1. Given a group, define its center (Zentrum):

 $Z(G) := \{ g \in G : gh = hg \text{ for all } h \in G \}.$

Note that Z(G) is abelian and $Z(G) \leq G$. If G/Z(G) is cyclic, show that G is abelian.

Proof. Assume that G/Z(G) is cyclic. Then we have $G/Z(G) = \langle gZ(G) \rangle$ for some coset gZ(G), which means that every coset has the form $g^iZ(g)$ for some $i \in \mathbb{Z}$. Since the cosets partition G, every element of G has the form g^iz for some $i \in \mathbb{Z}$ and $z \in Z(G)$. Finally, consider any two elements g^iz_1 and g^jz_2 of G, with $i, j \in \mathbb{Z}$ and $z_1, z_2 \in Z(G)$. Then we have

$$g^{i}z_{1}g^{j}z_{2} = g^{i}g^{j}z_{1}z_{2} = g^{i+j}z_{1}z_{2} = g^{j+i}z_{1}z_{2} = g^{j}g^{i}z_{1}z_{2} = g^{j}g^{i}z_{2}z_{1} = g^{j}z_{2}g^{i}z_{1}z_{2}$$

Hence G is abelian.

2. Let p be prime and consider a group G of order p^2 .

- (a) Use the class equation to show that p divides |Z(G)|.
- (b) Use Problem 1 to show that G must be abelian.
- (c) Show that G must be isomorphic to \mathbb{Z}/p^2 or $\mathbb{Z}/p \times \mathbb{Z}/p$.

Proof. Suppose that $|G| = p^2$, where p is prime, and let G act on itself by conjugation. That is, consider the homomorphism $\alpha : G \to \operatorname{Aut}(G)$ defined by $\alpha_g(h) := ghg^{-1}$ for all $g, h \in G$. Given $x \in G$, the orbit $\operatorname{Orb}(x)$ is called a conjugacy class and the stabilizer $C(x) := \operatorname{Stab}(x)$ is called the centralizer. By the Orbit-Stabilizer theorem we have $|\operatorname{Orb}(x)| = |G|/|C(x)|$. Note also that $|\operatorname{Orb}(x)| = 1$ if and only if $x \in Z(G)$. Then since G is a disjoint union of conjugacy classes $G = \bigcup_i \operatorname{Orb}(x_i)$, we can write

$$|G| = \sum_{i} |\operatorname{Orb}(x_{i})| = \sum_{i} |G|/|C(x_{i})| = |Z(G)| + \sum_{C(x_{i})\neq G} |G|/|C(x_{i})|$$

This is called the class equation. If $C(x_i) \neq G$ then we have $|C(x_i)| = 1$ or $|C(x_i)| = p$ by Lagrange. In either case we see that p divides $|G|/|C(x_i)|$. Since p also divides |G|, we conclude from the class equation that p divides |Z(G)|. This implies that |G|/|Z(G)| = 1 or |G|/|Z(G)| = p. In either case, we see that G/Z(G) is cyclic, so Problem 1 implies that G is abelian.

For all $1 \neq x \in G$, the order $|\langle x \rangle|$ divides p^2 . If G has an element of order p^2 , then G is isomorphic to the cyclic group \mathbb{Z}/p^2 . So suppose that every nonidentity element of G has order p. Choose $1 \neq x \in G$ and define $H := \langle x \rangle \leq G$. Then choose $y \in G - H$ and define $K := \langle y \rangle \leq G$. We claim that $G \approx H \times K$. Indeed, since G is abelian we only need to check that $H \cap K = 1$ and HK = G. Suppose $H \cap K \neq 1$. Then since $|H \cap K|$ divides p we conclude that $|H \cap K| = p$ and hence $H = H \cap K = K$. This contradicts the fact that $y \in G - H$. Thus $H \cap K = 1$. Applying the counting formula gives

$$|HK| = \frac{|H||K|}{|H \cap K|} = \frac{p \cdot p}{1} = p^2,$$

and it follows that HK = G. We conclude that

$$G \approx H \times K = \langle x \rangle \times \langle y \rangle \approx \mathbb{Z}/p \times \mathbb{Z}/p$$

3. Let p > 2 be prime. Prove that every group of order 2p is either cyclic or dihedral.

Proof. Suppose that |G| = 2p, where p > 2 is prime. By Cauchy's Theorem G has an element of order 2, say $x \in G$, and an element of order p, say $y \in G$. Note that $|\langle x \rangle \cap \langle y \rangle|$ divides $|\langle x \rangle| = 2$ and $|\langle y \rangle| = p$, hence $\langle x \rangle \cap \langle y \rangle = 1$. Then we have

$$|\langle x \rangle \langle y \rangle| = \frac{|\langle x \rangle ||\langle y \rangle|}{|\langle x \rangle \langle y \rangle|} = \frac{2 \cdot p}{1} = 2p,$$

hence $\langle x \rangle \langle y \rangle = G$. Since $\langle y \rangle$ has index 2, it is normal (we could also use Sylow's theorem to show this) and we conclude that $G = \langle x \rangle \ltimes \langle y \rangle$. It remains to see how $\langle x \rangle$ acts on $\langle y \rangle$ by conjgation.

Since $\langle y \rangle$ is normal, note that $xyx^{-1} = xyx = y^i$ for some $i \in \mathbb{Z}$. Then we have

$$y = x^2yx^2 = x(xyx)x = xy^ix = (xyx)(xyx)\cdots(xyx) = y^iy^i\cdots y^i = y^{i^2},$$

hence $y^{i^2-1} = 1$. This means that p divides $i^2 - 1 = (i+1)(i-1)$ and since p is prime this implies p divides i-1 or p divides i+1. If p divides i-1, then $xyx = y^i = y^{i-1}y = 1y = y$, hence G is abelian. We conclude that G is cyclic:

$$G = \langle x \rangle \times \langle y \rangle \approx \mathbb{Z}/2 \times \mathbb{Z}/p \approx \mathbb{Z}/(2p).$$

If p divides i+1, then $xyx = y^i = y^{i+1}y^{-1} = 1y^{-1} = y^{-1}$, and we conclude that G is dihedral:

$$G = \langle x \rangle \ltimes \langle y \rangle \approx D_{2p}$$

4. Prove that the alternating group A_4 is not simple.

Proof. Let $V \subseteq A_4$ be the subset containing the identity and all elements of the form $(ij)(k\ell)$:

 $V := \{1, (12)(34), (13)(24), (14)(23)\}.$

Recall that any permutation has order equal to the least common multiple of the lengths of its cycles. Thus the non-identity elements of V all have order 2. Note that V is a **subgroup** of A_4 because

$$\begin{split} & [(12)(34)][(13)(24)] = (14)(23), \\ & [(12)(34)][(14)(23)] = (13)(24), \\ & [(13)(24)][(14)(23)] = (12)(34). \end{split}$$

Finally, recall that conjugation of permutations preserves the cycle structure. This implies that V is a union of conjugacy classes, and hence is **normal**.

[I mentioned in class that the special orthogonal groups are almost simple. In particular, for odd n the group SO(n) is simple and for even n (except 4) the group $SO(n)/\{\pm I\}$ is simple. The anomalous fact that SO(4) is not simple should be related to the anomalous fact that A_4 is not simple. However, I do not know a direct link between them.]

5. If |G| = 30, prove that G is not simple.

[I will give two proofs. The first answers this specific question and the second proves the more general fact that if |G| = pqr with p < q < r prime, then G is not simple.]

Proof 1. Suppose that $|G| = 30 = 2 \cdot 3 \cdot 5$. Let P be a Sylow 5-subgroup and let Q be a Sylow 3-subgroup. Note that $P \cap Q = 1$ since every element of the intersection has order dividing 3 and dividing 5. Note also that $|PQ| = |P||Q|/|P \cap Q| = 3 \cdot 5/1 = 15$. If we knew that one of P or Q is normal, this would imply that G is not simple.

So suppose that P and Q are both non-normal and let n_5 and n_3 be the numbers of Sylow 5-subgroups and Sylow 3-subgroups, respectively. Since P and Q are non-normal we have $n_5 > 1$ and $n_3 > 1$. By Sylow's theorem we know that $n_5|6$ and $n_5 = 1 \pmod{5}$, which implies $n_5 = 6$. We also know $n_3|10$ and $n_3 = 1 \pmod{3}$, which implies $n_3 = 10$. How could there be so many Sylow subgroups? There can't, and here's why. Note that any element of order 5 in G generates a Sylow 5-subgroup. Furthermore, every Sylow 5-subgroup is cyclic and so it is generated by any non-identity element. Thus any two Sylow 5-subgroups must intersect trivially. It follows that G contains exactly $6 \cdot 4 = 24$ elements of order 5. By similar reasoning, G contains $10 \cdot 2 = 20$ elements of order 3. But 24 + 20 = 44 > 30 = |G|. This contradiction proves that one of P or Q must be normal.

Proof 2. Suppose that |G| = pqr with p < q < r prime. Let n_r, n_q, n_p be the numbers of Sylow r-subgroups, q-subgroups and p-subgroups, respectively. If any of n_r, n_q or n_p equals 1 then we obtain a normal Sylow subgroup, so assume that $n_r, n_q, n_p > 1$. Then by Sylow's theorem we have $n_r = pq, n_q \in \{r, pr\}$ and $n_p \in \{q, r, qr\}$. Note that the Sylow subgroups are all cyclic and intersect trivially. By counting the group elements of order r, q, p, and 1, we find that

 $pqr = |G| \ge pq(r-1) + r(q-1) + q(p-1) + 1 = pqr + (r-1)(q-1).$

This implies $0 \ge (r-1)(q-1)$, which contradicts the fact that (r-1) > 0 and (q-1) > 0. \Box

[Yes, that proof was a bit too slick.]