Math 661 Fall 2013
Homework 3 Drew Armstrong

1. Given a group, define its center (Zentrum):
Z(G) :={g € G:gh=hg for all h € G}.
Note that Z(G) is abelian and Z(G) < G. If G/Z(G) is cyclic, show that G is abelian.

Proof. Assume that G/Z(G) is cyclic. Then we have G/Z(G) = (¢9Z(G)) for some coset
9Z(G), which means that every coset has the form ¢°Z(g) for some i € Z. Since the cosets
partition G, every element of G has the form g’z for some i € Z and z € Z(G). Finally,
consider any two elements ¢’z1 and ¢’z of G, with i,j € Z and 21,22 € Z(G). Then we have

g ng’ 2 =g gz = gz = ¢ 2120 = g g 120 = ¢ g 021 = P 2ag'2.
Hence G is abelian. O

2. Let p be prime and consider a group G of order p?.

(a) Use the class equation to show that p divides |Z(G)|.
(b) Use Problem 1 to show that G must be abelian.
(c) Show that G must be isomorphic to Z/p? or Z/p x Z/p.

Proof. Suppose that |G| = p?, where p is prime, and let G act on itself by conjugation. That
is, consider the homomorphism « : G — Aut(G) defined by a,4(h) := ghg™! for all g,h € G.
Given z € G, the orbit Orb(z) is called a conjugacy class and the stabilizer C'(z) := Stab(x) is
called the centralizer. By the Orbit-Stabilizer theorem we have |Orb(x)| = |G|/|C(z)|. Note
also that |Orb(x)| = 1 if and only if € Z(G). Then since G is a disjoint union of conjugacy
classes G = U;Orb(z;), we can write

Gl = S [0rb(z)| = S IGIC@) = 2@+ 3 1G)/IC()].
i i C(ai)#£G
This is called the class equation. If C(z;) # G then we have |C(z;)| = 1 or |C(z;)| = p
by Lagrange. In either case we see that p divides |G|/|C(z;)|. Since p also divides |G|, we
conclude from the class equation that p divides |Z(G)|. This implies that |G|/|Z(G)| =1 or
|G|/|Z(G)| = p. In either case, we see that G/Z(G) is cyclic, so Problem 1 implies that G is
abelian.

For all 1 # z € G, the order |(z)| divides p?>. If G has an element of order p?, then G
is isomorphic to the cyclic group Z/p?. So suppose that every nonidentity element of G has
order p. Choose 1 # x € G and define H := (z) < G. Then choose y € G — H and define
K = (y) < G. We claim that G ~ H x K. Indeed, since G is abelian we only need to check
that HNK =1 and HK = G. Suppose HNK # 1. Then since |H N K| divides p we conclude
that |H N K| = p and hence H = H N K = K. This contradicts the fact that y € G — H.
Thus H N K = 1. Applying the counting formula gives

HIK| _pp_

|HNK| 1 ’

and it follows that HK = . We conclude that
GrHXxK=(x)x(y)~7Z/px7Z]p.

|HEK| =




3. Let p > 2 be prime. Prove that every group of order 2p is either cyclic or dihedral.

Proof. Suppose that |G| = 2p, where p > 2 is prime. By Cauchy’s Theorem G has an element
of order 2, say x € GG, and an element of order p, say y € G. Note that |(z) N (y)| divides
|{(z)| = 2 and |(y)| = p, hence (x) N (y) = 1. Then we have

_ @)l _2-p _

hence (x)(y) = G. Since (y) has index 2, it is normal (we could also use Sylow’s theorem to
show this) and we conclude that G = (z) x (y). It remains to see how (z) acts on (y) by
conjgation.

Since (y) is normal, note that xyx™

2p,

I = gyx = 4 for some i € Z. Then we have

Yy = 3323/552 = z(zyz)r = l‘y% = (zyz)(zyx) - - - (TYT) = yiyi T ?/i = yi27
hence " ~! = 1. This means that p divides i2 — 1 = (i + 1)(i — 1) and since p is prime this
implies p divides i — 1 or p divides i + 1. If p divides i — 1, then ayz = ' =y ly = ly = y,
hence G is abelian. We conclude that G is cyclic:
G =(z) x(y) = Z/2 x L|p = L] (2p).

—1 = y~1, and we conclude that G is dihedral:

If p divides i+ 1, then zyz = y* = y*Hly~! =1y
G = (x) x (y) = Dap.

O

4. Prove that the alternating group A4 is not simple.

Proof. Let V' C Ay be the subset containing the identity and all elements of the form (ij)(kf):
V= {1,(12)(34), (13)(24), (14)(23)}-

Recall that any permutation has order equal to the least common multiple of the lengths of
its cycles. Thus the non-identity elements of V' all have order 2. Note that V' is a subgroup
of A4 because

[(12)(34)][(13)(24)] = (14)(23),
[(12)(34)][(14)(23)] = (13)(24),
[(13)(24)][(14)(23)] = (12)(34).

Finally, recall that conjugation of permutations preserves the cycle structure. This implies
that V' is a union of conjugacy classes, and hence is normal. O

[I mentioned in class that the special orthogonal groups are almost simple. In particular, for odd
n the group SO(n) is simple and for even n (except 4) the group SO(n)/{£I} is simple. The
anomalous fact that SO(4) is not simple should be related to the anomalous fact that A4 is not
simple. However, | do not know a direct link between them]

5. If |G| = 30, prove that G is not simple.

[I will give two proofs. The first answers this specific question and the second proves the more
general fact that if |G| = pgr with p < g < r prime, then G is not simple.]



Proof 1. Suppose that |G| =30 =2-3-5. Let P be a Sylow 5-subgroup and let @ be a Sylow
3-subgroup. Note that P N @ = 1 since every element of the intersection has order dividing 3
and dividing 5. Note also that |PQ| = |P||Q|/|P N Q| =3-5/1 = 15. If we knew that one of
P or @ is normal, this would imply that G is not simple.

So suppose that P and @) are both non-normal and let n5 and ns be the numbers of Sylow
5-subgroups and Sylow 3-subgroups, respectively. Since P and ) are non-normal we have
ns > 1 and n3 > 1. By Sylow’s theorem we know that ns|6 and ns = 1 (mod 5), which
implies ns = 6. We also know n3|10 and n3 = 1 (mod 3), which implies n3 = 10. How could
there be so many Sylow subgroups? There can’t, and here’s why. Note that any element of
order 5 in G generates a Sylow 5-subgroup. Furthermore, every Sylow 5-subgroup is cyclic
and so it is generated by any non-identity element. Thus any two Sylow 5-subgroups must
intersect trivially. It follows that G contains exactly 6 -4 = 24 elements of order 5. By similar
reasoning, G contains 10 - 2 = 20 elements of order 3. But 24 + 20 = 44 > 30 = |G|. This
contradiction proves that one of P or () must be normal. O

Proof 2. Suppose that |G| = pgr with p < ¢ < r prime. Let n,,ng, n, be the numbers of Sylow
r-subgroups, g-subgroups and p-subgroups, respectively. If any of n,, ny or n, equals 1 then
we obtain a normal Sylow subgroup, so assume that n,,ng4,n, > 1. Then by Sylow’s theorem
we have n, = pq, ny € {r,pr} and n, € {¢,r,qr}. Note that the Sylow subgroups are all cyclic
and intersect trivially. By counting the group elements of order r, ¢, p, and 1, we find that

pgr = |G| Zpg(r = 1) +r(g—=1) +qlp—1) +1 =pgr + (r—1)(¢ - 1).
This implies 0 > (r —1)(q — 1), which contradicts the fact that (r—1) > 0 and (¢—1) > 0. O

[Yes, that proof was a bit too slick.]



