
Math 661 Fall 2013
Homework 3 Drew Armstrong

1. Given a group, define its center (Zentrum):

Z(G) := {g ∈ G : gh = hg for all h ∈ G}.
Note that Z(G) is abelian and Z(G)EG. If G/Z(G) is cyclic, show that G is abelian.

Proof. Assume that G/Z(G) is cyclic. Then we have G/Z(G) = 〈gZ(G)〉 for some coset
gZ(G), which means that every coset has the form giZ(g) for some i ∈ Z. Since the cosets
partition G, every element of G has the form giz for some i ∈ Z and z ∈ Z(G). Finally,
consider any two elements giz1 and gjz2 of G, with i, j ∈ Z and z1, z2 ∈ Z(G). Then we have

giz1g
jz2 = gigjz1z2 = gi+jz1z2 = gj+iz1z2 = gjgiz1z2 = gjgiz2z1 = gjz2g

iz1.

Hence G is abelian. �

2. Let p be prime and consider a group G of order p2.

(a) Use the class equation to show that p divides |Z(G)|.
(b) Use Problem 1 to show that G must be abelian.
(c) Show that G must be isomorphic to Z/p2 or Z/p× Z/p.

Proof. Suppose that |G| = p2, where p is prime, and let G act on itself by conjugation. That
is, consider the homomorphism α : G → Aut(G) defined by αg(h) := ghg−1 for all g, h ∈ G.
Given x ∈ G, the orbit Orb(x) is called a conjugacy class and the stabilizer C(x) := Stab(x) is
called the centralizer. By the Orbit-Stabilizer theorem we have |Orb(x)| = |G|/|C(x)|. Note
also that |Orb(x)| = 1 if and only if x ∈ Z(G). Then since G is a disjoint union of conjugacy
classes G = ∪iOrb(xi), we can write

|G| =
∑
i

|Orb(xi)| =
∑
i

|G|/|C(xi)| = |Z(G)|+
∑

C(xi)6=G

|G|/|C(xi)|.

This is called the class equation. If C(xi) 6= G then we have |C(xi)| = 1 or |C(xi)| = p
by Lagrange. In either case we see that p divides |G|/|C(xi)|. Since p also divides |G|, we
conclude from the class equation that p divides |Z(G)|. This implies that |G|/|Z(G)| = 1 or
|G|/|Z(G)| = p. In either case, we see that G/Z(G) is cyclic, so Problem 1 implies that G is
abelian.

For all 1 6= x ∈ G, the order |〈x〉| divides p2. If G has an element of order p2, then G
is isomorphic to the cyclic group Z/p2. So suppose that every nonidentity element of G has
order p. Choose 1 6= x ∈ G and define H := 〈x〉 ≤ G. Then choose y ∈ G − H and define
K := 〈y〉 ≤ G. We claim that G ≈ H ×K. Indeed, since G is abelian we only need to check
that H ∩K = 1 and HK = G. Suppose H ∩K 6= 1. Then since |H ∩K| divides p we conclude
that |H ∩ K| = p and hence H = H ∩ K = K. This contradicts the fact that y ∈ G − H.
Thus H ∩K = 1. Applying the counting formula gives

|HK| = |H||K|
|H ∩K|

=
p · p

1
= p2,

and it follows that HK = G. We conclude that

G ≈ H ×K = 〈x〉 × 〈y〉 ≈ Z/p× Z/p.

�



3. Let p > 2 be prime. Prove that every group of order 2p is either cyclic or dihedral.

Proof. Suppose that |G| = 2p, where p > 2 is prime. By Cauchy’s Theorem G has an element
of order 2, say x ∈ G, and an element of order p, say y ∈ G. Note that |〈x〉 ∩ 〈y〉| divides
|〈x〉| = 2 and |〈y〉| = p, hence 〈x〉 ∩ 〈y〉 = 1. Then we have

|〈x〉〈y〉| = |〈x〉||〈y〉|
|〈x〉〈y〉|

=
2 · p

1
= 2p,

hence 〈x〉〈y〉 = G. Since 〈y〉 has index 2, it is normal (we could also use Sylow’s theorem to
show this) and we conclude that G = 〈x〉 n 〈y〉. It remains to see how 〈x〉 acts on 〈y〉 by
conjgation.

Since 〈y〉 is normal, note that xyx−1 = xyx = yi for some i ∈ Z. Then we have

y = x2yx2 = x(xyx)x = xyix = (xyx)(xyx) · · · (xyx) = yiyi · · · yi = yi
2
,

hence yi
2−1 = 1. This means that p divides i2 − 1 = (i + 1)(i − 1) and since p is prime this

implies p divides i− 1 or p divides i+ 1. If p divides i− 1, then xyx = yi = yi−1y = 1y = y,
hence G is abelian. We conclude that G is cyclic:

G = 〈x〉 × 〈y〉 ≈ Z/2× Z/p ≈ Z/(2p).

If p divides i+ 1, then xyx = yi = yi+1y−1 = 1y−1 = y−1, and we conclude that G is dihedral:

G = 〈x〉n 〈y〉 ≈ D2p.

�

4. Prove that the alternating group A4 is not simple.

Proof. Let V ⊆ A4 be the subset containing the identity and all elements of the form (ij)(k`):

V := {1, (12)(34), (13)(24), (14)(23)}.

Recall that any permutation has order equal to the least common multiple of the lengths of
its cycles. Thus the non-identity elements of V all have order 2. Note that V is a subgroup
of A4 because

[(12)(34)][(13)(24)] = (14)(23),

[(12)(34)][(14)(23)] = (13)(24),

[(13)(24)][(14)(23)] = (12)(34).

Finally, recall that conjugation of permutations preserves the cycle structure. This implies
that V is a union of conjugacy classes, and hence is normal. �

[I mentioned in class that the special orthogonal groups are almost simple. In particular, for odd
n the group SO(n) is simple and for even n (except 4) the group SO(n)/{±I} is simple. The
anomalous fact that SO(4) is not simple should be related to the anomalous fact that A4 is not
simple. However, I do not know a direct link between them.]

5. If |G| = 30, prove that G is not simple.

[I will give two proofs. The first answers this specific question and the second proves the more
general fact that if |G| = pqr with p < q < r prime, then G is not simple.]



Proof 1. Suppose that |G| = 30 = 2 · 3 · 5. Let P be a Sylow 5-subgroup and let Q be a Sylow
3-subgroup. Note that P ∩Q = 1 since every element of the intersection has order dividing 3
and dividing 5. Note also that |PQ| = |P ||Q|/|P ∩Q| = 3 · 5/1 = 15. If we knew that one of
P or Q is normal, this would imply that G is not simple.

So suppose that P and Q are both non-normal and let n5 and n3 be the numbers of Sylow
5-subgroups and Sylow 3-subgroups, respectively. Since P and Q are non-normal we have
n5 > 1 and n3 > 1. By Sylow’s theorem we know that n5|6 and n5 = 1 (mod 5), which
implies n5 = 6. We also know n3|10 and n3 = 1 (mod 3), which implies n3 = 10. How could
there be so many Sylow subgroups? There can’t, and here’s why. Note that any element of
order 5 in G generates a Sylow 5-subgroup. Furthermore, every Sylow 5-subgroup is cyclic
and so it is generated by any non-identity element. Thus any two Sylow 5-subgroups must
intersect trivially. It follows that G contains exactly 6 · 4 = 24 elements of order 5. By similar
reasoning, G contains 10 · 2 = 20 elements of order 3. But 24 + 20 = 44 > 30 = |G|. This
contradiction proves that one of P or Q must be normal. �

Proof 2. Suppose that |G| = pqr with p < q < r prime. Let nr, nq, np be the numbers of Sylow
r-subgroups, q-subgroups and p-subgroups, respectively. If any of nr, nq or np equals 1 then
we obtain a normal Sylow subgroup, so assume that nr, nq, np > 1. Then by Sylow’s theorem
we have nr = pq, nq ∈ {r, pr} and np ∈ {q, r, qr}. Note that the Sylow subgroups are all cyclic
and intersect trivially. By counting the group elements of order r, q, p, and 1, we find that

pqr = |G| ≥ pq(r − 1) + r(q − 1) + q(p− 1) + 1 = pqr + (r − 1)(q − 1).

This implies 0 ≥ (r−1)(q−1), which contradicts the fact that (r−1) > 0 and (q−1) > 0. �

[Yes, that proof was a bit too slick.]


