, say $y \in G$. Note that $|\langle x\rangle \cap\langle y\rangle|$ divides $|\langle x\rangle|=2$ and $|\langle y\rangle|=p$, hence $\langle x\rangle \cap\langle y\rangle=1$. Then we have

$$
|\langle x\rangle\langle y\rangle|=\frac{|\langle x\rangle||\langle y\rangle|}{|\langle x\rangle\langle y\rangle|}=\frac{2 \cdot p}{1}=2 p,
$$

hence $\langle x\rangle\langle y\rangle=G$. Since $\langle y\rangle$ has index 2, it is normal (we could also use Sylow's theorem to show this) and we conclude that $G=\langle x\rangle \ltimes\langle y\rangle$. It remains to see how $\langle x\rangle$ acts on $\langle y\rangle$ by conjgation.

Since $\langle y\rangle$ is normal, note that $x y x^{-1}=x y x=y^{i}$ for some $i \in \mathbb{Z}$. Then we have

$$
y=x^{2} y x^{2}=x(x y x) x=x y^{i} x=(x y x)(x y x) \cdots(x y x)=y^{i} y^{i} \cdots y^{i}=y^{i^{2}},
$$

hence $y^{i^{2}-1}=1$. This means that p divides $i^{2}-1=(i+1)(i-1)$ and since p is prime this implies p divides $i-1$ or p divides $i+1$. If p divides $i-1$, then $x y x=y^{i}=y^{i-1} y=1 y=y$, hence G is abelian. We conclude that G is cyclic:

$$
G=\langle x\rangle \times\langle y\rangle \approx \mathbb{Z} / 2 \times \mathbb{Z} / p \approx \mathbb{Z} /(2 p) .
$$

If p divides $i+1$, then $x y x=y^{i}=y^{i+1} y^{-1}=1 y^{-1}=y^{-1}$, and we conclude that G is dihedral:

$$
G=\langle x\rangle \ltimes\langle y\rangle \approx D_{2 p} .
$$

4. Prove that the alternating group A_{4} is not simple.

Proof. Let $V \subseteq A_{4}$ be the subset containing the identity and all elements of the form $(i j)(k \ell)$:

$$
V:=\{1,(12)(34),(13)(24),(14)(23)\} .
$$

Recall that any permutation has order equal to the least common multiple of the lengths of its cycles. Thus the non-identity elements of V all have order 2 . Note that V is a subgroup of A_{4} because

$$
\begin{aligned}
{[(12)(34)][(13)(24)] } & =(14)(23), \\
{[(12)(34)][(14)(23)] } & =(13)(24), \\
{[(13)(24)][(14)(23)] } & =(12)(34) .
\end{aligned}
$$

Finally, recall that conjugation of permutations preserves the cycle structure. This implies that V is a union of conjugacy classes, and hence is normal.
[I mentioned in class that the special orthogonal groups are almost simple. In particular, for odd n the group $S O(n)$ is simple and for even n (except 4) the group $S O(n) /\{ \pm I\}$ is simple. The anomalous fact that $S O(4)$ is not simple should be related to the anomalous fact that A_{4} is not simple. However, I do not know a direct link between them.]
5. If $|G|=30$, prove that G is not simple.
[I will give two proofs. The first answers this specific question and the second proves the more general fact that if $|G|=p q r$ with $p<q<r$ prime, then G is not simple.]

Proof 1. Suppose that $|G|=30=2 \cdot 3 \cdot 5$. Let P be a Sylow 5 -subgroup and let Q be a Sylow 3 -subgroup. Note that $P \cap Q=1$ since every element of the intersection has order dividing 3 and dividing 5. Note also that $|P Q|=|P||Q| /|P \cap Q|=3 \cdot 5 / 1=15$. If we knew that one of P or Q is normal, this would imply that G is not simple.

So suppose that P and Q are both non-normal and let n_{5} and n_{3} be the numbers of Sylow 5 -subgroups and Sylow 3 -subgroups, respectively. Since P and Q are non-normal we have $n_{5}>1$ and $n_{3}>1$. By Sylow's theorem we know that $n_{5} \mid 6$ and $n_{5}=1(\bmod 5)$, which implies $n_{5}=6$. We also know $n_{3} \mid 10$ and $n_{3}=1(\bmod 3)$, which implies $n_{3}=10$. How could there be so many Sylow subgroups? There can't, and here's why. Note that any element of order 5 in G generates a Sylow 5 -subgroup. Furthermore, every Sylow 5 -subgroup is cyclic and so it is generated by any non-identity element. Thus any two Sylow 5 -subgroups must intersect trivially. It follows that G contains exactly $6 \cdot 4=24$ elements of order 5 . By similar reasoning, G contains $10 \cdot 2=20$ elements of order 3. But $24+20=44>30=|G|$. This contradiction proves that one of P or Q must be normal.

Proof 2. Suppose that $|G|=p q r$ with $p<q<r$ prime. Let n_{r}, n_{q}, n_{p} be the numbers of Sylow r-subgroups, q-subgroups and p-subgroups, respectively. If any of n_{r}, n_{q} or n_{p} equals 1 then we obtain a normal Sylow subgroup, so assume that $n_{r}, n_{q}, n_{p}>1$. Then by Sylow's theorem we have $n_{r}=p q, n_{q} \in\{r, p r\}$ and $n_{p} \in\{q, r, q r\}$. Note that the Sylow subgroups are all cyclic and intersect trivially. By counting the group elements of order r, q, p, and 1 , we find that

$$
p q r=|G| \geq p q(r-1)+r(q-1)+q(p-1)+1=p q r+(r-1)(q-1) .
$$

This implies $0 \geq(r-1)(q-1)$, which contradicts the fact that $(r-1)>0$ and $(q-1)>0$.
[Yes, that proof was a bit too slick.]

