1. Given a group, define its center (Zentrum):

$$
Z(G):=\{g \in G: g h=h g \text { for all } h \in G\} .
$$

Note that $Z(G)$ is abelian and $Z(G) \unlhd G$. If $G / Z(G)$ is cyclic, show that G is abelian.
2. Let p be prime and consider a group G of order p^{2}.
(a) Use the class equation to show that p divides $|Z(G)|$.
(b) Use Problem 1 to show that G must be abelian.
(c) Show that G must be isomorphic to \mathbb{Z} / p^{2} or $\mathbb{Z} / p \times \mathbb{Z} / p$.
3. Let p be prime and let G be a group of order $2 p$.
(a) Prove that $G \approx\langle x\rangle \ltimes\langle y\rangle$ where $\langle x\rangle$ is a cyclic group of order 2 and $\langle y\rangle$ is cyclic group of order p that is normal in G. [Hint: Sylow.]
(b) Note that $x y x=y^{i}$ for some $i \in \mathbb{Z}$. In this case, show that $y^{i^{2}-1}=1$. [Hint: Consider the element $x^{2} y x^{2}$.]
(c) If $y^{i^{2}-1}=1$, show that $p \mid(i-1)$ or $p \mid(i+1)$. Show that this implies that $x y x=y$ (and hence G is cyclic) or $x y x=y^{-1}$ (and hence G is dihedral).
4. Prove that the alternating group A_{4} is not simple. [Hint: Consider permutations of the form $(i j)(k \ell)$. Recall that conjugate permutations have the same cycle type.]
5. If $|G|=30$, prove that G is not simple. [Hint: Let P and Q be a Sylow 5 -subgroup and a Sylow 3-subgroup. Show that at least one of them must be normal in G. (If not, show that there are too many elements of order 5 and order 3.) Conclude that $P Q \triangleleft G$.]

